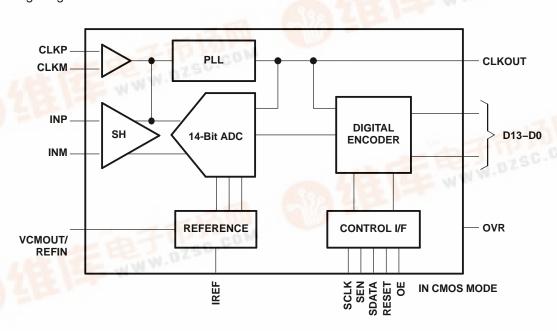


ADS5545

SLWS180-SEPTEMBER 2005

14-BITS, 170 MSPS ADC WITH LVDS/CMOS OUTPUTS

FEATURES


- Maximum Sample Rate: 170 MSPS
- 14-Bit Resolution
- No Missing Codes
- Power Dissipation
 - Core Power: 1 W
 - Total Power: 1.22 W
- Internal Sample and Hold
- 73.5-dBFS SNR at 70-MHz IF
- 85-dBc SFDR at 70-MHz IF
- Parallel CMOS and LVDS Output Options
- Internal Reference, External Reference Support
- 3.3-V Analog and Digital Supply
- 48-Pin QFN Package (7 mm × 7 mm)

APPLICATIONS

- Wireless Communication
- Software Defined Radio
- Power Amplifier Linearization
- 802.16d/e
- Test and Measurement Instrumentation
- High Definition Video
- Medical Imaging
- Radar Systems

DESCRIPTION

The ADS5545 is a high performance 14-bit 170-MSPS ADC. Using an internal sample and hold and low jitter clock buffer this ADC supports high SNR and high SFDR at high IF. With programmable options for parallel CMOS and LVDS outputs, this device is available in a compact 48-pin QFN package. The device provides internal references or can optionally be driven with an external reference. The device is specified over a -40°C to 85°C operating range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PACKAG/ORDERING INFORMATION(1)

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
ADS5545	48-QFN	RGZ	–40°C to 85°C	ADS5545IRGZ		

⁽¹⁾ $\theta_{JA} = TBD$, $\theta_{JC} = TBD$

ABSOLUTE MAXIMUM RATINGS(1)

		VALUE	UNIT
AVDD	Supply voltage range	-0.3 V to 3.9	V
DRVDD	Supply voltage range	-0.3 V to 3.9	V
	Voltage between AGND and DRGND	-0.3 to 0.3	V
	Voltage between AVDD to DRVDD	-0.3 to 3.3	V
CM	Voltage applied to external pin	-0.3 to 2	V
	Voltage applied to analog input pins	-0.3 V to minimum (3.6, AVDD + 0.3 V)	V
T _A	Operating free-air temperature range	-40 to 85	°C
T _J	Operating junction temperature range	125	°C
T _{stg}	Storage temperature range	-65 to 150	°C
	Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	220	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
SUPPLIE	S AND REFERENCES				
AVDD	Analog supply voltage	3	3.3	3.6	V
DRVDD	Digital supply voltage	3	3.3	3.6	V
CLOCK II	NPUT				
	Input clock sample rate	1		170	MSPS
	Input clock amplitude, differential				Vpp
	Input clock duty cycle		50%		
	Operating free-air temperature	-40		85	°C

ELECTRICAL CHARACTERISTICS

Typical values at 25°C, min, max values are across the full temperature range $T_{MIN} = -40$ °C to $T_{MAX} = 85$ °C, AVDD = DRVDD = 3.3 V, sampling rate = 170 MSPS, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, LVDS data output (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
DC AC	DC ACCURACY								
	Resolution			14		bits			
	No missing codes			Assured					
DNL	Differential non-linearity		-0.9	0.5	TBD	LSB			
INL	Integral non-linearity			±3		LSB			
	Offset error			±10		mV			
	Offset temperature coefficient			TBD		ppm/°C			
	Gain error			±1		%FS			
	Gain temperature coefficient			TBD		Δ/°C			

ELECTRICAL CHARACTERISTICS (continued)

Typical values at 25°C, min, max values are across the full temperature range $T_{MIN} = -40$ °C to $T_{MAX} = 85$ °C, AVDD = DRVDD = 3.3 V, sampling rate = 170 MSPS, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode, LVDS data output (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
POWER :	SUPPLY				
ICC	Total supply current	F _{IN} = TBD	369		mA
IAVDD	Analog supply current	F _{IN} = TBD	315		mA
IDRVDD	Digital aupply aurrent	LVDS mode, F _{IN} = TBD, C _L = 5 pF	54		mA
טטעאטו	Digital supply current	CMOS mode, $F_{IN} = TBD$, $C_L = 5 pF$	70		mA
	Total power dissipation	LVDS mode, F _{IN} = TBD	1.22		W
	Power down dissipation	Clock running	TBD		mW
REFERE	NCE VOLTAGES				
VREFB	Reference bottom		0.5		V
VREFT	Reference top		2.5		V
VCM	Common mode voltage (internal)		1.5		V
	VCM output current		±4		mA
ANALOG	INPUT				
	Differential input capacitance		7		pF
	Analog input common mode range		VCM ± 0.1		V
	Differential input voltage range		2		Vpp
	Analog input bandwidth	-3 dB, source impedance 50 Ω	400		MHz
DYNAMIC	C AC CHARACTERISTICS				
		F _{IN} = 10 MHz	90		
SFDR	Spurious free dynamic range	F _{IN} = 70 MHz	85		dBc
		F _{IN} = 150 MHz	84		
		F _{IN} = 10 MHz	74		
SNR	Signal-to-noise ratio	F _{IN} = 70 MHz	73.5		dBFS
		F _{IN} = 150 MHz	72		

DIGITAL CHARACTERISTICS

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1 AVDD = DRVDD = 3.3 V, I_O = 3.5 mA, R_L = 100 Ω . (1)

All LVDS and CMOS specifications are characterized, but not tested at production.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS				,	
High-level input voltage		2.4			V
Low-level input voltage				0.8	V
High-level input current			10		μΑ
Low-level input current			10		μΑ
Input capacitance			4		pF
DIGITAL OUTPUTS - CMOS MODE					
High-level output voltage			3.3		V
Low-level output voltage			0		V
Output capacitance	Output capacitance inside the device, from either output to ground		4		pF
DIGITAL OUTPUTS – LVDS MODE		<u> </u>		,	
High-level output voltage			1375		mV
Low-level output voltage			1025		mV
Output differential voltage, V _{OD}			350		mV
V _{OS} Output offset voltage ⁽¹⁾	Common-mode voltage of OUTP and OUTM		1200		mV
Output capacitance	Output capacitance inside the device, from either output to ground		4		pF
Change in $ V_{OD} $, $ \Delta V_{OD} $			25		mV
Change in $ V_{OS} $, $ \Delta V_{OS} $			25		mV

(1) I_O refers to the LVDS buffer current setting, R_L is the differential load resistance between the LVDS output pair.

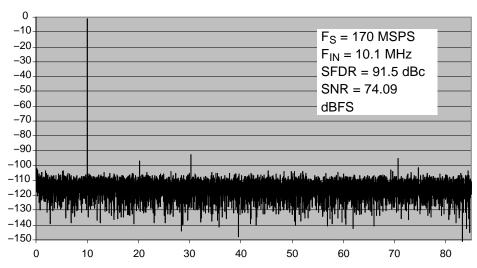


Figure 1. ADS5545 FFT Plot at 170 MSPS and 10-MHz Input

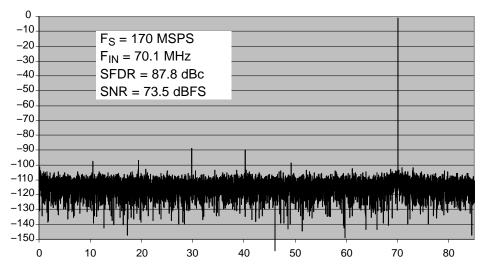


Figure 2. ADS5545 FFT Plot at 170 MSPS and 70-MHz Input

PACKAGE OPTION ADDENDUM

21-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing		kage Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
ADS5545IRGZ	PREVIEW	QFN	RGZ	48 2	250	TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

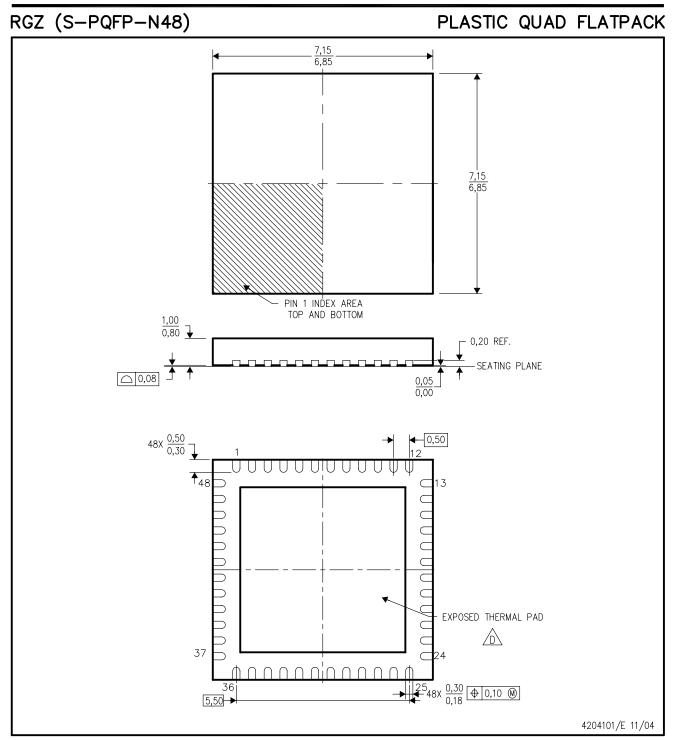
a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.


Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265