HIGH-SPEED 64K x 8 SYNCHRONOUS **DUAL-PORT STATIC RAM** ## PRELIMINARY IDT709089S/L #### Features: - True Dual-Ported memory cells which allow simultaneous access of the same memory location WWW.DZSC.COM - High-speed clock to data access - Commercial: 9/12/15ns (max.) - Low-power operation - IDT709089S - Active: 950mW (typ.) - Standby: 5mW (typ.) - IDT709089L - Active: 950mW (typ.) - Standby: 1mW (typ.) - Flow-Through or Pipelined output mode on either port via the FT/PIPE pin - Counter enable and reset features - Dual chip enables allow for depth expansion without additional logic - Full synchronous operation on both ports - 4ns setup to clock and 1ns hold on all control, data, and address inputs - Data input, address, and control registers - Fast 9ns clock to data out in the Pipelined output mode - Self-timed write allows fast cycle time - 15ns cycle time, 66MHz operation in the Pipelined output mode - TTL- compatible, single 5V (±10%) power supply - Industrial temperature range (-40°C to +85°C) is available for selected speeds - Available in 100-pin Thin Quad Flatpack (TQFP) package ## **Functional Block Diagram** ### **Description:** The IDT709089 is a high-speed $64K \times 8$ bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT709089 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by $\overline{\text{CE}}\text{o}$ and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 950mW of power. ## Pin Configuration^(1,2,3) - 1. All Vcc pins must be connected to power supply. - 2. All GND pins must be connected to ground supply. - 3. Package body is approximately 14mm x 14mm x 1.4mm. - 4. This package code is used to reference the package diagram. - 5. This text does not indicate orientation of the actual part-marking. 3242 tbl 03 #### **Pin Names** | Left Port | Right Port | Names | |------------------|--------------------|-----------------------| | CEOL, CE1L | CEOR, CE1R | Chip Enables | | R/WL | R/\overline{W}_R | Read/Write Enable | | ŌĒL | OE R | Output Enable | | A0L - A15L | A0R - A15R | Address | | I/O0L - I/O7L | I/Oor - I/O7R | Data Input/Output | | CLKL | CLKr | Clock | | ADS L | ADS R | Address Strobe | | CNTENL | <u>CNTEN</u> R | Counter Enable | | CNTRSTL | CNTRSTR | Counter Reset | | FT/PIPEL | FT/PIPER | Flow-Through/Pipeline | | V | CC | Power | | G | ND | Ground | 3242 tbl 01 ### **Truth Table I—** Read/Write and Enable Control^(1,2,3) | ŌĒ | CLK | Œ | CE ₁ | R/W | I/O ₀₋₇ | Mode | |----|----------|---|-----------------|-----|--------------------|------------------| | Х | ↑ | Н | Х | Х | High-Z | Deselected | | Х | ↑ | Х | L | Х | High-Z | Deselected | | Х | 1 | L | Н | L | Din | Write | | L | ↑ | L | Н | Н | Dout | Read | | Н | Χ | L | Н | Χ | High-Z | Outputs Disabled | 3242 tbl 02 #### NOTES: - 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X. - 3. $\overline{\text{OE}}$ is an asynchronous input signal. ## Truth Table II—Address Counter Control^(1,2) | Address | Previous
Address | CLK | ĀDS | CNTEN | CNTRST | I/O ⁽³⁾ | Mode | |---------|---------------------|-----|------------------|------------------|--------|--------------------|--| | Х | Х | 1 | Н | Н | L | Dvo(0) | Counter Reset to Address 0 | | An | Х | 1 | L ⁽⁴⁾ | Н | Н | DVO(n) | External Address Utilized | | Х | An | 1 | Н | Н | Н | DVO(n) | External Address Blocked—Counter Disabled | | Х | An | 1 | Н | L ⁽⁵⁾ | Н | DVO(n+1) | Counter Enable—Internal Address Generation | - 1. "H" = V_{IH} , "L" = V_{IL} , "X" = Don't Care. - 2. \overline{CE}_0 and $\overline{OE} = V_{IL}$; CE1 and $R/\overline{W} = V_{IH}$. - 3. Outputs configured in Flow-Through Output mode; if outputs are in Pipelined mode the data out will be delayed by one cycle. - 4. ADS is independent of all other signals including CEo and CE1. 5. The address counter advances if CNTEN = ViL on the rising edge of CLK, regardless of all other signals including CEo and CE1. # Recommended Operating Temperature and Supply Voltage^(1,2) | Grade | Ambient
Temperature | GND | Vcc | |------------|------------------------|-----|-------------------| | Commercial | 0°C to +70°C | 0V | 5.0V <u>+</u> 10% | | Industrial | -40°C to +85°C | 0V | 5.0V <u>+</u> 10% | 3242 tbl 04 #### NOTES: - 1. This is the parameter TA. - 2. Industrial temperature: for specific speeds, packages and powers contact your sales office. # **Recommended DC Operating Conditions** | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|--------------------|---------------------|------|--------|------| | Vcc | Supply Voltage | 4.5 | 5.0 | 5.5 | ٧ | | GND | Ground | 0 | 0 | 0 | V | | VIH | Input High Voltage | 2.2 | _ | 6.0(1) | ٧ | | VIL | Input Low Voltage | -0.5 ⁽²⁾ | | 0.8 | ٧ | 3242 tbl 05 #### NOTES: - 1. VTERM must not exceed Vcc + 10%. - 2. $VIL \ge -1.5V$ for pulse width less than 10ns. ## **Absolute Maximum Ratings**(1) | Symbol | Rating | Commercial
& Industrial | Unit | |----------------------|--|----------------------------|------| | VTERM ⁽²⁾ | Terminal Voltage
with Respect
to GND | -0.5 to +7.0 | ٧ | | TBIAS | Temperature
Under Bias | -55 to +125 | °C | | Tstg | Storage
Temperature | -55 to +125 | °C | | ЮИТ | DC Output
Current | 50 | mA | #### NOTES: - Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%. ## Capacitance⁽¹⁾ ### $(TA = +25^{\circ}C, f = 1.0MHz)$ | Symbol | Parameter | Conditions ⁽²⁾ | Max. | Unit | |---------------------|--------------------|---------------------------|------|------| | CIN | Input Capacitance | VIN = 3dV | 9 | pF | | Соит ⁽³⁾ | Output Capacitance | Vout = 3dV | 10 | pF | 3242 tbl 07 - These parameters are determined by device characterization, but are not production tested. - 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. - 3. Cout also references Ci/o. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%) | | | | 709089S/L | | | |--------|--------------------------------------|--|-----------|------|------| | Symbol | Parameter | Test Conditions | Min. | Max. | Unit | | Iu | Input Leakage Current ⁽¹⁾ | Vcc = 5.5V, Vin = 0V to Vcc | _ | 10 | μA | | ILO | Output Leakage Current | \overline{CE}_0 = ViH or CE1 = ViL, Vout = 0V to Vcc | _ | 10 | μA | | Vol | Output Low Voltage | IoL = +4mA | _ | 0.4 | V | | Voh | Output High Voltage | Iон = -4mA | 2.4 | _ | ٧ | #### NOTE: 1. At Vcc ≤ 2.0V input leakages are undefined. 3242 tbl 08 # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(6,7)}$ (vcc = 5V ± 10%) | _ | | | | | 70908
Com'l | | 70908
Com'l | | 70908
Com'l | | | |--------|---------------------------------------|--|-------|--------|----------------|------------|----------------|------------|---------------------|------------|------| | Symbol | Parameter | Test Condition | Versi | on | Тур.(4) | Max. | Тур.(4) | Max. | Тур. ⁽⁴⁾ | Max. | Unit | | ICC | Dynamic Operating Current | CEL and CER= VIL
Outputs Open | COM'L | S
L | 210
210 | 390
350 | 200
200 | 345
305 | 190
190 | 325
285 | mA | | | (Both Ports Active) | f = fMAX ⁽¹⁾ | IND | S
L | | | | | _ | _ | | | ISB1 | Standby Current
(Both Ports - TTL | $\overline{CEL} = \overline{CER} = VIH$ $f = f_{MAX}^{(1)}$ | COM'L | S
L | 50
50 | 135
115 | 50
50 | 100
90 | 50
50 | 110
90 | mA | | | Level Inputs) | | IND | S
L | _ | _ | _ | _ | _ | _ | | | ISB2 | Standby Current
(One Port - TTL | $\overline{\underline{C}}\overline{\underline{E}}$ "A" = VIL and $\overline{C}\overline{\underline{E}}$ "B" = VIH $^{(3)}$ | COM'L | S
L | 140
140 | 270
240 | 130
130 | 230
200 | 120
120 | 220
190 | mA | | | Level Inputs) | Active Port Outputs
Open,
f=fMAX ⁽¹⁾ | IND | S
L | _ | _ | _ | _ | _ | _ | | | ISB3 | Full Standby Current
(Both Ports - | Both Ports CER and CEL ≥ VCC - 0.2V | COM'L | S
L | 1.0
0.2 | 15
5 | 1.0
0.2 | 15
5 | 1.0
0.2 | 15
5 | mA | | | CMOS Level Inputs) | $VIN \ge VCC - 0.2V \text{ or } VIN \le 0.2V, f = 0^{(2)}$ | IND | S
L | | | | | _ | _ | | | ISB4 | Full Standby Current
(One Port - | $\overline{\underline{CE}}$ "A" $\leq 0.2V$ and \overline{CE} "B" $\geq VCC - 0.2V^{(5)}$ | COM'L | S
L | 130
130 | 245
225 | 120
120 | 205
185 | 110
110 | 195
175 | mA | | | CMOS Level Inputs) | $VIN \ge VCC - 0.2V$ or $VIN \le 0.2V$, Active Port Outputs Open, $f = fMAX^{(1)}$ | IND | S
L | | _ | _ | _ | _ | _ | | - 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "AC TEST CONDITIONS" at input levels of GND to 3V. - 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. - 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". - 4. Vcc = 5V, TA = 25°C for Typ, and are not production tested. lcc pc(f=0) = 150mA (Typ). - 5. $\overline{CE}x = VIL \text{ means } \overline{CE}_0x = VIL \text{ and } CE_1x = VIH$ - $\overline{CE}x = VIH \text{ means } \overline{CE}0x = VIH \text{ or } CE1x = VIL$ - $\overline{\text{CE}}x \le 0.2V \text{ means } \overline{\text{CE}}ox \le 0.2V \text{ and } \text{CE}1x \ge Vcc 0.2V$ - $\overline{CE}x \ge Vcc 0.2V$ means $\overline{\overline{CE}}0x \ge Vcc 0.2V$ or $CE1x \le 0.2V$ - "X" represents "L" for left port or "R" for right port. - 6. 'X' in part numbers indicate power (S or L). - 7. Industrial temperature: for specific speeds, packages and powers contact your sales office. #### **AC Test Conditions** | <u> </u> | | |-------------------------------|-------------------| | Input Pulse Levels | GND to 3.0V | | Input Rise/Fall Times | 3ns Max. | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | Figures 1,2 and 3 | 3242 tbl 10 Figure 1. AC Output Test load. Figure 2. Output Test Load (For tckLz, tckHz, toLz, and toHz). *Including scope and jig. Figure 3. Typical Output Derating (Lumped Capacitive Load). # AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3,4,5)}$ (Vcc = 5V ± 10%, TA = 0°C to +70°C) | | and write Cycle Timing) | 7090
Com | 089X9
'I Only | 7090 | 709089X12
Com'l Only | | 709089X15
Com'l Only | | |----------------|---|-------------|------------------|------|-------------------------|------|-------------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | tcyc1 | Clock Cycle Time (Flow-Through) ⁽²⁾ | 25 | _ | 30 | _ | 35 | _ | ns | | tcyc2 | Clock Cycle Time (Pipelined) ⁽²⁾ | 15 | | 20 | _ | 25 | _ | ns | | tcн1 | Clock High Time (Flow-Through)(2) | 12 | _ | 12 | _ | 12 | _ | ns | | tal1 | Clock Low Time (Flow-Through) ⁽²⁾ | 12 | _ | 12 | _ | 12 | _ | ns | | tCH2 | Clock High Time (Pipelined) ⁽²⁾ | 6 | _ | 8 | _ | 10 | _ | ns | | tal2 | Clock Low Time (Pipelined) ⁽²⁾ | 6 | _ | 8 | _ | 10 | _ | ns | | tr | Clock Rise Time | _ | 3 | _ | 3 | _ | 3 | ns | | tF | Clock Fall Time | _ | 3 | _ | 3 | _ | 3 | ns | | tsa | Address Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | tha | Address Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | tsc | Chip Enable Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | thc | Chip Enable Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | tsw | R/W Setup Time | 4 | | 4 | _ | 4 | _ | ns | | thw | R/W Hold Time | 1 | | 1 | _ | 1 | _ | ns | | tsd | Input Data Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | thD | Input Data Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | tsad | ADS Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | thad | ADS Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | tscn | CNTEN Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | then | CNTEN Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | tsrst | CNTRST Setup Time | 4 | _ | 4 | _ | 4 | _ | ns | | thrst | CNTRST Hold Time | 1 | _ | 1 | _ | 1 | _ | ns | | toe | Output Enable to Data Valid | _ | 12 | _ | 12 | _ | 15 | ns | | tolz | Output Enable to Output Low-Z ⁽¹⁾ | 2 | _ | 2 | _ | 2 | _ | ns | | tонz | Output Enable to Output High-Z ⁽¹⁾ | 1 | 7 | 1 | 7 | 1 | 7 | ns | | tcd1 | Clock to Data Valid (Flow-Through) ⁽²⁾ | _ | 20 | _ | 25 | _ | 30 | ns | | tCD2 | Clock to Data Valid (Pipelined) ⁽²⁾ | _ | 9 | _ | 12 | _ | 15 | ns | | toc | Data Output Hold After Clock High | 2 | _ | 2 | _ | 2 | _ | ns | | tckhz | Clock High to Output High-Z ⁽¹⁾ | 2 | 9 | 2 | 9 | 2 | 9 | ns | | tcklz | Clock High to Output Low-Z ⁽¹⁾ | 2 | _ | 2 | _ | 2 | _ | ns | | Port-to-Port [| Delay | • | | • | • | | | • | | tcwdd | Write Port Clock High to Read Data Delay | _ | 40 | _ | 40 | _ | 50 | ns | | tccs | Clock-to-Clock Setup Time | | 15 | _ | 15 | | 20 | ns | #### NOTES 3242 tbl 11 - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested. - 2. The Pipelined output parameters (tcyc2, tcb2) apply to either or both left and right ports when FT/PIPE = VIH. Flow-through parameters (tcyc1, tcb1) apply when FT/PIPE = VIL for that port. - 3. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation. - 4. 'X' in part number indicates power rating (S or L). - 5. Industrial temperature: for specific speeds, packages and powers contact your sales office. # Timing Waveform of Read Cycle for Flow-Through Output $(\overline{FT}/PIPE"x" = Vil)^{(3,6)}$ # Timing Waveform of Read Cycle for Pipelined Output $(\overline{FT}/PIPE"x" = Vih)^{(3,6)}$ - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. <u>OE</u> is asynchronously controlled; all other inputs are synchronous to the rising clock edge. - 3. ADS = VIL, CNTEN and CNTRST = VIH. - 4. The output is disabled (High-Impedance state) by CE₀ = VIH or CE₁ = VIL following the next rising edge of clock. Refer to Truth Table 1. - 5. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 6. "x" denotes Left or Right port. The diagram is with respect to that port. ## Timing Waveform of a Bank Select Pipelined Read (1,2) # Timing Waveform of a Bank Select Flow-Through Read (6,7) - 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one 709089 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. - 2. \overline{OE} and \overline{ADS} = VIL; CE1(B1), CE1(B2), R/ \overline{W} , \overline{CNTEN} , and \overline{CNTRST} = VIH. - 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 4. CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. - 5. \overline{OE} = V_{IL} for the Right Port, which is being read from. \overline{OE} = V_{IH} for the Left Port, which is being written to. - If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwdd. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcdl. tcwdd does not apply in this case. - 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A". # Timing Waveform with Port-to-Port Flow-Through Read^(1,2,3,5) - $1. \ \ \underline{\text{Transition} \ \text{is} \ \text{measured} \ 0 \text{mV} \ \text{from} \ \text{Low} \ \text{or} \ \text{High-impedance} \ \text{voltage} \ \text{with the Output Test Load (Figure 2)}.}$ - 2. $\overline{CE_0}$ and \overline{ADS} = VIL; CE1, \overline{CNTEN} , and \overline{CNTRST} = VIH. - 3. \overline{OE} = V_{IL} for the Right Port, which is being read from. \overline{OE} = V_{IH} for the Left Port, which is being written to. - 4. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwbb. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb1. tcwbb does not apply in this case. - 5. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A". # Timing Waveform of Pipelined Read-to-Write-to-Read ($\overline{\text{OE}}$ = V_{IL})⁽³⁾ # Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(3) - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. - 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. # Timing Waveform Flow-Through Read-to-Write-to-Read $(\overline{OE} = V_{IL})^{(3)}$ ## Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(3) - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - Output state (High, Low, or High-impedance is determined by the previous cycle control signals. - CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. - Addresses do not have to be accessed sequentially since \overline{ADS} = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. ## Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾ # Timing Waveform of Flow-Through Read with Address Counter Advance $^{(1)}$ - 1. \overline{CE}_0 and $\overline{OE} = V_{IL}$; CE₁, R/ \overline{W} , and $\overline{CNTRST} = V_{IH}$. - 2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks. # Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾ ## Timing Waveform of Counter Reset (Pipelined Outputs)(2) **NOTES:**1. \overline{CE}_0 and $R/\overline{W} = V_{IL}$; CE1 and $\overline{CNTRST} = V_{IH}$. - T. CEU ANU R/W = VIL, CET ANU CIVIRST - 2. $\overline{CE}_0 = V_{IL}$; $CE_1 = V_{IH}$. - 3. The "Internal Address" is equal to the "External Address" when \overline{ADS} = VII. and equals the counter output when \overline{ADS} = VIII. - 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset. ADDRo will be accessed. Extra cycles are shown here simply for clarification. - 7. CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1'Address is written to during this cycle. ### **Functional Description** The IDT709089 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications. A HIGH on $\overline{\text{CE}}0$ or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT709089's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}0$ LOW and CE1 HIGH to reactivate the outputs. ### **Depth and Width Expansion** The IDT709089 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The 709089 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 16-bit or wider applications. Figure 4. Depth and Width Expansion with IDT709089 ## **Ordering Information** #### NOTE: Industrial temperature range is available. For specific speeds, packages and powers contact your sales office. ## **Ordering Information for Flow-through Devices** | Old Flow-through Part | New Combined Part | |-----------------------|-------------------| | 70908S/L20 | 709089S/L9 | | 70908S/L25 | 709089S/L12 | | 70908S/L30 | 709089S/L15 | 3242 tbl 12 ## **Preliminary Datasheet:** "PRELIMINARY" data sheets contain descriptions for products that are in early release. ### **Datasheet Document History** 1/12/99: Initiated datasheet document history Converted to new format Cosmetic and typographical corrections Added additional notes to pin configurations Page 15 Added Depth and Width Expansion note 6/7/99: Changed drawing format Page 4 Deleted note 6 for Table II 11/10/99: Replaced IDT logo 2/18/00: 12/22/99: Page 1 Removed "Separate upper-byte..." line 1/12/00: Combined Pipelined 709089 family and Flow-through 70908 family offerings into one data sheet Changed ±200mV in waveform notes to 0mV Added corrresponding part chart with ordering information Pages 8 and 9 Changed ±220mV waveform notes to 0mV Page 9 Changed "Operation" in heading to "Pipelined Output", fixed drawing 08 Removed PGA pin