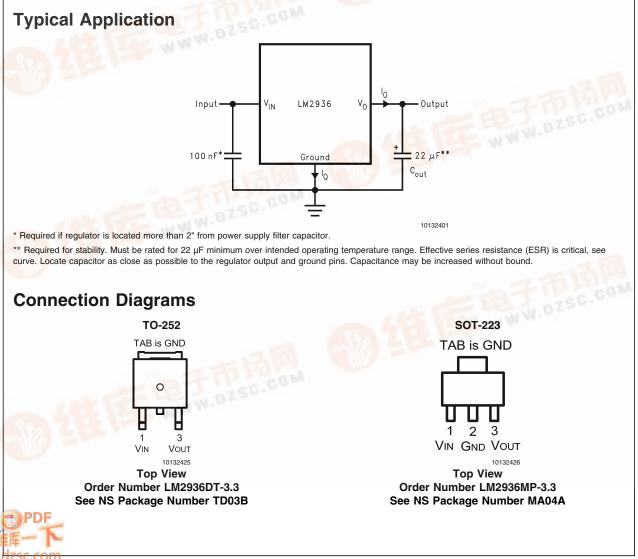
捷多邦,专业PCB打样工厂,24小时加急出货

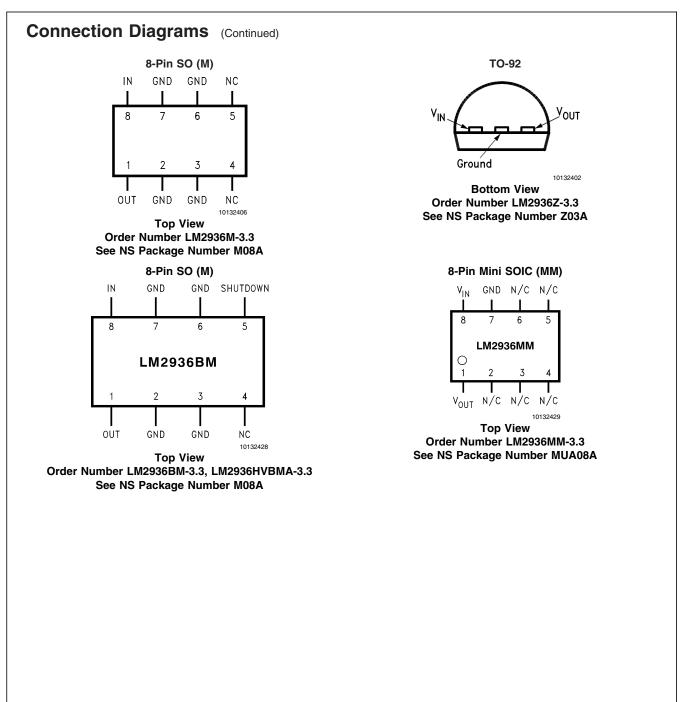
June 2002

National Semiconductor


LM2936-3.3 Ultra-Low Quiescent Current 3.3V Regulator

General Description

The LM2936-3.3 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 20 μ A quiescent current at a 100 μ A load, the LM2936-3.3 is ideally suited for automotive and other battery operated systems. The LM2936-3.3 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936-3.3 has a 40V maximum operating voltage limit, a -40°C to +125°C operating temperature range, and ±3% output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936-3.3 is available in a TO-92 package, a SO-8 surface mount package, as well as SOT-223 and TO-252 surface mount power packages.


Features

- **Ultra low quiescent current** ($I_Q \le 20 \ \mu A$ for $I_O = 100 \ \mu A$)
- Fixed 3.3V, 50 mA output
- ±2% Initial output tolerance
- ±3% Output tolerance over line, load, and temperature
- Dropout voltage typically 200 mV @ I_O = 50 mA
- Reverse battery protection
- –50V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40V operating voltage limit
- 60V operating voltage limit for LM2936HV
 Shutdown pin available with LM2936BM package

© 2002 National Semiconductor Corporation DS101324

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.		Maximum Operating Input Voltage - LM2936 Maximum Operating Input Voltage - LM2936HV only	+40V +60V
Input Voltage (Survival)	+60V, -50V	Maximum Shutdown Pin Voltage -	0V to 40V
ESD Susceptibility (Note 2)	2000V	LM2936BM only	
Power Dissipation (Note 3)	Internally limited		
Junction Temperature (T _{Jmax})	150°C	MSO-8 (MUA08A) θ_{JA}	200°C/W
Storage Temperature Range	-65°C to +150°C	TO-92 (Z03A) θ _{JA}	195°C/W
Lead Temperature (Soldering, 10		SO-8 (M08A) θ _{JA}	140°C/W
sec.)	260°C	SO-8 (M08A) θ _{JC}	45°C/W
		TO-252 (TD03B) θ _{JA}	126°C/W
		TO-252 (TD03B) θ _{JC}	6°C/W
Operating Ratings		SOT-223 (ΜΑ04Α) θ _{JA}	149°C/W
Operating Temperature Range	–40°C to +125°C	SOT-223 (MA04A) θ_{JC}	36°C/W

Electrical Characteristics

 V_{IN} = 14V, I_O = 10 mA, T_J = 25°C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Devemeter	Conditions	Min	Typical	Max	Unito
Parameter	Conditions	(Note 5)	(Note 4)	(Note 5)	Units
LM2936HV Only					
Output Voltage	$5.5V \le V_{IN} \le 48V,$	3.201	3.300	3.399	V
	100 μ A \leq I _O \leq 50 mA (Note 6)	0.201			
Line Regulation	$6V \le V_{IN} \le 60V, I_O = 1mA$		10	30	mV
All LM2936					
Output Voltage		3.234	3.300	3.366	V
	$\begin{array}{l} 4.0 V \leq V_{IN} \leq 26 V, \\ 100 \mu A \leq I_{O} \leq 50 m A \mbox{ (Note 6)} \end{array}$	3.201	3.30	3.399	
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$		15	20	μA
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	$9V \le V_{IN} \le 16V$		5	10	mV
	$6V \le V_{IN} \le 40V, I_O = 1 \text{ mA}$		10	30	1
Load Regulation	$100 \ \mu A \le I_O \le 5 \ mA$		10	30	mV
	$5 \text{ mA} \le \text{I}_{O} \le 50 \text{ mA}$		10	30	
Dropout Voltage	l _O = 100 μA		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	$V_{O} = 0V$	65	120	250	mA
Output Impedance	$I_{O} = 30$ mAdc and 10 mArms,		450		mΩ
	f = 1000 Hz				
Output Noise Voltage	10 Hz–100 kHz		500		μV
Long Term Stability			20		mV/1000
					Hr
Ripple Rejection	$V_{ripple} = 1 V_{rms}, f_{ripple} = 120 Hz$	-40	-60		dB
Reverse Polarity	$R_{L} = 500\Omega, T = 1 ms$	-50	-80		V
Transient Input Voltage					
Output Voltage with	$V_{IN} = -15V, R_{L} = 500\Omega$		0.00	-0.30	V
Reverse Polarity Input					
Maximum Line Transient	$R_L = 500\Omega, V_O \le 3.63V$	60			30
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 22\mu F$ 0.1mA $\leq I_{OUT} \leq 50mA$	0.3		8	Ω

LM2936-3.3

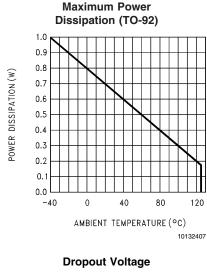
Electrical Characteristics (Continued)

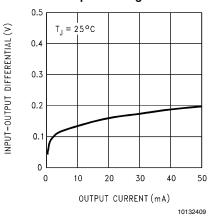
V_{IN} = 14V, I_O = 10 mA, T_J = 25°C, unless otherwise specified. Boldface limits apply over entire operating temperature range

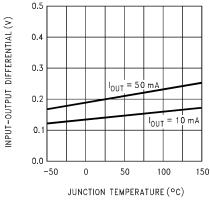
Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units		
Shutdown Input - LM2936BM Only							
Output Voltage, V _{OUT}	Output Off, V _{SD} = 2.4V		0	0.010	V		
Shutdown High Threshold	Output Off, $R_{LOAD} = 500\Omega$	2.00	1.1		V		
Voltage, V _{IH}							
Shutdown Low Threshold	Output On, $R_{LOAD} = 500\Omega$		1.1	0.60	V		
Voltage, V _{IL}							
Shutdown High Current, I _{IH}	Output Off, V_{SD} = 2.4V, R_{LOAD} = 500 Ω		12		μA		
Quiescent Current	Output Off, V_{SD} = 2.4V, R_{LOAD} = 500 Ω		30		μA		
	Includes I _{IH} Current						

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.

Note 2: Human body model, 100 pF discharge through a 1.5 k $\!\Omega$ resistor.

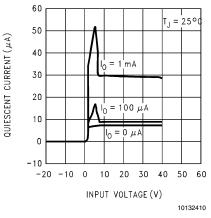

Note 3: The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the LM2936 will go into thermal shutdown.


Note 4: Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.


Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level) and 100% tested.

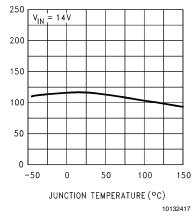
Note 6: To ensure constant junction temperature, pulse testing is used.

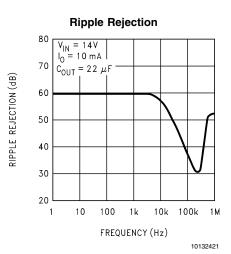
Typical Performance Characteristics

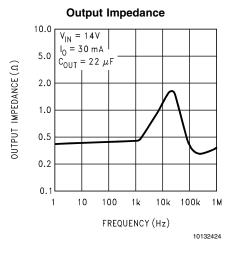


Dropout Voltage

LM2936-3.3

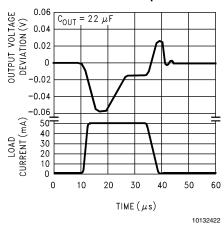

Typical Performance Characteristics (Continued) **Quiescent Current Quiescent Current** 20 $V_{IN} = 14V$ $V_{|N|} = 14V$ 18 $T_J = 25^{\circ}C$ 3 QUIESCENT CURRENT (mA) QUIESCENT CURRENT (μ A) 16 14 12 2 $I_0 = 100 \ \mu A$ 10 8 6 4 2 0 0 0 10 20 30 40 50 -50 0 50 100 150 OUTPUT CURRENT (mA) JUNCTION TEMPERATURE (°C) 10132412 10132411 Quiescent Current **Quiescent Current** 4.0 2.0 $V_{IN} = 14V$ $T_J = 25°C$ 1.8 3.5 1.6 = 50 mA QUIESCENT CURRENT (mA) QUIESCENT CURRENT (mA) 10 3.0 1.4 2.5 1.2 2.0 $I_0 = 50 \text{ mA}$ 1.0 1.5 0.8 1.0 0.6 0.5 l_o = 10 mA 0.4 $I_0 = 10 \text{ mA}$ 0 0.2 -0.5 0 -20 -10 0 10 20 30 -50 0 50 100 150 INPUT VOLTAGE (V) JUNCTION TEMPERATURE (°C) 10132413 10132414 **Output Capacitor ESR Peak Output Current** 100 250 $C_{OUT} = 22 \ \mu F$ $V_{IN} = 14V$ EQUIVALENT SERIES RESISTANCE (Ω) $T_J = 25°C$ $T_J = 25^{\circ}C$ PEAK OUTPUT CURRENT (mA) 200 10 Stable 150 Region 100 0. 50 0.0 0 0.001 0 5 10 15 20 25 0 10 20 30 40 50 INPUT VOLTAGE (V) OUTPUT CURRENT (mA) 10132416 10132415


LM2936-3.3


PEAK OUTPUT CURRENT (mA)

Typical Performance Characteristics (Continued)

Peak Output Current



Line Transient Response 0.06 $C_{OUT} = 22 \ \mu F$ OUTPUT VOLTAGE DEVIATION (V) 0.04 . = 10 mA 6 = 14V 0.02 0 -0.02 -0.04 INPUT VOLTAGE CHANGE (V) 0.06 17 14 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 TIME (ms) 10132419

Load Transient Response

Applications Information

Unlike other PNP low dropout regulators, the LM2936 remains fully operational to 40V. Owing to power dissipation characteristics of the available packages, full output current cannot be guaranteed for all combinations of ambient temperature and input voltage. As an example, consider an LM2936Z-3.3 operating at 25°C ambient. Using the formula for maximum allowable power dissipation given in (Note 3),

we find that $P_{Dmax} = 641$ mW at 25°C. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 15.3V. The LM2936Z-3.3 will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 15.3V. Similarly, at 40V input and 25°C ambient the LM2936Z-3.3 can deliver 15 mA maximum.

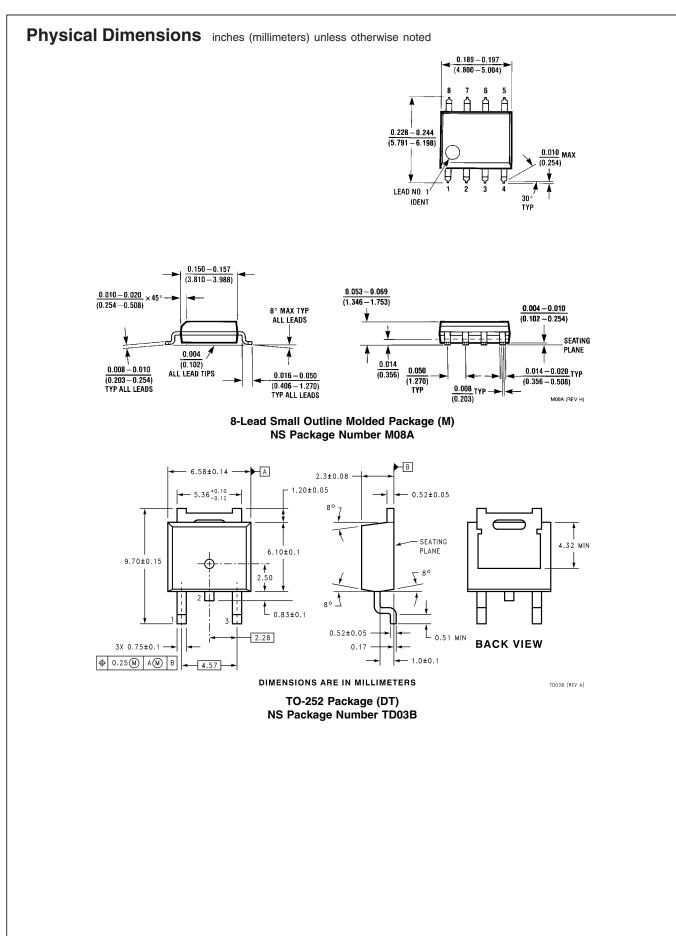
Applications Information (Continued)

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of 125°C the LM2936Z-3.3 can only dissipate 128 mW, limiting the input voltage to 5.6V for a 50 mA load, or 3.0 mA output current for a 40V input.

The junction to ambient thermal resistance θ_{JA} rating has two distinct components: the junction to case thermal resistance rating θ_{JC} ; and the case to ambient thermal resistance rating θ_{CA} . The relationship is defined as: $\theta_{JA} = \theta_{JC} + \theta_{CA}$. For the SO-8 and TO-252 surface mount packages the θ_{JA} rating can be improved by using the copper mounting pads on the printed circuit board as a thermal conductive path to extract heat from the package.

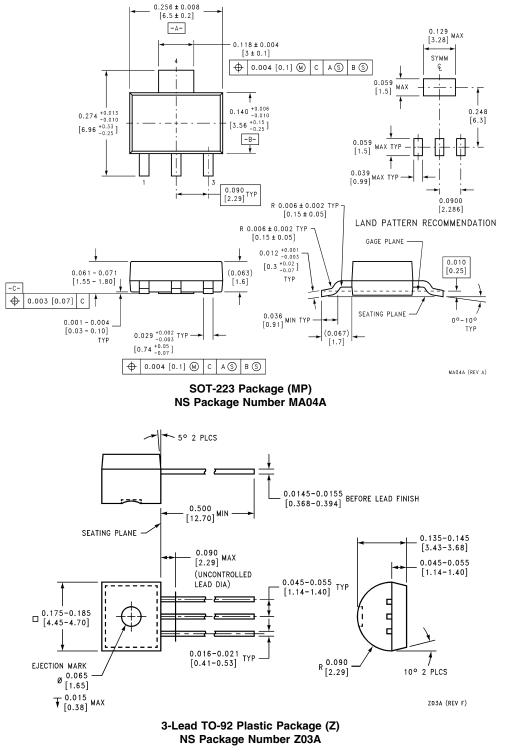
On the SO-8 package the four ground pins are thermally connected to the backside of the die. Adding approximately 0.04 square inches of 2 oz. copper pad area to these four pins will improve the θ_{JA} rating to approximately 110°C/W. If this extra pad are is placed directly beneath the package there should not be any impact on board density.

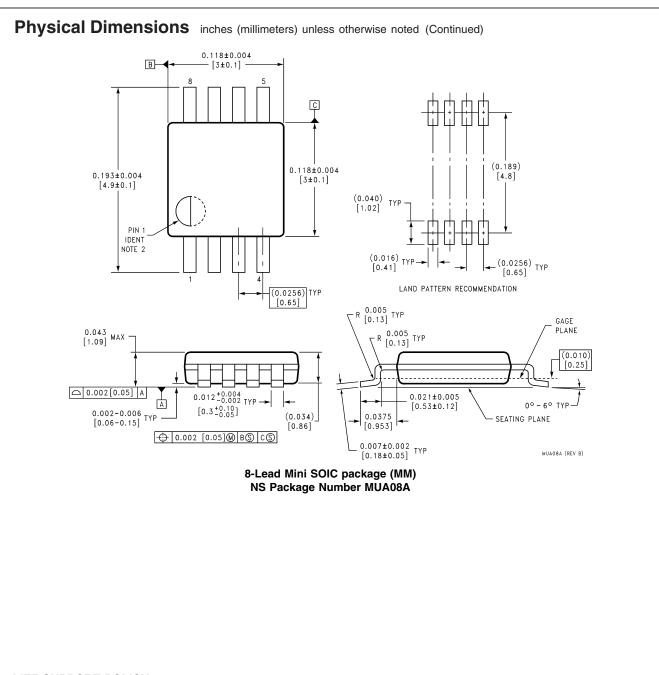
On the TO-252 package the ground tab is thermally connected to the backside of the die. Adding 1 square inch of 2 oz. copper pad area directly under the ground tab will improve the θ_{JA} rating to approximately 50°C/W.


While the LM2936 has an internally set thermal shutdown point of typically 150°C, this is intended as a safety feature only. Continuous operation near the thermal shutdown temperature should be avoided as it may have a negative affect on the life of the device.

While the LM2936-3.3 will survive input transients to +60V, output regulation is not guaranteed for input voltages greater than 40V. The LM2936 will not withstand a output short circuit with the input above 40V because of safe operating area limitations in the internal PNP pass device. With input voltages above 60V the LM2936 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40V, or where transients are likely to exceed 60V.

Shutdown Pin


The LM2936BM has a pin for shutting down the regulator output. Applying a Logic Level High (>2.0V) to the Shutdown pin will cause the output to turn off. Leaving the Shutdown pin open, connecting it to Ground, or applying a Logic Level Low (<0.6V) will allow the regulator output to turn on.



LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Email: support@nsc.com

www.national.com

 National Semiconductor

 Europe

 Fax:
 +49 (0) 180-530 85 86

 Email:
 europe.support@nsc.com

 Deutsch
 Tel:
 +49 (0) 69 9508 6208

 English
 Tel:
 +44 (0) 870 24 0 2171

 Français
 Tel:
 +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.