intersil

捷多邦, 专业PCB打样工厂, 24小时加急出货 ACTS 161V/S

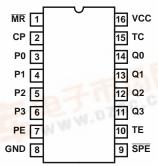
Radiation Hardened 4-Bit Synchronous Counter

January 1996

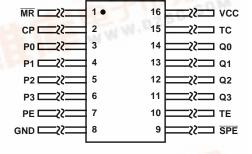
Features

- Devices QML Qualified in Accordance with MIL-PRF-38535
- Detailed Electrical and Screening Requirements are Contained in SMD# 5962-96716 and Intersil's QM Plan
- 1.25 Micron Radiation Hardened SOS CMOS
- Single Event Upset (SEU) Immunity: <1 x 10⁻¹⁰ Errors/Bit/Day (Typ)
- Dose Rate Upset>10¹¹ RAD (Si)/s, 20ns Pulse
- Dose Rate Survivability.....>10¹² RAD (Si)/s, 20ns Pulse
- Latch-Up Free Under Any Conditions
- Significant Power Reduction Compared to ALSTTL Logic
- DC Operating Voltage Range 4.5V to 5.5V
- Input Logic Levels
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current ≤ 1μA at VOL, VOH
- Fast Propagation Delay 25ns (Max), 16ns (Typ)

Description


The Intersil ACTS161MS is a Radiation Hardened 4-Bit Binary Synchronous Counter, featuring asynchronous reset and load ahead carry logic. The $\overline{\text{MR}}$ is an active low master reset. $\overline{\text{SPE}}$ is an active low Synchronous Parallel Enable which disables counting and allows data at the preset inputs (P0 - P3) to load the counter. $\overline{\text{CP}}$ is the positive edge clock. $\overline{\text{TC}}$ is the terminal count or carry output. Both $\overline{\text{TE}}$ and $\overline{\text{PE}}$ must be high for counting to occur, but are irrelevant to loading. $\overline{\text{TE}}$ low will keep $\overline{\text{TC}}$ low.

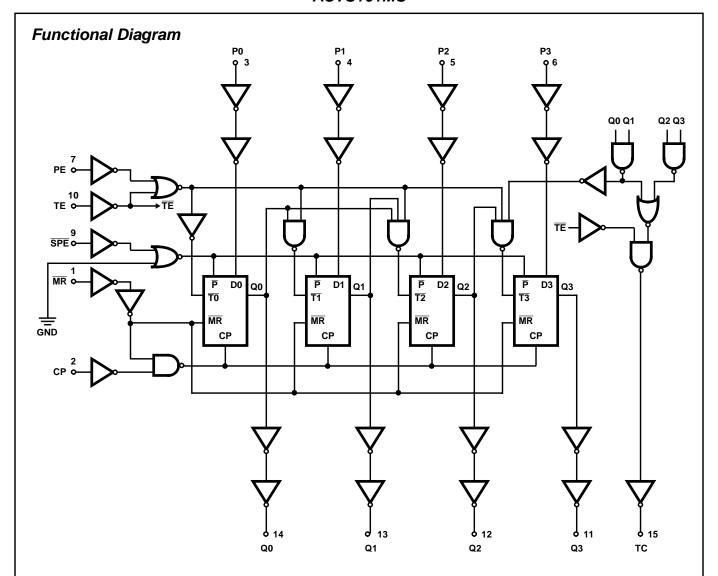
The ACTS161MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of a radiation hardened, high-speed, CMOS/SOS Logic family.


The ACTS161MS is supplied in a 16 lead Ceramic Flatpack (K suffix) or a Ceramic Dual-In-Line Package (D suffix).

Pinouts

16 PIN CERAMIC DUAL-IN-LINE
MIL-STD-1835, DESIGNATOR CDIP2-T16,
LEAD FINISH C
TOP VIEW

16 PIN CERAMIC FLATPACK
MIL-STD-1835, DESIGNATOR CDFP4-F16,
LEAD FINISH C
TOP VIEW



O<mark>rdering Information</mark>

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE		
5962F9671601VEC	-55°C to +125°C	MIL-PRF-38535 Class V	16 Lead SBDIP		
5962F9671601VXC	-55°C to +125°C	MIL-PRF-38535 Class V	16 Lead Ceramic Flatpack		
ACTS161D/Sample	25°C	Sample	16 Lead SBDIP		
ACTS161K/Sample	25°C	Sample	16 Lead Ceramic Flatpack		
ACTS161HMSR	25°C	Die	Die		

ACTS161MS

TRUTH TABLE

	INPUTS						OUTPUTS	
OPERATING MODE	MR	СР	PE	TE	SPE	P _N	Q _N	тс
Reset (Clear)	L	Х	Х	Х	Х	Х	L	L
Parallel Load	Н		Х	Х	I	I	L	L
	Н		Х	Х	I	h	Н	(Note 1)
Count	Н		h	h	h (Note 3)	Х	count	(Note 1)
Inhibit	Н	Х	I (Note 2)	Х	h (Note 3)	Х	q_N	(Note 1)
	Н	Х	Х	I (Note 2)	h (Note 3)	Х	q_N	L

H = High Steady State, L = Low Steady State, h = High voltage level one setup time prior to the Low-to-High clock transition, I = Low voltage level one setup time prior to the Low-to-High clock transition, X = Don't Care,q = Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition, ____ = Low-to-High Transition.

NOTES:

- 1. The TC output is High when TE is High and the counter is at Terminal Count (HHHH).
- 2. The High-to-Low transition of PE or TE should only occur while CP is High for conventional operation.
- 3. The Low-to-High transition of SPE should only occur while CP is High for conventional operation.

- ·· · F40000

ACTS161MS

Die Characteristics

DIE DIMENSIONS:

88 mils x 88 mils 2240mm x 2240mm

METALLIZATION:

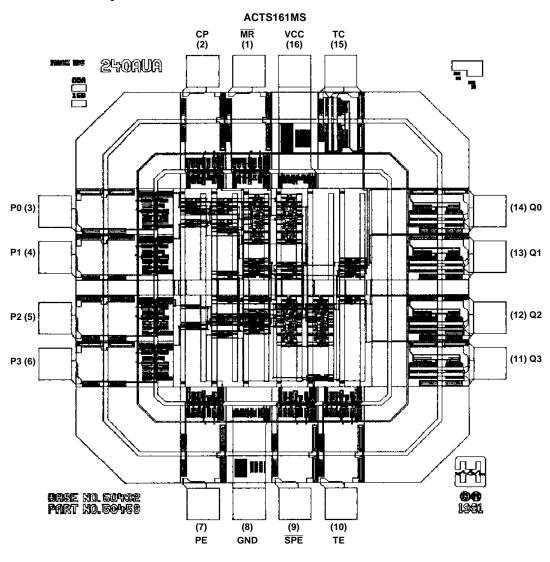
Type: AlSi

Metal 1 Thickness: 7.125kÅ ±1.125kÅ Metal 2 Thickness: 9kÅ ±1kÅ

GLASSIVATION:

Type: SiO₂

Thickness: 8kÅ ±1kÅ


WORST CASE CURRENT DENSITY:

 $< 2.0 \times 10^5 \text{A/cm}^2$

BOND PAD SIZE:

110μm x 110μm 4.3 mils x 4.3 mils

Metallization Mask Layout

- .. . E40000

ACTS161MS

1130 Brussels, Belgium

TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

Taipei, Taiwan

Republic of China

TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

TEL: (321) 724-7000

FAX: (321) 724-7240