捷多邦,专业PCB打样工厂,24小时加急出货

July 2002

120 nsec

100dB

110dB

-40°C to 125°C

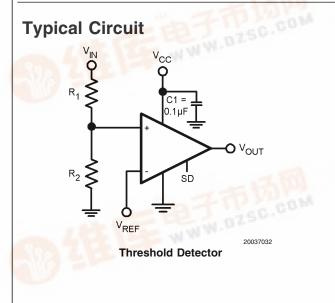
LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull W.DZSC Output

General Description

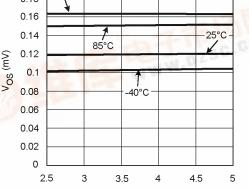
The LMV761/762 are precision comparators intended for applications requiring low noise and low input offset voltage. The LV761 single has a shutdown pin that can be used to disable the device and reduce the supply current. The LMV761 is available in a space saving SOT23-6 or SOIC-8 package. The LMV762 dual is available in SOIC-8 or MSOP-8 package.

They feature a CMOS input and Push-Pull output stage. The Push-Pull output stage eliminates the need for an external pull-up resistor.

The LMV761/762 are designed to meet the demands of small size, low power and high performance required by portable and battery operated electronics.


The input offset voltage has a typical value of 200µV at room WWW.DZSC.CON temp and a 1mV limit over temp.

Features


- $(V_{S} = 5V, T_{A} = 25^{\circ}C, Typical values unless specified)$
- Input offset voltage 0.2mV Input offset voltage (max over temp) 1mV 0.2pA Input bias current
 - Propagation delay (OD = 50mV)
 - Low supply current 300µA
 - CMRR
- PSRR
- Extended Temperature Range
- Push-pull output
- Ideal for 2.7V and 5V single supply applications
 - Available in space-saving packages: 6-Pin SOT23 (single w/shutdown) 8-Pin SOIC (single w/shutdown) 8-Pin SOIC/MSOP (dual without shutdown)

Applications

- Portable and battery-powered systems
- Scanners
- Set top boxes
- High speed differential line receiver
- Window comparators
- Zero-crossing detectors
- High speed sampling circuits

Vos vs. Vcc 0.2 125°C 0.18 0.16 0.14 85°C 0.12 () m/

 $V_{CC}(V)$

20037010

LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull Output

© 2002 National Semiconductor Corporation DS200370

Absolute Maximum Ratings (Note 1)

ESD Tolerance (Note 2)

Human Body Model

Supply Voltage (V⁺ - V⁻)

Differential Input Voltage

Soldering Information

Voltage between any two pins Output Short Circuit to V^+ - V^-

Infrared or Convection (20 sec.)

Machine Model

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Wave Soldering (10 sec.)	260°C (Lead Temp)
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

Operating Ratings

Supply Voltage (V ⁺ - V ⁻)	2.7V to 5.0V
Temperature Range	–40°C to +125°C
Package Thermal Resistance (Note 4)	
SOT23-6	265°C/W
SOIC-8	190°C/W
MSOP-8	235°C/W

2.7V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V_{CM} = V^+/2$, $V^+ = 2.7V$, $V^- = 0V^-$. Boldface limits apply at the temperature extremes. (Note 5)

2000V

200V

5.5V

235°C

Supply Voltage Supply Voltage

			Min	Тур	Max		
Symbol	Parameter	Condition	(Note 7)	(Note 6)	(Note 7)	Units	
V _{os}	Input Offset Voltage			0.2	1.0	mV	
I _B	Input Bias Current (Note 8)			0.2	50	pА	
l _{os}	Input Offset Current (Note 8)			.001	5	pА	
CMRR	Common Mode Rejection Ratio	$0V < V_{CM} < V_{CC} - 1.3V$	80	100		dB	
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	80	110		dB	
CMVR	Input Common Mode Voltage Range	CMRR > 50dB			-0.3 1.5	V	
Vo	Output Swing High	$I_{L} = 2mA, V_{ID} = 200mV$	V ⁺ - 0.35	V ⁺ - 0.1		V	
	Output Swing Low	$I_{L} = -2mA, V_{ID} = -200mV$		90	250	mV	
I _{sc}	Output Short Circuit Current	Sourcing, $V_O = 1.35V$, $V_{ID} = 200mV$	6.0	20			
	(Note 3)	Sinking, $V_O = 1.35V$, $V_{ID} = -200mV$	6.0	15		mA	
I _S	Supply Current						
	LMV761 (Single Comparator)			275	700	μA	
	LMV762 (Both Comparators)			550	1400		
I _{OUT} leakage	Output Leakage I @ Shutdown	$\overline{SD} = GND, V_O = 2.7V$		0.20		μA	
I _{s leakage}	Supply Leakage I @ Shutdown	$\overline{SD} = GND, V_{CC} = 2.7V$		0.20	2	μA	
t _{PD}	Propagation Delay	Overdrive = 5mV		270			
	$R_{L} = 5.1 k\Omega$	Overdrive = 10mV		205		ns	
	$C_{L} = 50 pF$	Overdrive = 50mV		120			
t _{skew}	Propagation Delay Skew			5		ns	
t _r	Output Rise Time	10% to 90%		1.7		ns	
t _f	Output Fall Time	90% to 10%		1.8		ns	
t _{on}	Turn On Time From Shutdown			6		μs	

5.0V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V_{CM} = V^+/2$, $V^+ = 5.0V$, $V^- = 0V^-$. **Boldface** limits apply at the temperature extremes.

			Min	Тур	Max	
Symbol	Parameter	Condition	(Note 7)	(Note 6)	(Note 7)	Units
V _{os}	Input Offset Voltage			0.2	1.0	mV
I _B	Input Bias Current (Note 8)			0.2	50	pА

5.0V Electrical Characteristics (Continued)

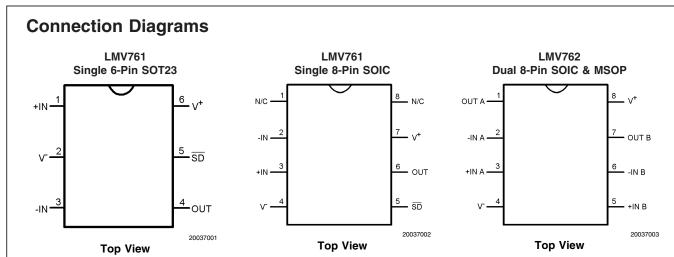
Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V_{CM} = V^+/2$, $V^+ = 5.0V$, $V^- = 0V^-$. **Boldface** limits apply at the temperature extremes.

			Min	Тур	Max		
Symbol	Parameter	Condition	(Note 7)	(Note 6)	(Note 7)	Units	
l _{os}	Input Offset Current (Note 8)			0.01	5	pА	
CMRR	Common Mode Rejection Ratio	$0V < V_{CM} < V_{CC} - 1.3V$	80	100		dB	
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	80	110		dB	
CMVR	Input Common Mode Voltage Range	CMRR > 50dB			3 3.8	V	
Vo	Output Swing High	$I_{L} = 4mA, V_{ID} = 200mV$	V ⁺ - 0.35	V ⁺ - 0.1		V	
	Output Swing Low	$I_{L} = -4mA, V_{ID} = -200mV$		120	250	mV	
I _{SC}	Output Short Circuit Current (Note 3)	Sourcing, $V_O = 2.5V$, $V_{ID} = 200mV$ Sinking, $V_O = 2.5V$, $V_{ID} = -200mV$	6.0 6.0	60 40		mA	
I _S	Supply Current LMV761 (Single Comparator) LMV762 (Both Comparators)			225 450	700 1400	μA	
I _{OUT} leakage	Output Leakage I @ Shutdown	\overline{SD} = GND, V _O = 5.0V		0.20		μA	
I _{S LEAKAGE}	Supply Leakage I @ Shutdown	$\overline{\text{SD}}$ = GND, V _{CC} = 5.0V		0.20	2	μA	
t _{PD}	Propagation Delay	Overdrive = 5mV		225			
	$R_{L} = 5.1 k\Omega$	Overdrive = 10mV		190		ns	
	$C_{L} = 50 pF$	Overdrive = 50mV 120		120			
t _{skew}	Propagation Delay Skew			5		ns	
t _r	Output Rise Time	10% to 90%		1.7		ns	
t _f	Output Fall Time	90% to 10%		1.5		ns	
t _{on}	Turn On Time from Shutdown			4		μs	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test condition, see the Electrical Characteristics.

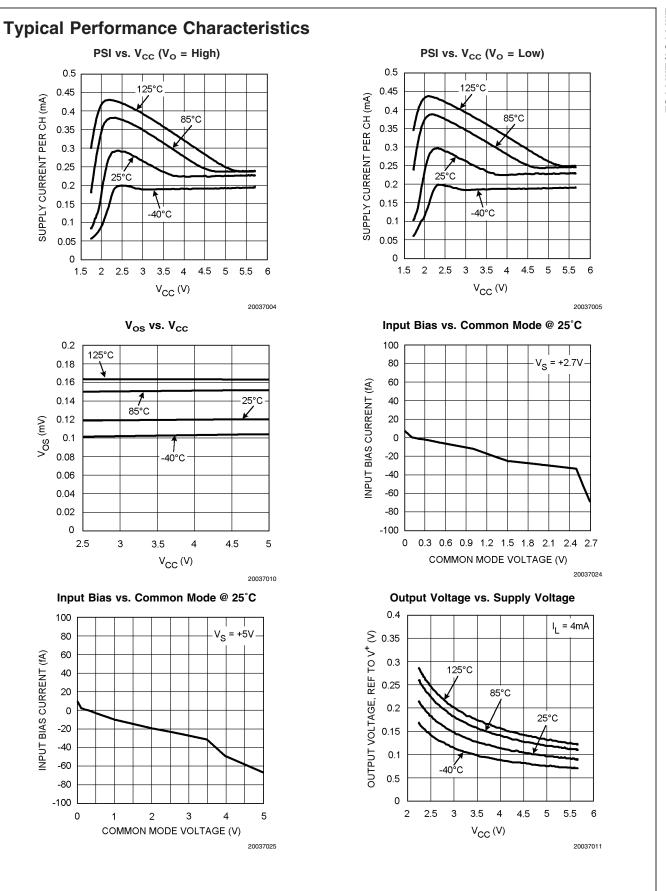
Note 2: Unless otherwise specified human body model is $1.5k\Omega$ in series with 100pF. Machine model 200pF.

Note 3: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. See Application section for information on temperature de-rating of this device. Absolute Maximum Rating indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.


Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)}) - T_A)\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Maximum temperature guarantee range is $-40^{\circ}C$ to $125^{\circ}C$.

Note 6: Typical values represent the most likely parametric norm.


Note 7: All limits are guaranteed by testing or statistical analysis.

Note 8: Guaranteed by design

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
6-Pin SOT23	LMV761MF	C22A	1k units Tape and Reel	MF06A	
	LMV761MFX]	3k units Tape and Reel		
8-Pin SOIC	LMV761MA	LMV761MA	Rail	M08A	
	LMV761MAX]	2.5k Units Tape and Reel		
8-Pin SOIC	LMV762MA	LMV762MA Rail		M08A	
	LMV762MAX]	2.5k Units Tape and Reel		
8-Pin MSOP	LMV762MM	C23A 1k Units Tape and Reel MU		MUA08A	
	LMV762MMX]	3.5k Units Tape and Reel]	

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.2

0.18 0.16

0.14

0.12

0.1

0.08

0.06

0.04 0.02

0

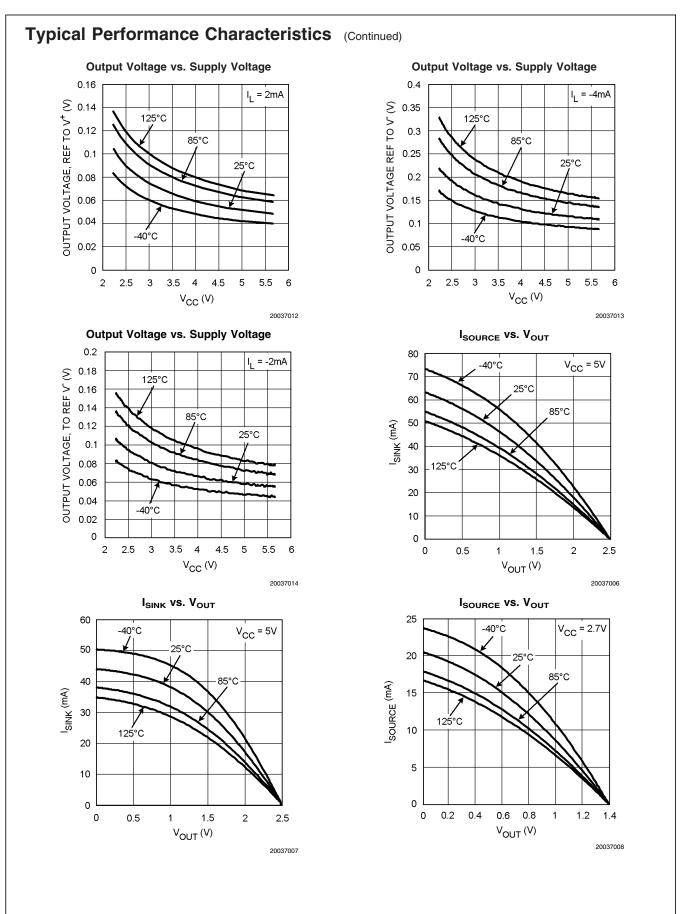
100

80 60

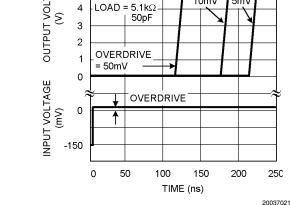
40 20

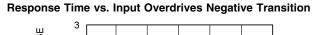
0

-20 -40 -60


-80 -100

INPUT BIAS CURRENT (fA)


V_{OS} (mV)


SUPPLY CURRENT PER CH (mA)

Typical Performance Characteristics (Continued) I_{SINK} vs. V_{OUT} Prop Delay vs. Overdrive 20 500 -40°C $R_L = 5.1 k\Omega$ 18 450 . C_L = 50pF 16 400 25°C 14 350 PROP DELAY (ns) I_{SINK} (mA) 12 300 2.7V 10 250 85°C 8 200 125°C 5V 6 150 4 100 2 = 2.7V Vcc 50 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1 10 100 V_{OUT} (V) OVERDRIVE (mV) 20037019 20037009 **Response Time vs. Input Overdrives Positive Transition Response Time vs. Input Overdrives Positive Transition** 6 3 V_{CC} = 2.7V TEMP = 25°C OUTPUT VOLTAGE (V) V_{CC} = 5V TEMP = 25°C OUTPUT VOLTAGE (V) 5 10mV 5mV 5mV 10mV LOAD = 5.1kΩ LOAD = 5.1kΩ 4 2 50pF 50pF 3 1 2 OVERDRIVE OVERDRIVE 1 = 50mV = 50mV 0 0 INPUT VOLTAGE (mV)

OVERDRIVE

100

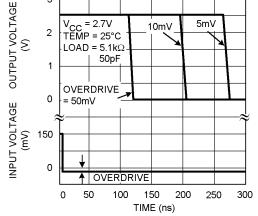
150

TIME (ns)

200

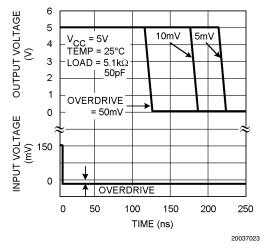
250

300


20037020

0

-150


0 50

A

20037022

Application Hints

Basic Comparator

A basic comparator circuit is used to convert analog input signals to digital output signals. The comparator compares an input voltage (V_{IN}) at the non-inverting input to the reference voltage (V_{REF}) at the inverting pin. If V_{IN} is less than V_{REF} the output (V_O) is low (V_{OL}). However, if V_{IN} is greater than V_{REF}, the output voltage (V_O) is high (V_{OH}).

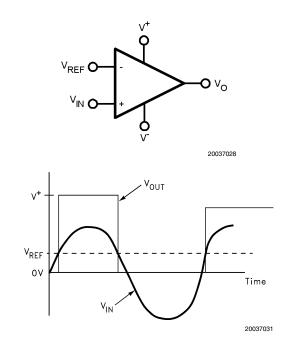


FIGURE 1. Basic Comparator

Hysteresis

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input is near the comparator's input offset voltage. This tends to occur when the voltage on one input is equal or very close to the other input voltage. Adding hysteresis can prevent this problem. Hysteresis creates two switching thresholds (one for the rising input voltage and the other for the falling input voltage). Hysteresis is the voltage difference between the two switching thresholds. When both inputs are nearly equal, hysteresis causes one input to effectively move quickly past the other. Thus, moving the input out of the region in which oscillation may occur.

Hysteresis can easily be added to a comparator in a noninverting configuration with two resistors and positive feedback *Figure 2*. The output will switch from low to high when V_{IN} rises up to V_{IN1} , where V_{IN1} is calculated by

$$V_{IN1} = (V_{REF}(R_1 + R_2))/R_2$$

The output will switch from high to low when $V_{\rm IN}$ falls to $V_{\rm IN2},$ where $V_{\rm IN2}$ is calculated by

$$V_{IN2} = (V_{REF}(R_1 + R_2) - V_{CC} R_1)/R_2$$

The Hysteresis is the difference between
$$V_{IN1}$$
 and V_{IN2} .

$$\Delta V_{IN} = V_{IN1} - V_{IN2}$$

$$= ((V_{REF}(R_1+R_2))/R_2) - ((V_{REF}(R_1+R_2)) - (V_{CC} R_1))/R_2)$$

$$= V_{CC} R_1/R_2$$

. . ..

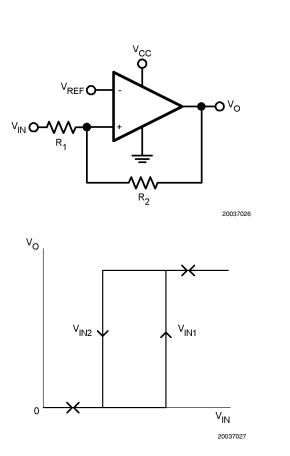
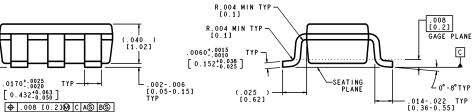


FIGURE 2. Non-Inverting Comparator Configuration

Input

The LMV761/762 have near zero input bias current. This allows very high resistance circuits to be used without any concern for matching input resistances. This also allows the use of very small capacitors in R-C type timing circuits. This reduces the cost of the capacitors and amount of board space used.

Shutdown Mode


The LMV761 features a low-power shutdown pin that is activated by driving \overline{SD} low. In shutdown mode, the output is in a high impedance state, supply current is reduced to 20nA and the comparator is disabled. Driving \overline{SD} high will turn the comparator on. The \overline{SD} pin should not be left unconnected due to the fact that it is a high impedance input. When left unconnected, the output will be at an unknown voltage. Also do not three-state the \overline{SD} pin.

The maximum input voltage for \overline{SD} is 5.5V, referred to ground and is not limited by V_{CC}. This allows the use of 5V logic to drive \overline{SD} while V_{CC} operates at a lower voltage, such as 3V. The logic threshold limits for \overline{SD} are proportional to V_{CC}.

Board Layout and Bypassing

The LMV761/762 is designed to be stable and oscillation free, but it is still important to include the proper bypass capacitors and ground pickups. Ceramic 0.1μ F capacitors should be placed at both supplies to provide clean switching. Minimize the length of signal traces to reduce stray capacitance.

PKG SYMM (102) (102) (102) (2.59) (2.59) (10.95)TYP) (0.95)LAND PATTERN RECOMMENDATION TYP (10.95)(

(.039 TYP) [0.99]

(.027 TYP) [0.69]

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

В

.063±.003 [1.6±0.07]

-PIN 1 IDENT

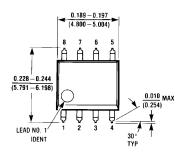
Physical Dimensions inches (millimeters)

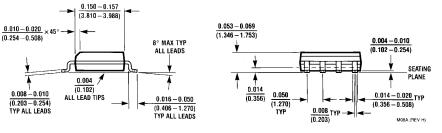
A-

.0375 [0.953] TYP

.112±.006 [2.84±0.15]

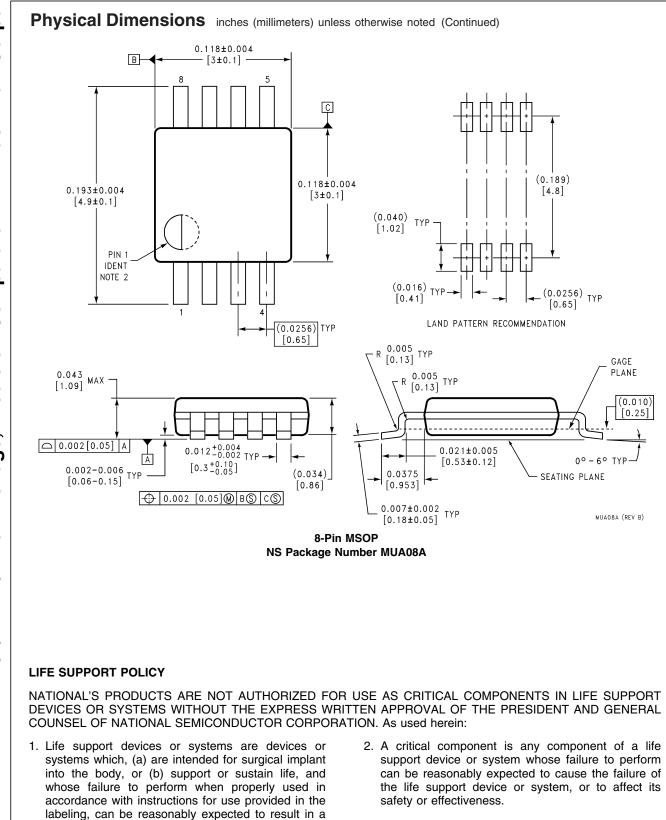
.038-.048


004 [0.1]C


.115±.003 [2.92±0.07]

unless otherwise noted

MF06A (Rev A)


6-Pin SOT23 NS Package Number MF06A

8-Pin SOIC NS Package Number M08A

LMV761/LMV762

LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull Output

significant injury to the user.

National Semiconductor

Email: support@nsc.com

Corporation

Americas

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

National Semiconductor

Asia Pacific Customer

Email: ap.support@nsc.com

Response Group

. Tel: 65-2544466

Fax: 65-2504466

National Semiconductor

Tel: 81-3-5639-7560

Fax: 81-3-5639-7507

Japan Ltd.

National Semiconductor

Fax: +49 (0) 180-530 85 86

Deutsch Tel: +49 (0) 69 9508 6208

English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Email: europe.support@nsc.com

Europe