

SEMICONDUCTOR™

September 2001
Revised February 2002

74ALVCH16240

Low Voltage 16-Bit Inverting Buffer/Line Driver with Bushold

General Description

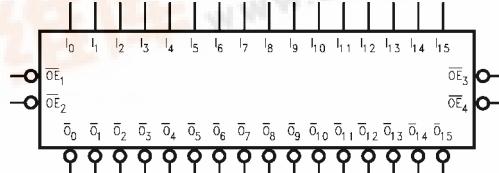
The ALVCH16240 contains sixteen inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The ALVCH16240 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating inputs at a valid logic level.

The 74ALVCH16240 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with output capability up to 3.6V.

The 74ALVCH16240 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

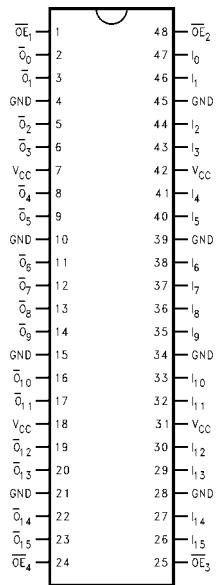
Features


- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD}
 - 3.9 ns max for 3.0V to 3.6V V_{CC}
 - 5.3 ns max for 2.3V to 2.7V V_{CC}
 - 6.0 ns max for 1.65V to 1.95V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V

Ordering Code:

Order Number	Package Number	Package Descriptions
74ALVCH16240T	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
l_0-l_{15}	Bushold Inputs
$\overline{O}_0-\overline{O}_{15}$	Outputs

Connection Diagram

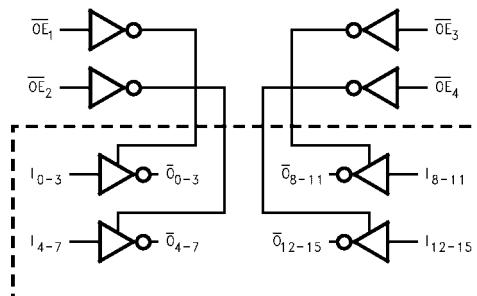
Truth Tables

Inputs	Outputs
\overline{OE}_1	I_0-I_3
L	L
L	H
H	X
\overline{OE}_2	I_4-I_7
L	L
L	H
H	X
\overline{OE}_3	I_8-I_{11}
L	L
L	H
H	X
\overline{OE}_4	$I_{12}-I_{15}$
L	L
L	H
H	X

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial (HIGH or LOW, inputs may not float)


Z = High Impedance

Functional Description

The 74ALVCH16240 contains sixteen inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled

by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings (Note 1)

Supply Voltage (V_{CC})	-0.5V to +4.6V
DC Input Voltage (V_I)	-0.5V to 4.6V
Output Voltage (V_O) (Note 2)	-0.5V to V_{CC} +0.5V
DC Input Diode Current (I_{IK}) $V_I < 0V$	-50 mA
DC Output Diode Current (I_{OK}) $V_O < 0V$	-50 mA
DC Output Source/Sink Current (I_{OH}/I_{OL})	±50 mA
DC V_{CC} or GND Current per Supply Pin (I_{CC} or GND)	±100 mA
Storage Temperature Range (T_{STG})	-65°C to +150°C

**Recommended Operating
Conditions** (Note 3)

Power Supply	Operating	1.65V to 3.6V
Input Voltage (V_I)		0V to V_{CC}
Output Voltage (V_O)		0V to V_{CC}
Free Air Operating Temperature (T_A)		-40°C to +85°C
Minimum Input Edge Rate ($\Delta t/\Delta V$)		
	$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed, limited to 4.6V.

Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{CC} (V)	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		1.65 - 1.95 2.3 - 2.7 2.7 - 3.6	0.65 x V_{CC} 1.7 2.0		V
V_{IL}	LOW Level Input Voltage		1.65 - 1.95 2.3 - 2.7 2.7 - 3.6		0.35 x V_{CC} 0.7 0.8	V
V_{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$ $I_{OH} = -4 mA$ $I_{OH} = -6 mA$ $I_{OH} = -12 mA$ $I_{OH} = -24 mA$	1.65 - 3.6 1.65 2.3 2.3 2.7 3.0	$V_{CC} - 0.2$ 1.2 2.0 1.7 2.2 2.4		V
V_{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$ $I_{OL} = 4 mA$ $I_{OL} = 6 mA$ $I_{OL} = 12 mA$ $I_{OL} = 24 mA$	1.65 - 3.6 1.65 2.3 2.3 2.7 3.0		0.2 0.45 0.4 0.7 0.4 0.55	V
I_I	Input Leakage Current	$0 \leq V_I \leq 3.6V$	3.6		±5.0	µA
$I_{I(HOLD)}$	Bushold Input Minimum Drive Hold Current	$V_{IN} = 0.58V$ $V_{IN} = 1.07V$ $V_{IN} = 0.7V$ $V_{IN} = 1.7V$ $V_{IN} = 0.8V$ $V_{IN} = 2.0V$ $0 < V_O \leq 3.6V$	1.65 1.65 2.3 2.3 3.0 3.0 3.6	25 -25 45 -45 75 -75 ±500		µA
I_{OZ}	3-STATE Output Leakage	$0 \leq V_O \leq 3.6V$	3.6		±10	µA
I_{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	µA
ΔI_{CC}	Increase in I_{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	µA

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $R_L = 500\Omega$								Units	
		$C_L = 50 \text{ pF}$				$C_L = 30 \text{ pF}$					
		$V_{CC} = 3.3V \pm 0.3V$		$V_{CC} = 2.7V$		$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 1.8V \pm 0.15V$			
		Min	Max	Min	Max	Min	Max	Min	Max		
t_{PHL}, t_{PLH}	Propagation Delay	1.0	3.9		5.3	1.0	5.3	1.5	6.0	ns	
t_{PZL}, t_{PZH}	Output Enable Time	1.0	5		6.1	1.0	6.4	1.5	8.2	ns	
t_{PLZ}, t_{PHZ}	Output Disable Time	1.0	4.4		4.8	1.0	5.4	1.5	6.8	ns	

Capacitance

Symbol	Parameter	Conditions		$T_A = +25^\circ\text{C}$		Units
				V_{CC}	Typical	
C_{IN}	Input Capacitance	Control	$V_I = 0V$ or V_{CC}	3.3	3	pF
		Data	$V_I = 0V$ or V_{CC}	3.3	6	
C_{OUT}	Output Capacitance		$V_I = 0V$ or V_{CC}	3.3	7	pF
C_{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	19	pF
				2.5	16	
		Outputs Disabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	5	
				2.5	4	

AC Loading and Waveforms

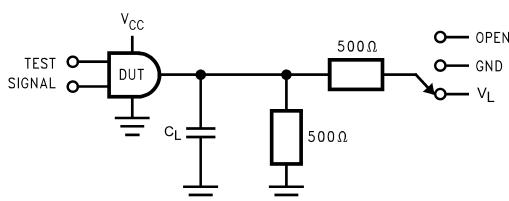


FIGURE 1. AC Test Circuit

TABLE 1. Values for Figure 1

TEST	SWITCH
t_{PLH}, t_{PHL}	Open
t_{PZL}, t_{PLZ}	V_L
t_{PZH}, t_{PHZ}	GND

TABLE 2. Variable Matrix
(Input Characteristics: $f = 1\text{MHz}$; $t_r = t_f = 2\text{ns}$; $Z_0 = 50\Omega$)

Symbol	V_{CC}			
	$3.3V \pm 0.3V$	$2.7V$	$2.5V \pm 0.2V$	$1.8V \pm 0.15V$
V_{mi}	1.5V	1.5V	$V_{CC}/2$	$V_{CC}/2$
V_{mo}	1.5V	1.5V	$V_{CC}/2$	$V_{CC}/2$
V_X	$V_{OL} + 0.3V$	$V_{OL} + 0.3V$	$V_{OL} + 0.15V$	$V_{OL} + 0.15V$
V_Y	$V_{OH} - 0.3V$	$V_{OH} - 0.3V$	$V_{OH} - 0.15V$	$V_{OH} - 0.15V$
V_L	6V	6V	V_{CC}^*2	V_{CC}^*2

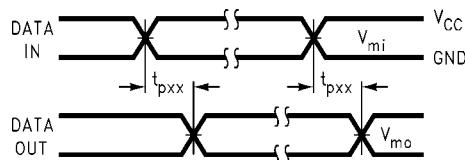


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

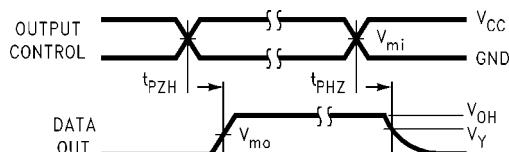


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

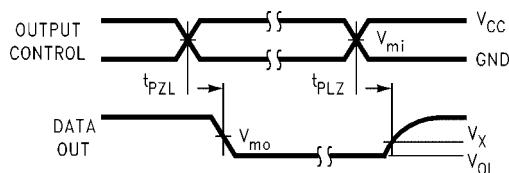
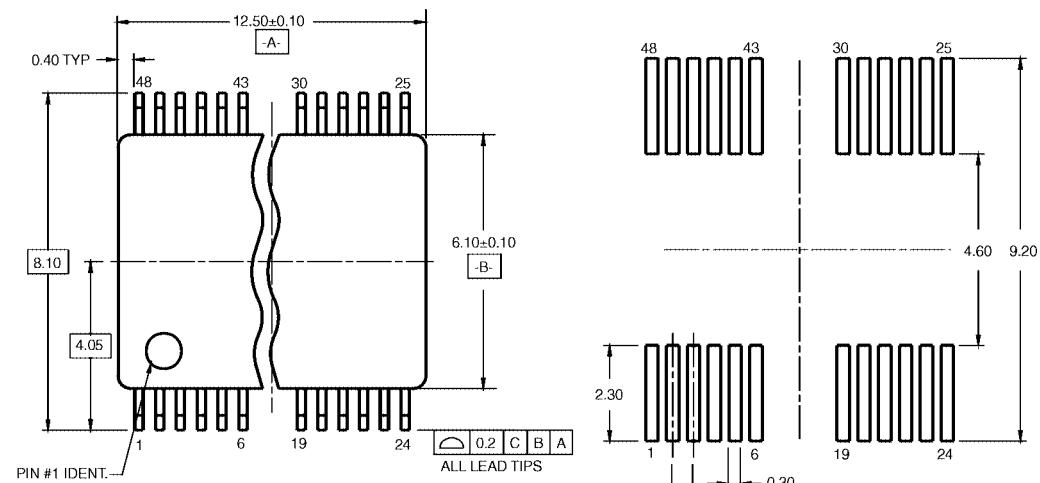
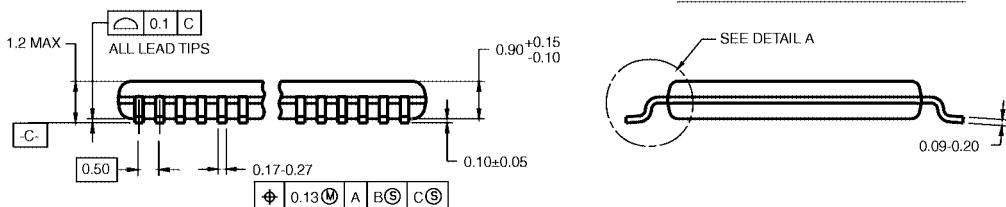




FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Physical Dimensions

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

DETAIL A

**48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Package Number MTD48**

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com