－Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
－EPICTM（Enhanced－Performance Implanted CMOS）Process
－Operating Range $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
－Distributed $V_{C C}$ and GND Pins Minimize High－Speed Switching Noise
－Flow－Through Architecture Optimizes PCB Layout
－Latch－Up Performance Exceeds 250 mA Per JESD 17
－ESD Protection Exceeds 2000 V Per MIL－STD－883，Method 3015；Exceeds 200 V Using Machine Model（ $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$ ）
－Package Options Include Plastic Shrink Small－Outline（DL），Thin Shrink Small－Outline（DGG），and Thin Very Small－Outline（DGV）Packages and $380-\mathrm{mil}$ Fine－Pitch Ceramic Flat（WD）Package Using 25－mil Center－to－Center Spacings

description

The＇AHC16373 devices are 16－bit transparent D－type latches with 3 －state outputs designed specifically for driving highly capacitive or relatively low－impedance loads．They are particularly suitable for implementing buffer registers，I／O ports，bidirectional bus drivers，and working registers．

These devices can be used as two 8 －bit latches or one 16－bit latch．When the latch－enable（LE）input is high， the Q outputs follow the data（D）inputs．When LE is taken low，the Q outputs are latched at the levels at the D inputs．
A buffered output－enable（ $\overline{\mathrm{OE}}$ ）input can be used to place the eight outputs in either a normal logic state（high or low logic levels）or the high－impedance state．In the high－impedance state，the outputs neither load nor drive the bus lines significantly．The high－impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components．

To ensure the high－impedance state during power up or power down， \bar{O} should be tied to V_{Cc} through a pullup resistor；the minimum value of the resistor is determined by the current－sinking capability of the driver．
$\overline{\mathrm{OE}}$ does not affect internal operations of the latch．Old data can be retained or new data can be entered while the outputs are in the high－impedance state．
The SN54AHC16373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ． The SN74AHC16373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

FUNCTION TABLE (each 8-bit latch)			
INPUTS			OUTPUT Q
$\overline{\mathrm{OE}}$	LE	D	
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

SN54AHC16373, SN74AHC16373 16-BIT TRANSPARENT D-TYPE LATCHES
 WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC}
-0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) .. -0.5 V to 7 V

> Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ -20 mA

> Package thermal impedance, θ_{JA} (see Note 2): DGG package $70^{\circ} \mathrm{C} / \mathrm{W}$ DGV package .. $58^{\circ} \mathrm{C} / \mathrm{W}$ DL package ... $63^{\circ} \mathrm{C} / \mathrm{W}$
> Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
> NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
> 2. The package thermal impedance is calculated in accordance with JESD 51
recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54AHC16373	SN74AHC16373	UNIT
			MIN	TYP MAX	MIN MAX	MIN MAX	
V_{OH}	$\mathrm{I} \mathrm{OH}=-50 \mu \mathrm{~A}$	2 V	1.9		1.9	1.9	V
		3 V	2.9		2.9	2.9	
		4.5 V	4.4		4.4	4.4	
	$\mathrm{OH}=-4 \mathrm{~mA}$	3 V	2.58		2.48	2.48	
	$\mathrm{IOH}=-8 \mathrm{~mA}$	4.5 V	3.94		3.8	3.8	
VOL	$\mathrm{IOL}=50 \mu \mathrm{~A}$	2 V		0.1	0.1	0.1	V
		3 V		0.1	0.1	0.1	
		4.5 V		0.1	(0.1	0.1	
	$\mathrm{IOL}=4 \mathrm{~mA}$	3 V		0.36	\bigcirc	0.44	
	$\mathrm{IOL}=8 \mathrm{~mA}$	4.5 V		0.36	0.5	0.44	
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0 V to 5.5 V		± 0.1	$\pm 1^{*}$	± 1	$\mu \mathrm{A}$
Ioz	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ \hline \end{array}$	5.5 V		± 0.25	± 2.5	± 2.5	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}^{\text {O }}=0$	5.5 V		4	40	40	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		2.510		10	pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		4			pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.
timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54AHC16373		SN74AHC16373		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, LE high	5		5		5		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE \downarrow	4		2		4		ns
	Hold time, data after LE \downarrow	1		Q1		1		ns

timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54AHC16373		SN74AHC16373		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	$C_{L}=15 \mathrm{pF}$		7.3*	13*	1*	15*	1	15	ns
tPHL					7.3*	13^{*}	1*	15*	1	15	
tPLH	LE	Q	$C_{L}=15 \mathrm{pF}$		7*	13*	1*	15*	1	15	ns
tPHL					7*	13*	1**	15*	1	15	
tPZH	$\overline{O E}$	Q	$C_{L}=15 \mathrm{pF}$		7.3*	13*	1*	15*	1	15	ns
tPZL					7.3*	13*	1*	15^{*}	1	15	
tPHZ	$\overline{\mathrm{OE}}$	Q	$C_{L}=15 \mathrm{pF}$		10*	14*		46^{*}	1	16	ns
tpLZ					10*	14*		16*	1	16	
tPLH	D	Q	$C_{L}=50 \mathrm{pF}$		9.8	14	1	16	1	16	ns
tPHL					9.8	14	I	16	1	16	
tPLH	LE	Q	$C_{L}=50 \mathrm{pF}$		9.5	14.5	$\stackrel{1}{8}$	16.5	1	16.5	ns
tPHL					9.5	14.5	1	16.5	1	16.5	
tPZH	$\overline{\mathrm{OE}}$	Q	$C_{L}=50 \mathrm{pF}$		9.3	14.9	1	16	1	16	ns
tpZL					8	14.9	1	16	1	16	
tphz	$\overline{O E}$	Q	$C_{L}=50 \mathrm{pF}$		10.4	15.5	1	17	1	17	ns
tplZ					11.6	15.5	1	17	1	17	
$\mathrm{t}_{\text {sk(0) }}$			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			$1.5{ }^{* *}$				1.5	ns

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
** On products compliant to MIL-PRF-38535, this parameter does not apply.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54AHC16373		SN74AHC16373		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		5*	8.2*	1*	9.5*	1	9.5	ns
tPHL					5*	8.2*	1*	9.5*	1	9.5	
tPLH	LE	Q	$C_{L}=15 \mathrm{pF}$		4.9*	8.5*	1*	9.5*	1	9.5	ns
tPHL					4.9*	8.5*	1*	9.5*	1	9.5	
tPZH	$\overline{O E}$	Q	$C_{L}=15 \mathrm{pF}$		5.5*	9.1*	1*	10*	1	10	ns
tPZL					5.5*	9.1*	1*	10^{*}	1	10	
tPHZ	$\overline{\mathrm{OE}}$	Q	$C_{L}=15 \mathrm{pF}$		5*	9.5*	1*	40^{*}	1	10	ns
tplZ					5*	9.5*		10*	1	10	
tPLH	D	Q	$C_{L}=50 \mathrm{pF}$		6.5	9.2	1.	10.5	1	10.5	ns
tPHL					6.5	9.2	1	10.5	1	10.5	
tPLH	LE	Q	$C_{L}=50 \mathrm{pF}$		6.4	9.5	$\bigcirc 1$	10.5	1	10.5	ns
tPHL					6.4	9.5	1	10.5	1	10.5	
tPZH	$\overline{O E}$	Q	$C_{L}=50 \mathrm{pF}$		6	10.1	1	11.5	1	11.5	ns
tpZL					6	10.1	1	11.5	1	11.5	
tPHZ	$\overline{O E}$	Q	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6.5	10.5	1	11.5	1	11.5	ns
tpLZ					7.5	10.5	1	11.5	1	11.5	
$\mathrm{t}_{\text {sk }}(0)$			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			$1^{* *}$				1	ns

[^0]
16-BIT TRANSPARENT D-TYPE LATCHES

WITH 3-STATE OUTPUTS

SCLS329G - MARCH 1996 - REVISED JANUARY 2000
noise characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 4)

PARAMETER	SN74AHC16373		UNIT
		MIN	
MAX			
$\mathrm{V}_{\mathrm{OL}(\mathrm{P})}$	Quiet output, maximum dynamic $\mathrm{VOL}_{\mathrm{OL}}$	0.34	0.8
$\mathrm{~V}_{\mathrm{OL}(\mathrm{V})}$	Quiet output, minimum dynamic V_{OL}	-0.1	-0.8
$\mathrm{~V}_{\mathrm{OH}(\mathrm{V})}$	Quiet output, minimum dynamic V_{OH}	4.6	V
$\mathrm{~V}_{\mathrm{IH}(\mathrm{D})}$	High-level dynamic input voltage	3.5	V
$\mathrm{~V}_{\mathrm{IL}(\mathrm{D})}$	Low-level dynamic input voltage		V

NOTE 4: Characteristics are for surface-mount packages only.
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
$\mathrm{C}_{\text {pd }}$ Power dissipation capacitance	No load, $\mathrm{f}=1 \mathrm{MHz}$	21	pF

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74AHC16373DGGRE4 | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74AHC16373DGVRE4 | ACTIVE | TVSOP | DGV | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AHC16373DGGR | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AHC16373DGVR | ACTIVE | TVSOP | DGV | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AHC16373DL | ACTIVE | SSOP | DL | 48 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AHC16373DLR | ACTIVE | SSOP | DL | 48 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGV (R-PDSO-G**)

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins - MO-194

DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS Shown

PIMS ${ }^{* *}$	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)
48 PINS SHOWN

PINS **	48	56	64
A MAX	12,60	14,10	17,10
A MIN	12,40	13,90	16,90

4040078/F 12/97

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: * On products compliant to MIL-PRF-38535, this parameter is not production tested.
 ** On products compliant to MIL-PRF-38535, this parameter does not apply.

