查询SN54AHCT16541供应商

捷多邦,专**SN54AHOT1654**时加**SN74**AHCT16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS339H – MARCH 1996 – REVISED JANUARY 2000

- Members of the Texas Instruments *Widebus*™ Family
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Process
- Inputs Are TTL-Voltage Compatible
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'AHCT16541 devices are noninverting 16-bit buffers composed of two 8-bit sections with separate output-enable signals. For either 8-bit buffer section, the two output-enable (10E1 and 10E2 or 20E1 and 20E2) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 8-bit buffer section are in the high-impedance state.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SN54AHCT165 SN74AHCT16541 (T		, OR DL PACKAGE
GND 21 28 GND 2Y7 22 27 2A7 2Y8 23 26 2A8 2OE1 24 25 2OE2	1Y1 2 1Y2 3 GND 4 1Y3 4 1Y4 6 V _{CC} 7 1Y5 6 GND 7 1Y6 6 GND 7 1Y7 6 2Y1 6 2Y2 6 GND 7 2Y3 6 2Y3 6 2Y3 6 2Y4 6 V _{CC} 7 1Y5 6 GND 7 1Y7 6 2Y2 6 2Y3 6 2 2Y4 7 2Y3 6 2Y3 6 2Y3 7 2Y4 7 2Y3 6 2Y3 6 2Y7 7 2Y8 6 2Y8 7 2Y8 6 2Y8 7 2Y8 6 2Y8 7 2Y8 6 2Y8 6 2Y8 7 2Y8 6 2Y8 6 2Y8 7 2Y8 6 2Y8 6 2Y8 6 2Y8 7 2Y8 6 2Y8 6 2Y8 6 2Y8 7 2Y8 7 2Y8 6 2Y8 7 2Y8 6 2Y8 7 2Y8 7 2Y8 6 2Y8 7 2Y8 7 2 2 2 2 2 2 2 2 2 2 2 2 2	2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26	1A1 1A2 GND 1A3 1A4 VCC 1A5 1A6 GND 1A7 1A8 2A1 2A2 GND 2A3 2A4 VCC 2A5 2A6 GND 2A7 2A8

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

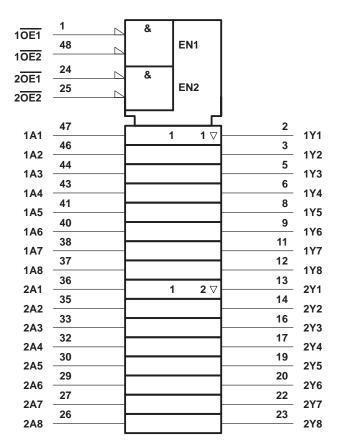
The SN54AHCT16541 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74AHCT16541 is characterized for operation from –40°C to 85°C.

(each 8-bit buffer/driver)										
	INPUTS		OUTPUT							
OE1	OE2	Α	Y							
L	L	L	L							
L	L	н	н							
н	Х	Х	Z							
Х	н	Х	Z							

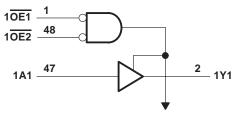
FUNCTION TABLE

52

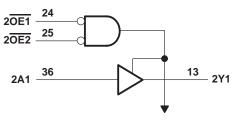
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Cand Widebus are trademarks of Texas Instruments Incorporated

SN54AHCT16541, SN74AHCT16541 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS


SCLS339H - MARCH 1996 - REVISED JANUARY 2000

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

SCLS339H – MARCH 1996 – REVISED JANUARY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _I (see Note 1) Output voltage range, V _O (see Note 1) Input clamp current, I _{IK} (V _I < 0) Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) Continuous output current, I _O (V _O = 0 to V _{CC}) . Continuous current through each V _{CC} or GND . Package thermal impedance, θ_{JA} (see Note 2):	-0.5 V to 7 V -0.5 V to 7 V -0.5 V to 7 V -0.5 V to V _{CC} + 0.5 V -20 mA ±20 mA ±25 mA ±75 mA DGG package DCV package
	DGV package

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

		SN54AHC	T16541	SN74AHC	UNIT	
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	<u>k</u>	2		V
VIL	Low-level input voltage		\$ 0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
VO	Output voltage	0	VCC	0	VCC	V
ЮН	High-level output current	200	-8		-8	mA
IOL	Low-level output current	0	8		8	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	9	20		20	ns/V
TA	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN54AHCT16541, SN74AHCT16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS339H – MARCH 1996 – REVISED JANUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	N	Τį	ן = 25°C	;	SN54AHC	T16541	SN74AHCT16541		UNIT
	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Vou	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		V
VOH	I _{OH} = –8 mA	4.5 V	3.94			3.8		3.8		v
Voi	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V
VOL	I _{OL} = 8 mA	4.5 V			0.36	0.44			0.44	v
Ц	$V_I = V_{CC}$ or GND	0 V to 5.5 V			±0.1	4	±1*		±1	μΑ
loz	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25		±2.5		±2.5	μΑ
ICC	$V_I = V_{CC} \text{ or } GND, \qquad I_O = 0$	5.5 V			4	206	40		40	μΑ
∆lcc†	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			1.35	PhO 04	1.5		1.5	mA
Ci	$V_I = V_{CC}$ or GND	5 V		2	10				10	pF
Co	$V_{O} = V_{CC}$ or GND	5 V		3						pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at V_{CC} = 0 V.

[†] This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

00	``		,,	•	0	,														
DADAMETED	FROM	то	LOAD	T,	α = 25° 0	2	SN54AHC	T16541	SN74AHC	T16541	UNIT									
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT									
^t PLH	А	Y	C _L = 15 pF		5.4**	8.5**	1**	10**	1	9.5	ns									
^t PHL	A	Ţ	CL = 15 pr		5.4**	8.5**	1**	10**	1	9.5	115									
^t PZH	OE	Y	CL = 15 pF		7.7**	10.4**	1**	12**	1	12	200									
^t PZL	ÛE	E Y	0L = 13 pr		7.7**	10.4**	1**	12**	1	12	ns									
^t PHZ	OE	Y C _L = 15 pF	Ci - 15 pE		4.5**	10.4**	1**	12**	1	12										
^t PLZ	ÛE			4.5**	10.4**	1**	712**	1	12	ns										
^t PLH	А	Y	$C_{\rm L} = 50 \rm pE$		6.2	9.5	1	11	1	10.5	ns									
^t PHL	A									1	C _L = 50 pF		6	9.5	$\eta_{\overline{Q}}$	11	1	10.5	115	
^t PZH	OE	Y	C _I = 50 pF		7.5	11.4	0 1	13	1	13	ns									
^t PZL	ÛE	I	0L = 30 pr		7.5	11.4	Q 1	13	1	13	115									
^t PHZ	OE	Y	C _I = 50 pF		7	11.4	1	13	1	13	ns									
^t PLZ	UE	ſ	ſ	I	1	1	I					0L = 30 pr		7	11.4	1	13	1	13	115
^t sk(o)			C _L = 50 pF			1***				1	ns									

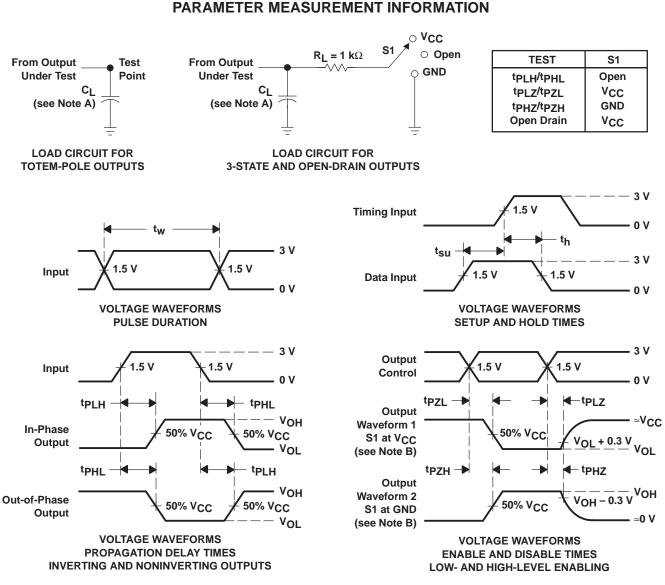
switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

** On products compliant to MIL-PRF-38535, this parameter is not production tested.

*** On products compliant to MIL-PRF-38535, this parameter does not apply.

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

PARAMETER				UNIT
PARAMETER	MIN	TYP	MAX	UNIT
Quiet output, maximum dynamic V _{OL}		0.6		V
Quiet output, minimum dynamic V _{OL}		-0.3		V
Quiet output, minimum dynamic V _{OH}		4.6		V
High-level dynamic input voltage	2			V
Low-level dynamic input voltage			0.8	V
	Quiet output, minimum dynamic V _{OL} Quiet output, minimum dynamic V _{OH} High-level dynamic input voltage	PARAMETER MIN Quiet output, maximum dynamic V _{OL} Quiet output, minimum dynamic V _{OL} Quiet output, minimum dynamic V _{OH} High-level dynamic input voltage 2	PARAMETER MIN TYP Quiet output, maximum dynamic V _{OL} 0.6 Quiet output, minimum dynamic V _{OL} -0.3 Quiet output, minimum dynamic V _{OH} 4.6 High-level dynamic input voltage 2	MIN TYP MAX Quiet output, maximum dynamic V _{OL} 0.6 0.6 Quiet output, minimum dynamic V _{OL} -0.3 -0.3 Quiet output, minimum dynamic V _{OH} 4.6 -0.3 High-level dynamic input voltage 2 -


NOTE 4: Characteristics are for surface-mount packages only.

SN54AHCT16541, SN74AHCT16541 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCLS339H - MARCH 1996 - REVISED JANUARY 2000

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ PARAMETERTEST CONDITIONSTYPUNIT C_{pd} Power dissipation capacitanceNo load, f = 1 MHz12pF

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_{O} = 50 Ω , $t_{r} \leq$ 3 ns, $t_{f} \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated