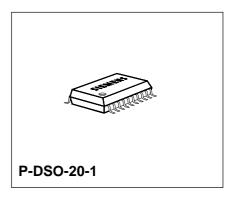
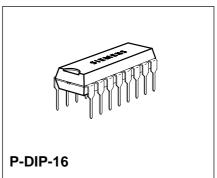
SIEMENS


General-Purpose Power Controller (GPPC)


PSB 2121

CMOSIC

Features

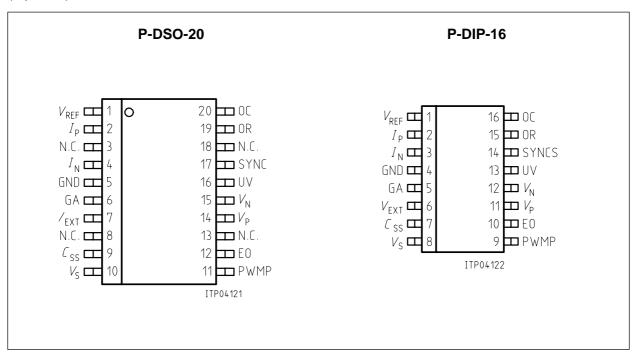
- Switched mode DC/DC-converter
- CCITT ISDN compatible
- Low power dissipation
- Supply voltage range 8 to 70 V
- Programmable input undervoltage protection
- Programmable overcurrent protection
- Soft start
- Power housekeeping input
- Oscillator synchronization input/output
- High voltage CMOS-technology 70 V

Туре	Version	Ordering Code	Package
PSB 2121-P	V A4/A5	Q67100-H8646	P-DIP-16
PSB 2121-T	V A4/A5	Q67100-H6032	P-DSO-20-1 (SMD)

The PSB 2121 is a pulse width modulator circuit designed for fixed-frequency switching regulators with very low power consumption.

In telephony and ISDN systems a high conversion yield is crucial to maintain functionality in all supply conditions via "S" or "U" interfaces. The PSB 2121 design and technology realize high conversion efficiency and low power dissipation.

It should be recognized that the PSB 2121 can also be used in numerous DC/DC-conversion systems other than ISDN-power supplies.


The PSB 2121 Contains the Following Functional Blocks

- Undervoltage lockout
- Temperature compensated voltage reference
- Sawtooth oscillator
- Error amplifier
- Pulse width modulator
- Digital current limiting
- Soft start
- Double pulse inhibit
- Power driver

Together with few external components it provides a stable 5 V DC-supply for subscriber terminals (TEs) or network terminations (NTs). It can also be programmed for higher output voltages, e.g. to supply S-lines with 40 V.

Pin Configurations

(top view)

Pin Definitions and Functions

Pin No. P-DSO	Pin No. P-DIP	Symbol	Input (I) Output (O)	Definition	Function
1	1	V_{REF}	0	Reference voltage	Output of the 4.0 V reference voltage.
2	2	I_{P}	1	Positive current sense	When the voltage difference between these two pins exceeds
4	3	I_{N}	1	Negative current sense	100 mV, the digital current limiting becomes active.
5	4	GND	1	Ground	All analog and digital signals are referred to this pin.
6	5	GA	0	Gate	Totem-pole output driver, has to be connected with the gate of an external power switch.
7	6	V_{EXT}	I/O	External supply	Output of the internal CMOS supply. Via $V_{\rm EXT}$ the internal CMOS-circuits can be supplied from an external DC-supply in order to reduce chip power dissipation.
9	7	$C_{ t SS}$	1	Soft start capacitor	The capacitor at this pin determines the soft start characteristic.
10	8	$V_{\mathtt{S}}$	I	Battery voltage	$V_{\rm S}$ is the positive input voltage.
11	9	PWMP	1	Pulse width modulator	Non-inverting input of the pulse width modulator.
12	10	EO	0		Error amplifier output.
14	11	V_{P}	1	Positive voltage sense	Non-inverting input of the error amplifier.
15	12	V_{N}	1	Negative voltage sense	Inverting input of the error amplifier.
16	13	UV	1	Undervoltage detection	The undervoltage lockout can be programmed via UV.
17	14	SYNC	I/O	Synchronization	This pin can be used as an input for synchronization of the oscillator to an external frequency, or as an output to synchronize multiple devices.
19	15	OR	I	R-oscillator	The external timing components of
20	16	ОС	1	C-oscillator	the ramp generator are attached to OR and OC.

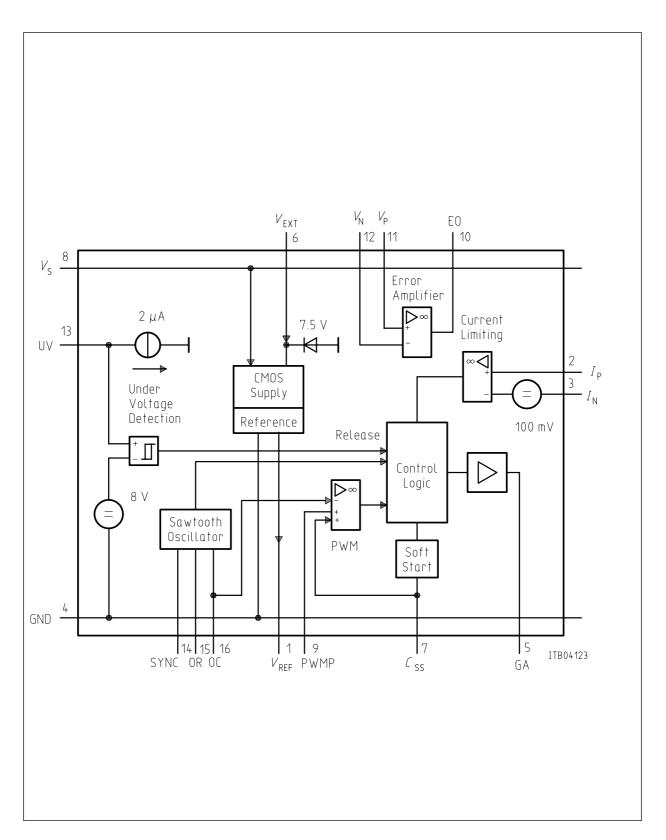


Figure 1
GPPC Functional Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Supply voltage (pin $V_{\rm S}$) referred to GND	$V_{\mathbb{S}}$	80	V
Analog input voltage (pins $I_{\rm P},I_{\rm N},{\rm PWMP},V_{\rm P},V_{\rm N},{\rm SYNC},{\rm OR},{\rm OC})$ referred to GND	V_{IA}	6	V
Reference output current (pin V_{REF})	I_{OREF}	- 5	mA
SYNC output current (pin SYNC)	I _{O SYNC}	- 5	mA
Error amplifier output current (pin EO)	I_{OAmp}	- 5	mA
Z-current (pin V_{EXT})	I_{ZEXT}	2	mA
Output current (pin $V_{\rm EXT}$)	I_{OEXT}	- 5	mA
Driver output current (pin GA)	I_{DR}	- 5	mA
Ambient temperature under bias	T_{A}	– 25 to 85	°C
Storage temperature	T_{stg}	- 40 to 125	°C

DC-Characteristics

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm S}$ = 9 to 70 V

		Limit Values				
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition
Supply current	$I_{\mathtt{S}}$		30	50	μΑ	$V_{ m SEXT} \ge 6.2~ m V$

Reference V_{REF}

Output voltage	V _{REF O}	3.92	4.0	4.08	V	$T_{\rm A}$ = 25 °C $I_{\rm L}$ = 0 mA, $V_{\rm S}$ = 40 V
Line regulation	$V_{REF\ Line}$			60	mV	$V_{\rm S}$ = 20 to 60 V $T_{\rm A}$ = 25 °C $I_{\rm L}$ = 0 mA
Load regulation	$V_{REFLoad}$		20	40		$I_{\rm L}$ = 0.1 to 0.3 mA $V_{\rm S}$ = 40 V, $T_{\rm A}$ = 25 °C
Temperature stability	V_{REFTS}		25		mV	0 70 ℃
Load current	$I_{REFLoad}$			0.5	mA	

DC-Characteristics (cont'd)

		Li	mit Valu	es		
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition

Oscillator / SYNC / OC

 $f_{\rm OSC}$ = 20 kHz, $R_{\rm T}$ = 39 k Ω \pm 1%, $R_{\rm D}$ = 0 $\Omega,~C_{\rm T}$ = 1 nF \pm 1%

Initial accuracy T_A = 25 °C Voltage stability Temperature stability			± 10 1 5	3	% % %	
Max. frequency	$f_{\sf max}$	200	250		kHz	$R_{\rm T}$ = 27 k Ω $C_{\rm T}$ = 39 pF
Sawtooth peak voltage Sawtooth valley voltage	$V_{ extsf{S}} \ V_{ extsf{S}}$	3.0 1.6	3.2 1.8		V	
H-sync output level	$V_{ extsf{SYNC H}}$	2.4	3.5	5.25	V	$I_{\rm L}$ = -0.5 mA $V_{\rm EXT}$ = ≤ 6.3 V
L-sync output level	$V_{\sf SYNCL}$		0.2	8.0	V	I_{L} = 20 μ A

Error Amplifier / EO / $V_{\rm P}$ / $V_{\rm N}$

Input offset voltage	V_{IO}		3	10	mV	
Input current	I_1			25	nA	
Common mode range	CMR	1.8		4.5	V	
DC open loop gain	$G_{\sf VO}$	60	70		dB	
Common mode rejection	k_{CMR}	60	70		dB	
Unity gain bandwidth	f	0.5	1		MHz	C_{L} (pin) \leq 10 pF
Supply voltage rejection	k_{SVR}	60	70		dB	
H-output voltage L-output voltage	$V_{OH} \ V_{OL}$	4	5.5 0.02	1	V V	$I_{L} = -100 \mu\text{A}$ $I_{L} = 10 \mu\text{A}$

Current Limit Comparator $I_{\rm P}$ / $I_{\rm N}$,

 $T_{\rm A}$ = 25 $^{\circ}$ C

Sense voltage	$V_{\sf Sense}$	85	100	115	mV	V _S = 40 V
Input bias current	I_{I}		0	100	nA	
Input voltage range	V_1	0		1	V	
Response time (signal at GA)	t_{Res}		1	2	μs	$I_{\rm N}$ = 0 V $I_{\rm P}$ = 0 \rightarrow 200 mV

DC-Characteristics	(cont'd)
---------------------------	----------

		Li	mit Valu	es		
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition

Pulse Width Modulator

Duty cycle	$t_{\sf d}$	0	50	%	

Under Voltage Detection UV

Start up threshold	V	7	8	9	V	pin UV = $V_{\rm S}$
Threshold hysteresis	H_{y}		0.3		V	pin UV = $V_{\rm S}$

Soft Start $C_{\rm SS}$

Charging current	C_{T}	2	4	8	μΑ	

Output Driver GA

 $T_{\rm A}$ = 25 $^{\circ}$ C

H-output voltage	V_{OH}	4.5		V_{EXT}	V	$I_{\text{Source}} = 5 \text{ mA}$
L-output voltage	V_{OL}		0.3	0.4	V	$I_{\rm Sink}$ = 5 mA
Rise time	t_{r}		130	200	ns	$C_{\rm L}$ = 220 pF; $V_{\rm EXT}$ = 6.3 V
Fall time	t_{f}		70	200	ns	$C_{\rm L}$ = 220 pF; $V_{\rm EXT}$ = 6.3 V
Output current	I_{O}			5	mA	

External Supply V_{EXT}

Output voltage	V_{O}		5.8		V	
Output current	I_{O}			2	mA	
Input voltage	V_1	6.0		7.5	V	
Z-current	I_{Z}			2	mA	
Power consumption	P _{tot}		5	6	mW	$V_{\rm S}$ = 40 V $f_{\rm OSC}$ = 20 kHz $V_{\rm EXT}$ = 6.2 to 6.7 V

Application Informations

Undervoltage Lockout

The undervoltage lockout circuit protects the PSB 2121 and the power devices from inadequate supply voltage. If $V_{\rm S}$ is too low, the circuit disables this output driver. This ensures that all control functions have been stabilized in the proper state when the turn on voltage (8 V) is reached, and it prevents from the possibility of start up glitches. The undervoltage lockout is programmable by connecting a Z-diode between $V_{\rm S}$ and UV from 8 V up to 70 V. If UV is connected to $V_{\rm S}$ the default undervoltage lockout is 8 V.

Voltage Reference

The reference regulator of the PSB 2121 is based on a temperature compensated bandgap. This circuitry is fully active at supply voltages above + 6.0 volts and provides up to 0.5 mA of load current to external circuitry at + 4.0 volts. This reference has to be buffered by an external capacitor > 0.5 μ F.

Oscillator

The oscillator frequency is programmed by three components: R_{T} , C_{T} and R_{D} as shown in **figure 2**. The oscillator timing capacitor C_{T} is charged by V_{REF} through R_{T} and discharged by R_{D} . (R_{D} is seriesconnected with an internal 9 k Ω discharge-resistor.) So the rise-time and the fall-time of the sawtooth oscillator can be programmed individually.

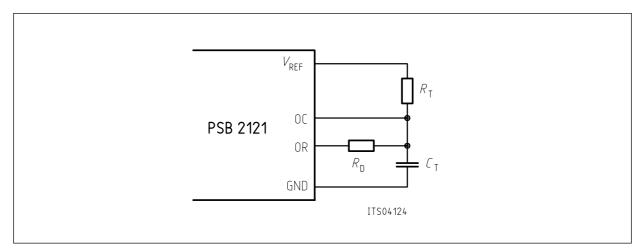


Figure 2

At the beginning of the discharge period a positive synchronization pulse is generated at pin SYNC. Otherwise the PSB 2121 can be synchronized via pin SYNC to an external logic clock by programming the oscillator to free run at a frequency 10 % lower than the synchronization frequency. The PSB 2121 is synchronized by the rising edge of the sync. signal. So multiple devices can be synchronized together by programming one master unit for the desired frequency.

Notice that the frequency of the output driver is half the oscillator frequency. The switching frequency as a function of R_T and C_T with $R_D = 0$ is shown in **figure 3**.

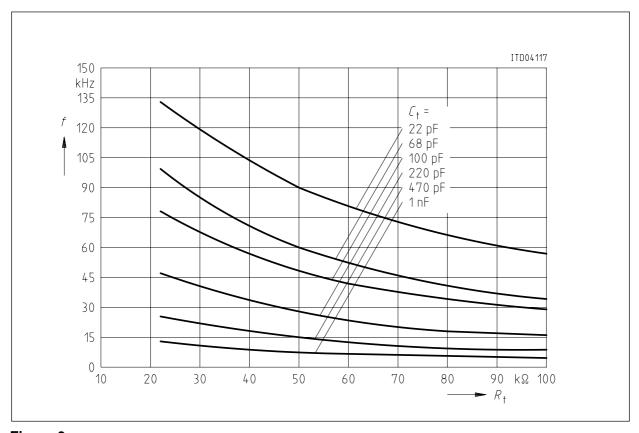


Figure 3 Switching Frequency

Soft Start Circuit

The soft start circuit protects the power transistors and rectifier diodes from high current surges during power supply turn-on. When the supply voltage is connected to the PSB 2121 the undervoltage lockout circuit holds the soft start capacitor voltage at zero. When the supply voltage reaches normal operating range an internal 4 μ A current source will charge the external soft start capacitor. As the soft start voltage ramps up to + 5 volts, the duty cycle of the PWM linearly increases to whatever value the regulation loop requires.

Pulse Width Modulator

The pulse width modulator compares the sawtooth-voltage of the oscillator output with the input signal at PWMP and with the voltage of the external soft start capacitor at C_{ss} (see figure 1).

Error Amplifier

Conventional operational amplifier for closed-loop gain and phase compensation.

Low output impedance: unity-gain stable

Control Logic

The control logic inhibits double pulses during one duty cycle and limits the maximum duty cycle to 50 %.

Current Limiting

A differential input comparator terminates individual output pulses each time when the sensvoltage rises above threshold.

When sense voltage rises to 100 mV above threshold a shutdown signal is sent to the control logic.

CMOS Supply

An integrated 6 V linear voltage regulator supplies the internal low-voltage CMOS-circuits from the input voltage. This supply-voltage is connected to pin $V_{\rm EXT}$ and has to be buffered by an external capacitor ($C_{\rm min}=1~\mu{\rm F}$). Power dissipation of the linear voltage regulator can be reduced, if an external supply is used for that purpose by connecting it to pin $V_{\rm EXT}$. If the input voltage at $V_{\rm EXT}$ reaches 6.2 V the internal linear voltage regulator turns off and the internal CMOS-circuits are fed from the external voltage. In this case the input current at $V_{\rm EXT}$ is approx. 0.5 mA.

Note: An internal 7.5 V Z-diode protects the $V_{\rm EXT}$ input against overvoltage. The maximum Z-current is 2 mA! So if the external CMOS-supply isn't stabilized the input current must be limited (e. g. by a resistor).

Extended Input Voltage Range

Some DC/DC-converter applications require a higher input voltage than the maximum supply voltage of the PSB 2121 which is limited to 70 V. **Figure 4** shows a method to extend the input voltage range by connecting a zener-diode between the input voltage and $V_{\rm S}$ of the PSB 2121.

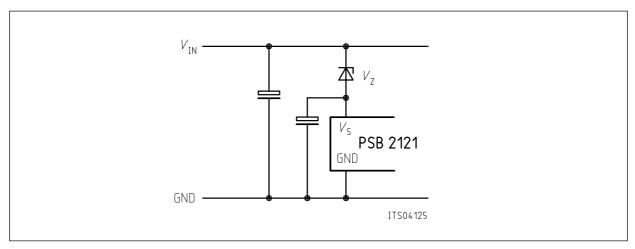


Figure 4

If the PSB 2121 is fed via $V_{\rm EXT}$, the input current at pin $V_{\rm S}$ is approx. 30 μ A. The additional power losses are accordingly 30 μ A \times $V_{\rm Z}$; the minimum input voltage is $V_{\rm Z}$ + 8 V.

PSB 2121 Applications

The PSB 2121 accommodates both galvanically isolated and non-isolated configurations.

Figure 5 shows a non-isolated 1 W flyback converter. The converter is fully compatible with the CCITT-power recommendations on the S-interface. At an input voltage of 40 V, the efficiency is 64 % at an input power of 250 mW and 86 % at an input power of 900 mW.

Figure 6 shows a 4 W flyback converter with opto isolation to feed the S-bus with 40 V. The maximum input voltage is extended from 70 V to 100 V.

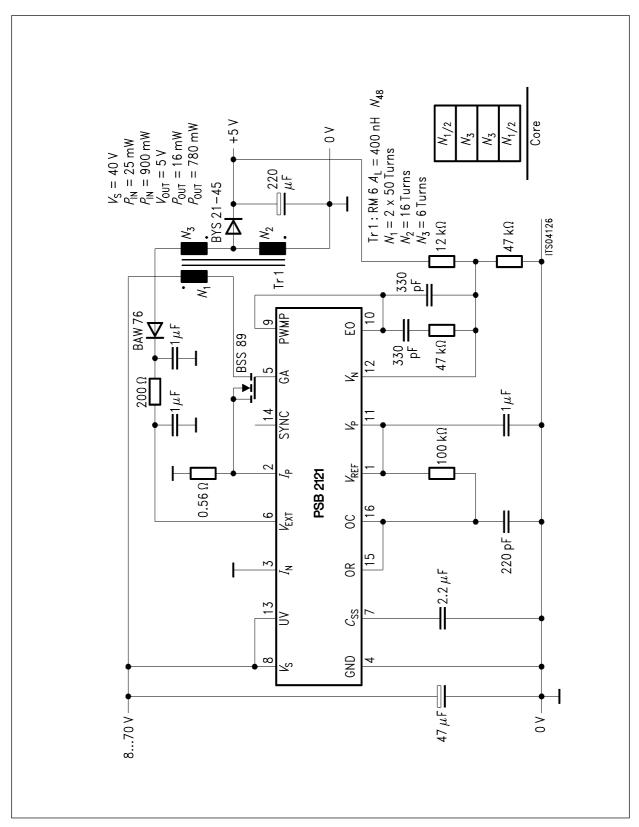


Figure 5
Application Circuit

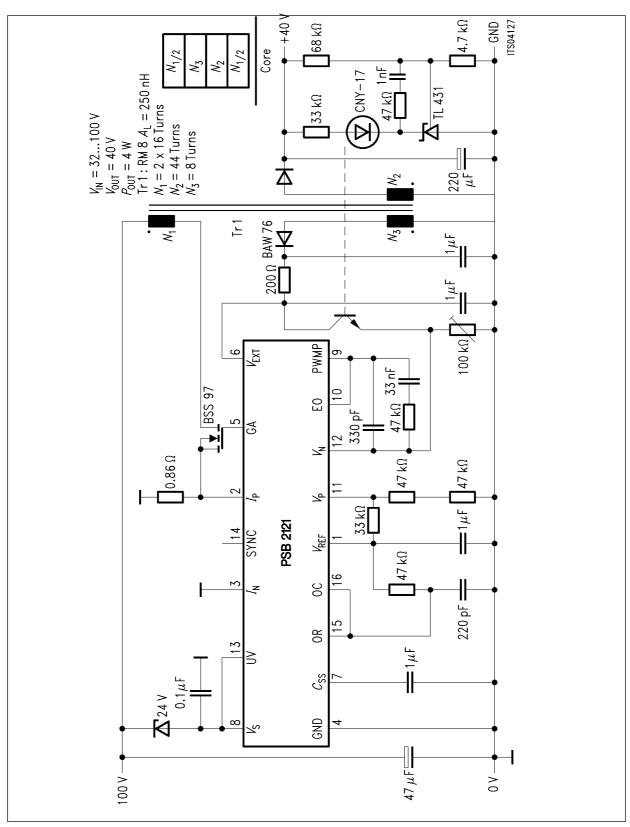


Figure 6
Application Circuit