－Wide Operating Voltage Range of 2 V to 6 V
－High－Current 3－State Outputs Drive Bus Lines，Buffer Memory Address Registers， or Drive Up To 15 LSTTL Loads
－True Outputs
－Low Power Consumption，80－$\mu \mathrm{A}$ Max ICC
－Typical $\mathrm{t}_{\mathrm{pd}}=10 \mathrm{~ns}$
－ $\pm 6-\mathrm{mA}$ Output Drive at 5 V
－Low Input Current of $1 \mu \mathrm{~A}$ Max

description／ordering information

These hex buffers and line drivers are designed specifically to improve both the performance and density of 3－state memory address drivers，clock drivers，and bus－oriented receivers and transmitters．The＇HC367 devices are organized as dual 4 －line and 2 －line buffers／drivers with active－low output－enable（ $1 \overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE}}$ ）inputs． When $\overline{O E}$ is low，the device passes noninverted data from the A inputs to the Y outputs．When $\overline{\mathrm{OE}}$ is high，the outputs are in the high－impedance state．

SN54HC367．．．J OR W PACKAGE
SN74HC367 ．．．D，N，NS，OR PW PACKAGE （TOP VIEW）

SN54HC367 ．．．FK PACKAGE
（TOP VIEW）

NC－No internal connection

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP－SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP－N	Tube of 25	SN74HC367N	SN74HC367N
	SOIC－D	Tube of 40	SN74HC367D	HC367
		Reel of 2500	SN74HC367DR	
		Reel of 250	SN74HC367DT	
	SOP－NS	Reel of 2000	SN74HC367NSR	HC367
	TSSOP－PW	Tube of 90	SN74HC367PW	HC367
		Reel of 2000	SN74HC367PWR	
		Reel of 250	SN74HC367PWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP－J	Tube of 25	SNJ54HC367J	SNJ54HC367J
	CFP－W	Tube of 150	SNJ54HC367W	SNJ54HC367W
	LCCC－FK	Tube of 55	SNJ54HC367FK	SNJ54HC367FK

\dagger Package drawings，standard packing quantities，thermal data，symbolization，and PCB design guidelines are available at www．ti．com／sc／package．

FUNCTION TABLE (each buffer/driver)	
INPUTS OUTPUT $\overline{\text { OE }}$ A Y H X Z L H H L L L	

logic diagram (positive logic)

Pin numbers shown are for the D, J, N, NS, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0 \text { or } \mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}} \text {) (see Note 1) } \pm 20 \mathrm{~mA}\right. \\
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0 \text { or } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \text {) (see Note 1) } \pm 20 \mathrm{~mA}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): D package . } 73^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { N package ... 67²} \mathrm{C} / \mathrm{W} \\
& \text { NS package 646}{ }^{\circ} / \text { W } \\
& \text { PW package } 108^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

			SN54HC367			SN74HC367			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage		2	5	6	2	5	6	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
$\Delta t / \Delta \mathrm{v}$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
T_{A}	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC367		SN74HC367		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{lOH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{OH}=-6 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{OH}=-7.8 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{l} \mathrm{OL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{IOL}=6 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOL}=7.8 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.01	± 0.5		± 10		± 5	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \quad \mathrm{I} \mathrm{O}=0$		6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

SN54HC367, SN74HC367

HEX BUFFERS AND LINE DRIVERS

WITH 3-STATE OUTPUTS
SCLS309D - JANUARY 1996 - REVISED SEPTEMBER 2003
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC367	SN74HC367	UNIT
				MIN TYP	MAX	MIN MAX	MIN MAX	
${ }^{\text {tpd }}$	A	Y	2 V	50	95	145	120	ns
			4.5 V	12	19	29	24	
			6 V	10	16	25	20	
ten	$\overline{O E}$	Y	2 V	100	190	285	238	ns
			4.5 V	26	38	57	48	
			6 V	21	32	48	41	
${ }^{\text {dis }}$	$\overline{O E}$	Y	2 V	50	175	265	240	ns
			4.5 V	21	35	53	48	
			6 V	19	30	45	41	
t_{t}		Any	2 V	28	60	90	75	ns
			4.5 V	8	12	18	15	
			6 V	6	10	15	13	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per buffer/driver	No load	35	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

PARAMETER		RL	C_{L}	S1	S2
ten	tPZH	$1 \mathrm{k} \Omega$	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Closed
	tPZL			Closed	Open
$t_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tpLZ			Closed	Open
t_{pd} or t_{t}		--	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Open

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. tPLH^{2} and $\mathrm{tPHL}^{\text {are the same as tpd. }}$
F. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$.
G. $\quad \mathrm{tPZL}$ and tPZH are the same as ten.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
85002012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
8500201EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/65708BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/65708BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SN54HC367J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN74HC367D	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367DE4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367DR	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367DRE4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367DT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367DTE4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74HC367NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74HC367NSR	ACTIVE	SO	NS	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367NSRE4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PW	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PWE4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PWRE4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PWT	ACTIVE	TSSOP	PW	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC367PWTE4	ACTIVE	TSSOP	PW	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ54HC367FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54HC367J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

4040180-3/D 07/03
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC M0-092AC

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ($\operatorname{Dim} A$).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

PIM PINS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

