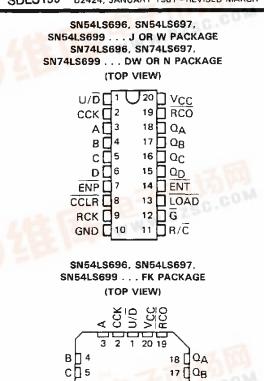
查询SN54LS696供应商

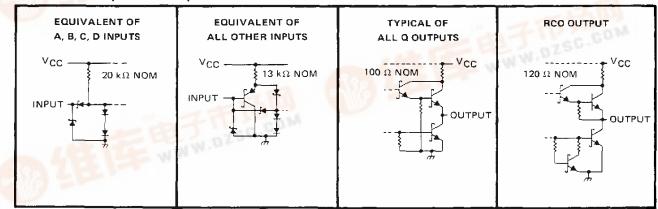
捷多<mark>邦,专业PCB打样工厂</mark>,24小时加急出货

SN54LS696, SN54LS697, SN54LS699, SN74LS696, SN74LS697, SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS SDLS199 D2424, JANUARY 1981-REVISED MARCH 1988

- 4-Bit Counters/Registers
- Multiplexed Outputs for Counter or Latched Data
- 3-State Outputs Drive Bus Lines Directly
- 'LS696... Decade Counter, Direct Clear 'LS697... Binary Counter, Direct Clear 'LS699... Binary Counter, Synchronous Clear

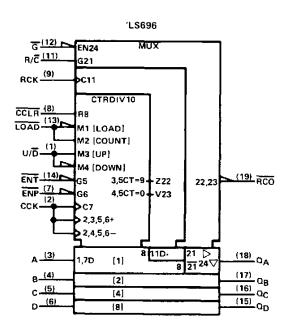

description

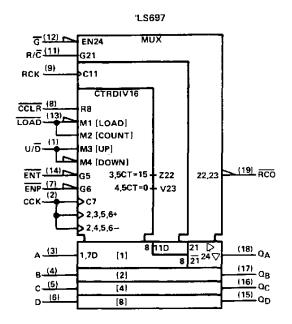

These low-power Schottky LSI devices incorporate synchronous up/down counters, four-bit D-type registers, and quadruple two-line to one-line multiplexers with three state outputs in a single 20-pin package. The up/down counters are programmable from the data inputs and feature enable \overline{P} and enable \overline{T} and a ripple-carry output for easy expansion. The register/counter select input R/C, selects the counter when low and the register when high for the three-state outputs, $Q_A, Q_B, Q_C, \text{ and } Q_D$. These outputs are rated at 12 and 24 milliamperes (54LS/74LS) for good bus driving performance.

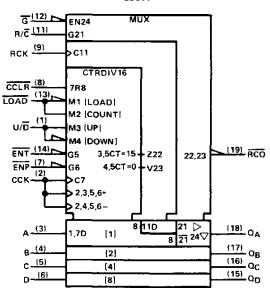

Both the counter CCK and register clock RCK are positiveedge triggered. The counter clear $\overline{\text{CCLR}}$ is active low and is asynchronous on the 'LS696 and 'LS697, synchronous on the 'LS699. Loading of the counter is accomplished when $\overline{\text{LOAD}}$ is taken low and a positive transition occurs on the counter clock CCK.

Expansion is easily accomplished by connecting $\overline{\text{RCO}}$ of the first stage to $\overline{\text{ENT}}$ of the second stage, etc. All $\overline{\text{ENP}}$ inputs can be tied common and used as a master enable or disable control.

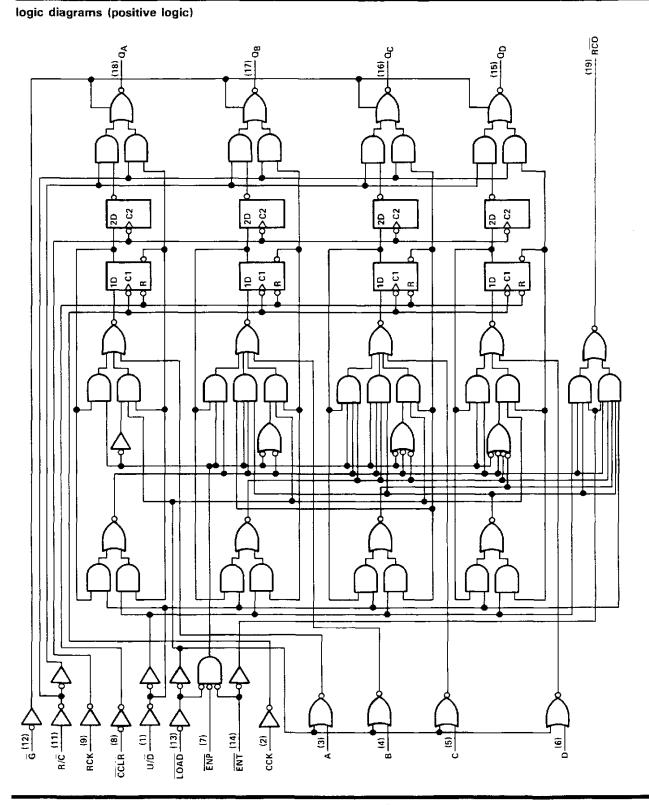
schematics of inputs and outputs


 PROJUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not


PDF

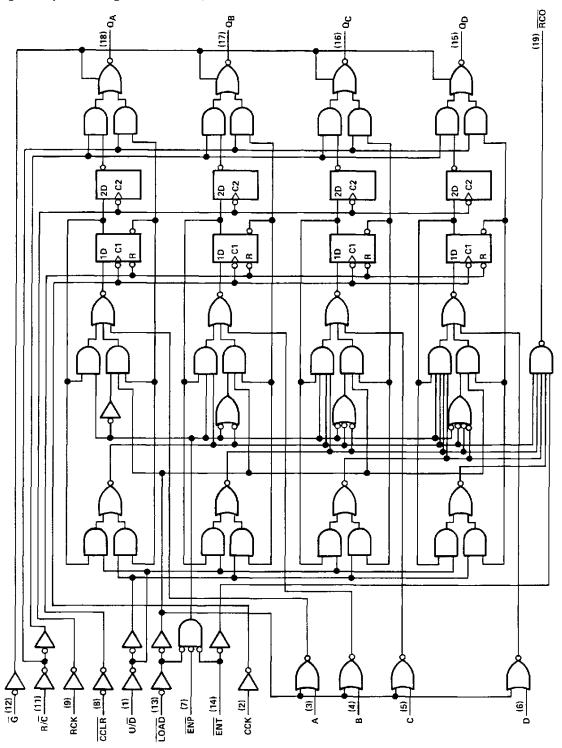

SN54LS696, SN54LS697, SN54LS699, SN74LS696, SN74LS697, SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

logic symbols[†]

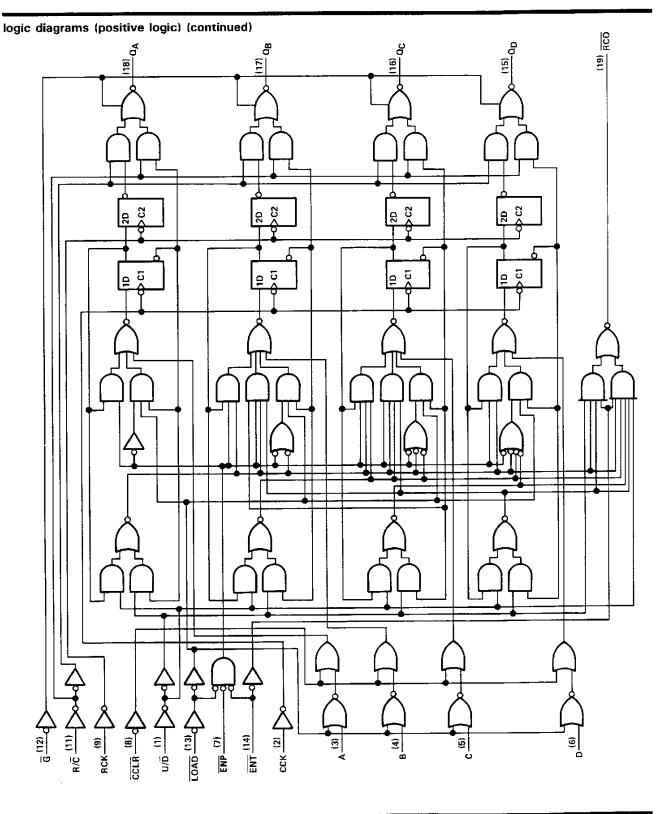

'LS699

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

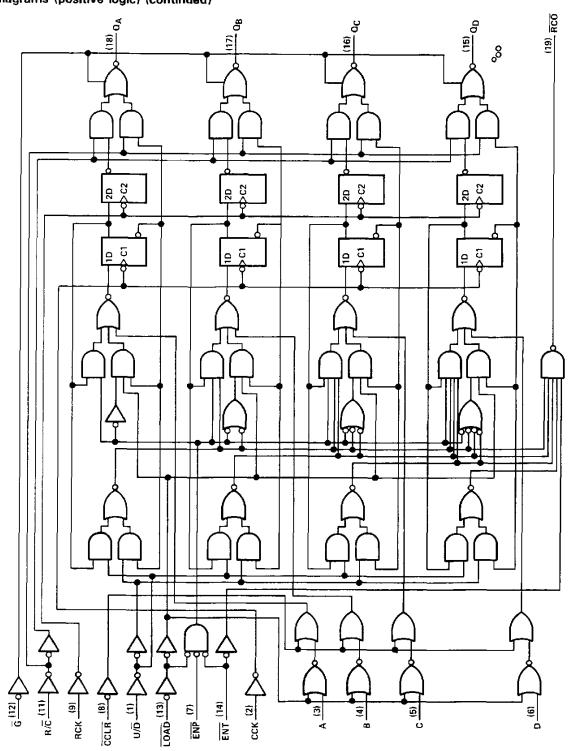
SN54LS696, SN74LS696 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS



_ ·


SN54LS697, SN74LS697 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

logic diagrams (positive logic) (continued)


SN54LS698, SN74LS698 Synchronous UP/Down Counters With Output registers and multiplexed 3-state outputs

. • '

SN54LS699, SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

logic diagrams (positive logic) (continued)

_ ` `

SN54LS696, SN54LS697, SN54LS699, SN74LS696, SN74LS697, SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Off-state output voltage
Operating free-air temperature range: SN54LS696, SN54LS697, SN54LS69955°C to 125°C
SN74LS696, SN74LS697, SN74LS699 0°C to 70°C
Storage temperature range65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminals.

recommended operating conditions

				SN54LS'			SN74LS			
			MIN	NOM	MAX	MIN	NOM	MAX	UNI.	
Vcc_	Supply voltage			5	5.5	4.75	5	5.25	V	
юн	High-level output current	_ Q			- 1			- 2.6		
		RCO			- 0.4			- 0.4	mA	
IOL	Low-level output current				12	i —		24		
		RCO			4			8	mΑ	
fclock	Clock frequency	ССК	0		20	0		20	MHz	
		RCK	0		20	0		20		
t _w	Pulse duration	CCK high or low	25		-	25	_		ns	
		RCK high or low	25			25				
		'LS696, 'LS697 CCLR low	20			20		- ·		
^t su	Setup time before CCK f	A thru D	30			30				
		ENP or ENT	30			30			ns	
		LOAD	30			30				
		U/D	35			35				
		'LS696, 'LS697, CCLR inactive	25	· <u>-</u> ·	· <u></u>	25				
		LS699, CCLR	30			30				
tsu	Setup time CCK 1 before RCK 1 (see Note 2)					30			ns	
^t h	Hold time					0			ns	
TA	Operating free-air temperature				125	0	·····	70	°C	

NOTE 2: This set up time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter.

SN54LS696, SN54LS697, SN54LS699, SN74LS696, SN74LS697, SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

PARAMETER					1	SN54LS	•	SN74LS'			
			TEST CONDITIONS [†]			TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
Vін	High-level input voltage				2			2			V
VIL					1		0.7			0.8	v
VIK	Input clamp voltage		V _{CC} =MIN, I _I =18 mA				-1.5			-1.5	V
Vон	High-level output voltage	Апу Q	V _{CC} =MIN, V _{IH} =2 V, VIL=VIL max	IOH=-1 mA	2.4	3.1					
		Any Q		IOH=-2.6 mA	[2.4	3.1		v
		RCO		I _{OH} =-400 μA	2.5	3.2		2.7	3.2		
	Low-level output voltage	Any Q	V _{CC} =MIN, V _{IH} =2 V, V _{IL} ≈V _{IL} max	IOL=12 mA		0.25	0,4		0.25	0.4	
V		Any Q		I _{OL} =24 mA					0.35	0.5	
Vol		RCO		IOL=4 mA		0.25	0,4		0.25	0.4	
		RCO		IOL=8 mA	[0.35	0.5	
оzн	Off-state output current, high-level voltage applied	Any Q	V _{CC} =MAX, G at 2 V,	V _O =2.7 V			20			20	μA
lozl	Off-state output current, low-level voltage applied	Any Q	V _{CC} =MAX, G at 2 V,	V _O =0.4 ∨			-20			-20	μA
I	Input current at maxi- mum input voltage		Vcc≈MAX, Vi=7 V				0.1			0.1	mA
ιн	High-level input current		V _{CC} =MAX, V _I =2.7 V				20			20	μA
կլ		A thru D	D VCC=MAX, VI=0.4 V			-0.4			-0.4	mA	
	Low-level input current	All others		:			-0.2			-0.2	mA
00	Short-circuit	Any Q	Nor-MAX No-ON		-30		-130	30		-130	mA
os	OS output current § R		V _{CC} =MAX, V _O =0 V		-20		-100	-20		-100	
ссн	L Supply current, outputs low		Vcc=MAX,	See Note 3		46	65		46	65	
CCL			All outputs open	See Note 4		48	70		48	70	mΑ
lccz			An outputs open	See Note 5		48	70		48	70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

⁴ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

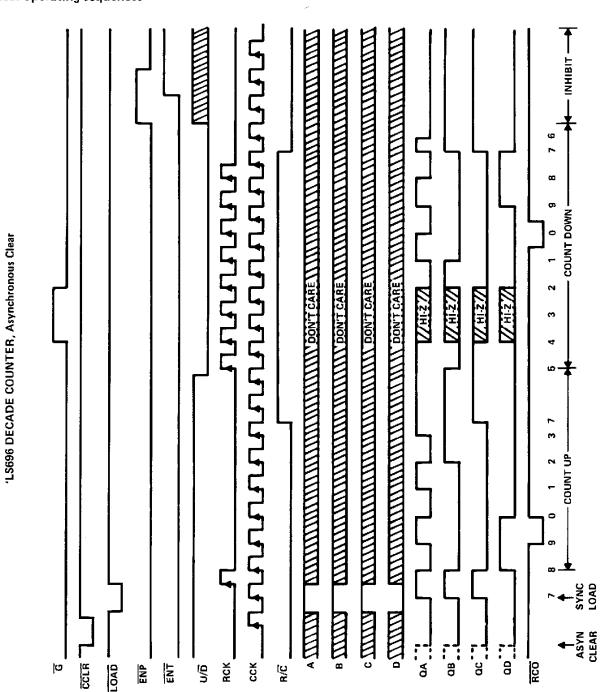
. '

Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second,

NOTES: 3, I_{CCH} is measured after two 4.5 V to 0 V to 4.5 V pulses have been applied to CCK and RCK while G is grounded and all other inputs are at 4.5 V.

4. ICCL is measured after two 0 V to 4.5 V to 0 V pulses have been applied to CCK and RCK while all other inputs are grounded.

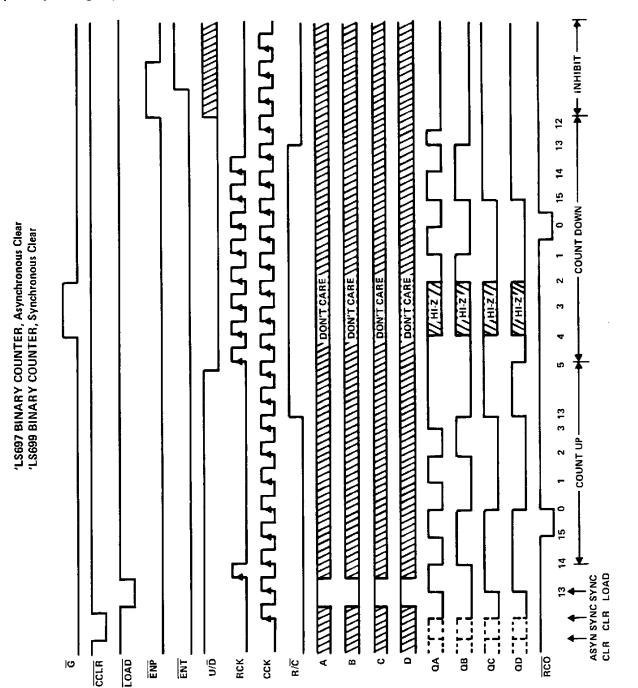
5. ICCZ is measured after two 0 V to 4.5 V to 0 V pulses have been applied to CCK and RCK while G is at 4.5 V and all other inputs are grounded.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 6)

PARAMETER	FROM	TO (OUTPUT)	TEST CONDITIONS	'LS6	'LS696, 'LS697			'LS699		
TANAMETER	(INPUT)			MIN	TYP	MAX	MIN	ТҮР	MAX	
TPLH	CCKt	RCO	R _L = 2 kΩ, C _L = 15 pF		23	40		23	40	ns
^t PHL	CURI				23	40	-	23	40	ns
tPLH	ËNT	RCO			13	20		13	20	ns
tPHL .				_	13	20		13	20	ns
tPLH	CCKt	a		[12	20		12	20	ns
t₽HL		<u> </u>			17	25		17	25	ns
^t PLH	RCK1	0			12	20		12	20	ns
tPHL					17	17 25	17	25	ns	
^t PHL	CCLR↓	Q	RL = 667 Ω, CL = 45 pF		23	40				ns
^t PLH	R/C	a			16	25		16	25	٦S
t <u>PHL</u>					16	25		16	25	ПS
tPZH	٩	a		_	19	30		19	30	ns
tPZL					19	30		19	30	ns
tphz		Q R _L = 667 Ω,		+	17	30		17	30	ns
^t PLZ	91		$R_L = 667 \Omega, C_L = 5 pF$		17	30	_	17	30	ns

NOTE 6: Load circuits and voltage waveforms are shown in Section 1.

SN54LS696, SN74LS696 Synchronous UP/Down Counters With Output registers and multiplexed 3-state outputs



typical operating sequences

SN54LS697, SN54LS699, SN74LS697, SN74LS699 Synchronous UP/Down Counters With Output Registers and Multiplexed 3-State Outputs

typical operating sequences (continued)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated