1.1 GHz Dual Modulus **Prescaler**

The MC12026 is a high frequency, low voltage dual modulus prescaler used in phase-locked loop (PLL) applications.

The MC12026A can be used with CMOS synthesizers requiring positive edges to trigger internal counters in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of an 8/9 or 16/17 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

Features

- 1.1 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power 4.0 mA Typical
- Operating Temperature Range of -40 to 85°C
- The MC12026 is Pin Compatible with the MC12022
- Short Setup Time (t_{set}) 6.0 ns Typical @ 1.1 GHz
- Modulus Control Input Level is Compatible with Standard CMOS and TTL

FUNCTIONAL TABLE

sw	МС	Divide Ratio			
Н	Н	8			
Н	L	9			
L	Н	16			
L	ALC ED	256-17			

^{1.} SW: H = V_{CC}, L = Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.

MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit			
Power Supply Voltage, Pin 2	VCC	-0.5 to 7.0	Vdc			
Operating Temperature Range	T _A	-40 to 85	°C			
Storage Temperature Range	T _{stg}	-65 to 150	°C			
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc			
Maximum Output Current, Pin 4	IO	10.0	mA			

NOTE: ESD data available upon request.

ON Semiconductor

http://onsemi.com

SO-8 **D SUFFIX CASE 751**

PIN CONNECTIONS

IN	1	0	8	ĪN
Vcc	2		7	NC
SW	3		6	MC
OUT	4		5	Gnd

(Top View)

ORDERING INFORMATION

Device	Package	Shipping	
MC12026AD	SO-8	98 Units/Rail	
MC12026ADR2	SO-8	2500 Tape & Reel	

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

^{2.} MC: $H = 2.0 \text{ V to V}_{CC}$, L = GND to 0.8 V.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \text{ to } 5.5$; $T_A = -40 \text{ to } 85^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Toggle Frequency (Sin Wave)	f _t	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2)	lcc		4.0	5.3	mA
Modulus Control Input High (MC)	VIH1	2.0	-	VCC	V
Modulus Control Input Low (MC)	V _{IL1}	GND	-	0.8	V
Divide Ratio Control Input High (SW)	VIH2	V _{CC} – 0.5 V	Vcc	V _{CC} + 0.5 V	V
Divide Ratio Control Input Low (SW)	V _{IL2}	OPEN	OPEN	OPEN	_
Output Voltage Swing (R _L = 560 Ω ; I _O = 5.5 mA) (Note 1) (R _L = 1.1 k Ω ; I _O = 2.9 mA) (Note 2)	V _{out}	1.0	1.6	-	V _{pp}
Modulus Setup Time MC to Out (Note 3)	t _{SET}	_	6.0	9.0	ns
Input Voltage Sensitivity 100–250 MHz 250–1100 MHz	V _{in}	400 100	- -	1000 1000	mVpp

- 1. Divide Ratio of $\div 8/9$ at 1.1 GHz, $C_L = 8.0$ pF. 2. Divide Ratio of $\div 16/17$ at 1.1 GHz, $C_L = 8.0$ pF.
- 3. Assuming R_L = 560 Ω at 1.1 GHz.

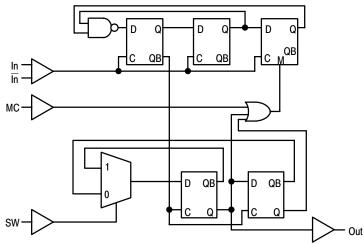
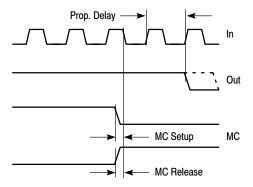



Figure 1. Logic Diagram (MC12026A)

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 2. Modulus Setup Time

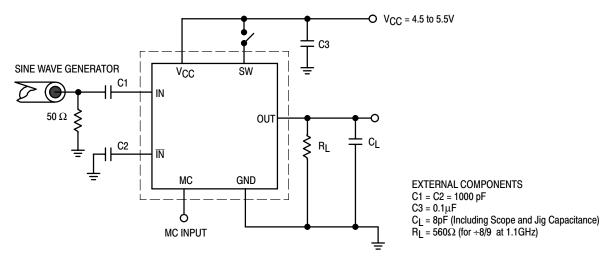


Figure 3. AC Test Circuit

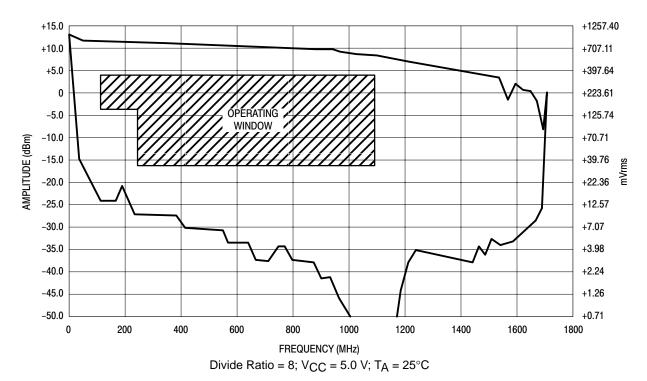


Figure 4. Input Signal Amplitude versus Input Frequency

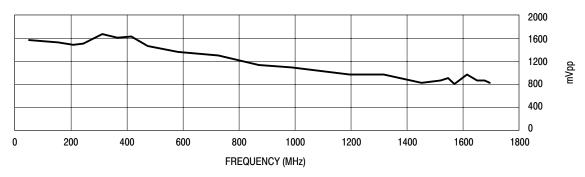
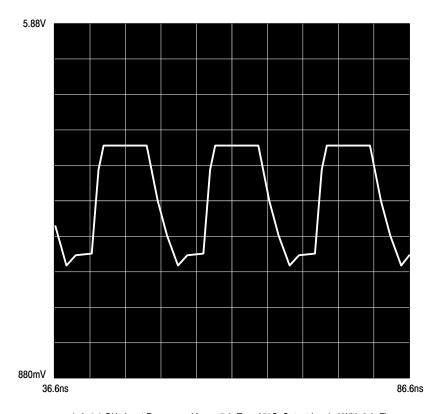



Figure 5. Output Amplitude versus Input Frequency

http://oncomi.com

(÷8, 1.1 GHz Input Frequency, V_{CC} = 5.0, T_{A} = 25°C, Output Loaded With 8.0pF)

Figure 6. Typical Output Waveform

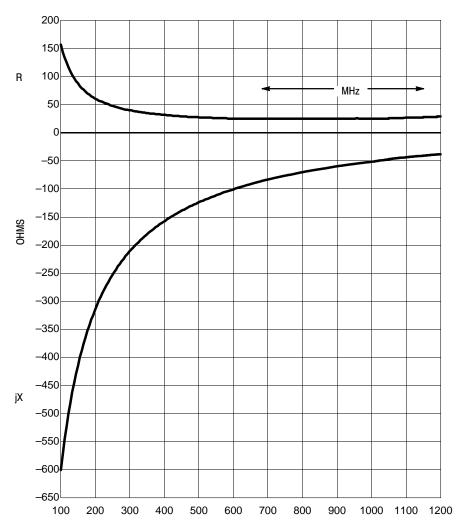
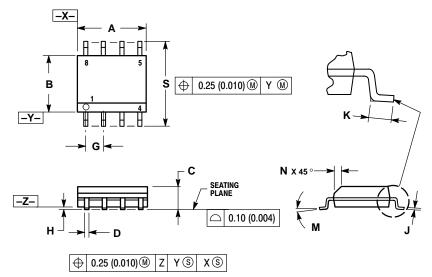


Figure 7. Typical Input Impedance versus Input Frequency

http://opcomi.com

MARKING DIAGRAMS

SO-8 D SUFFIX CASE 751



A = Assembly Location WL, L = Wafer Lot

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** CASE 751-07 ISSUE W

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES			
DIM	MIN	MIN MAX		MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.