查询SN74LVCH16646A供应商

捷多邦,专业PCB打样工厂,24小时**50月4년/CH16646A 16-BIT BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS

2DIR 28

29 1 2 OE

SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998

Member of the Texas Instruments	DGG OR DL PACKAGE
<i>Widebus</i> ™ Family	(TOP VIEW)
<i>EPIC</i> [™] (Enhanced-Performance Implanted CMOS) Submicron Process	1DIR 1 56 10E
Typical V _{OLP} (Output Ground Bounce)	1SAB [3 54] 1SBA
< 0.8 V at V _{CC} = 3.3 V, T _A = 25°C	GND [4 53] GND
Typical V _{OHV} (Output V _{OH} Undershoot)	1A1 [5 52] 1B1
> 2 V at V _{CC} = 3.3 V, T _A = 25°C	1A2 [6 51] 1B2
Supports Mixed-Mode Signal Operation on	V _{CC} [] 7 50 [] V _{CC}
All Ports (5-V Input/Output Voltage With	1A3 [] 8 49 [] 1B3
3.3-V V _{CC})	1A4 [] 9 48 [] 1B4
Power Off Disables Outputs, Permitting	1A5 [] 10 47 [] 1B5
Live Insertion	GND [] 11 46 [] GND
ESD Protection Exceeds 2000 V Per	1A6 12 45 186
MIL-STD-883, Method 3015; Exceeds 200 V	1A7 13 44 187
Using Machine Model (C = 200 pF, R = 0)	1A8 14 43 188
Latch-Up Performance Exceeds 250 mA Per JESD 17	2A1 [15 42] 2B1 2A2 [16 41] 2B2 2A3 [17 40] 2B3
Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors	GND 18 39 GND 2A4 19 38 2B4
Package Options Include Plastic 300-mil	2A5 [20 37] 2B5
Shrink Small-Outline (DL) and Thin Shrink	2A6 [21 36] 2B6
Small-Outline (DGG) Packages	V _{CC} [22 35] V _{CC}
cription	2A7 [23 34] 2B7 2A8 [24 33] 2B8 GND [25 32] GND
This 16-bit bus transceiver and register is designed for 1.65-V to 3.6-V V _{CC} operation.	2SAB 26 31 2SBA 2CLKAB 27 30 2CLKBA 2DIR 28 29 20E

The SN74LVCH16646A can be used as two 8-bit transceivers or one 16-bit transceiver. The device consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers.

Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74LVCH16646A.

Output-enable (OE) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. DIR determines which bus receives data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data can be stored in one register and/or B data can be stored in the other register.

desc

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cand Widebus are trademarks of Texas Instruments Incorporated

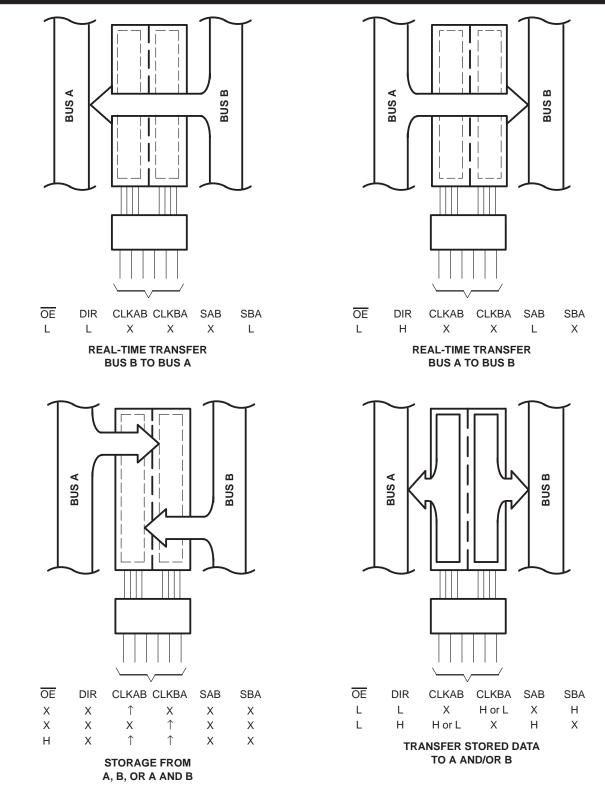
description (continued)

When an output function is disabled, the input function is still enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

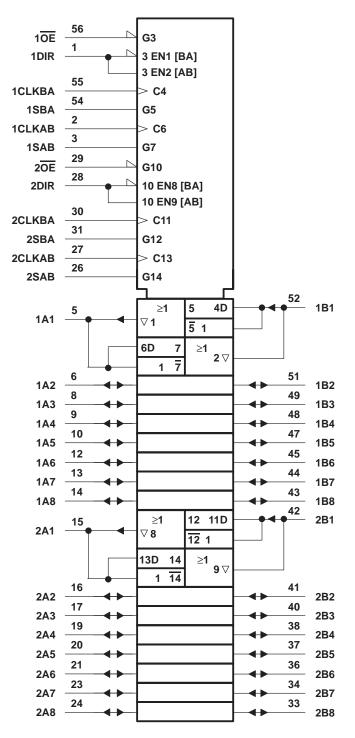
Active bus-hold circuitry holds unused or floating data inputs at a valid logic level.

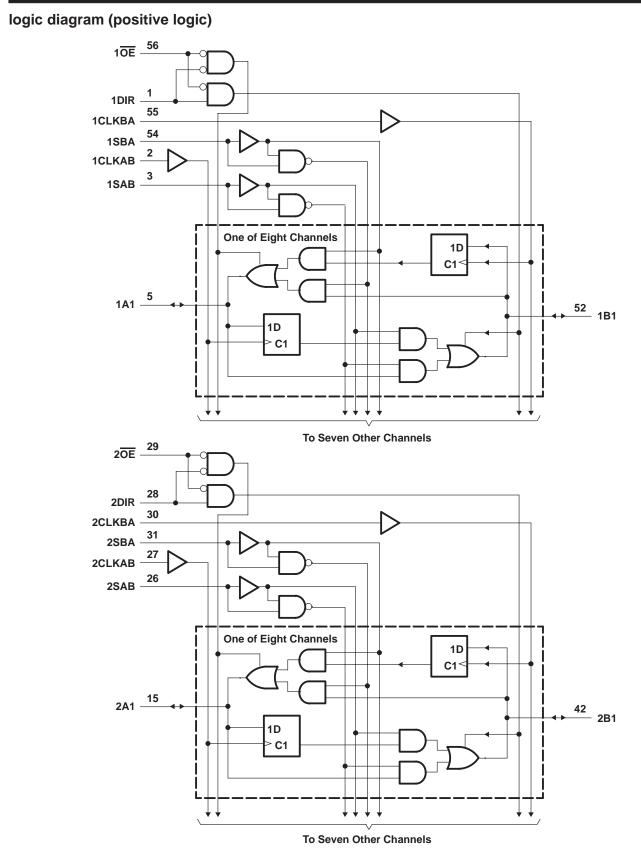

The SN74LVCH16646A is characterized for operation from –40°C to 85°C.

		INPUTS				DATA	A 1/0†					
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1–A8	B1–B8	OPERATION OR FUNCTION				
Х	Х	\uparrow	Х	Х	Х	Input	Unspecified	Store A, B unspecified [†]				
Х	Х	Х	\uparrow	Х	Х	Unspecified	Input	Store B, A unspecified †				
Н	Х	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data				
н	Х	H or L	H or L	Х	Х	Input	Input	Isolation, hold storage				
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus				
L	L	Х	H or L	Х	Н	Output	Input	Stored B data to A bus				
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B Bus				
L	Н	H or L	Х	Н	Х	Input	Output	Stored A data to bus				

FUNCTION TABLE

⁺ The data-output functions may be enabled or disabled by various signals at OE or DIR. Data-input functions always are enabled, i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.




SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I : (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V_{Ω}	
(see Notes 1 and 2)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT			
Vee	Supply voltage	Operating	1.65	3.6	V			
VCC	Supply voltage	Data retention only	1.5		v			
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$					
V_{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V			
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2					
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$				
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V			
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8				
VI	Input voltage		0	5.5	V			
Ve	Output voltogo	High or low state	0	VCC	V			
VO	Dutput voltage	3 state	0	5.5	V			
		V _{CC} = 1.65 V		-4				
lau	High-level output current	$V_{CC} = 2.3 V$		-8				
ЮН	High-level output current	$V_{CC} = 2.7 V$		-12	mA			
		$V_{CC} = 3 V$		-24				
		V _{CC} = 1.65 V		4				
la.		$V_{CC} = 2.3 V$		8	~ ^			
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA			
		V _{CC} = 3 V		24	1			
$\Delta t/\Delta v$	Input transition rise or fall rate	·	0	10	ns/V			
ТА	Operating free-air temperature		-40	85	°C			

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PAF	RAMETER	TEST CONDITIONS	V _{CC}	MIN	түр†	MAX	UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0.2				
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2				
VOH VOL II Control inputs II(hold) A or B ports	I _{OH} = -8 mA	2.3 V	1.7			V		
VOH		40	2.7 V	2.2			v	
		$I_{OH} = -12 \text{ mA}$	3 V	2.4				
		I _{OH} = -24 mA	3 V	2.2				
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		
VOL		I _{OL} = 4 mA	1.65 V			0.45		
		I _{OL} = 8 mA	2.3 V			0.7	V	
		I _{OL} = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
lj	Control inputs	V _I = 0 to 5.5 V	3.6 V			±5	μΑ	
	A or B ports	VI = 0.58 V	1.65 V	‡				
		V _I = 1.07 V	1.05 V	‡				
		$V_{I} = 0.7 V$	2.3 V	45				
l _{l(hold)}		VI = 1.7 V	-45			μΑ		
		VI = 0.8 V	3 V	75				
		$V_{I} = 2 V$		-75				
II(hold)		$V_{I} = 0 \text{ to } 3.6 \text{ V}$	36 V			±500		
loff		$V_I \text{ or } V_O = 5.5 \text{ V}$	0			±10	μΑ	
loz¶		$V_{O} = 0$ to 5.5 V	3.6 V			±10	μA	
		$V_{I} = V_{CC} \text{ or } GND$			20			
ICC		$\frac{1}{3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\text{\#}}} \text{ IO} = 0$	3.6 V			20	μA	
ΔICC		One input at $V_{CC} = 0.6 V$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μΑ	
Ci	Control inputs	$V_I = V_{CC}$ or GND	3.3 V		5		pF	
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	3.3 V		8.5		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This information was not available at the time of publication.

§ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

¶ For I/O ports, the parameter I_{OZ} includes the input leakage current, but not $I_{I(hold)}$.

This applies in the disabled state only.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figures 2 through 4)

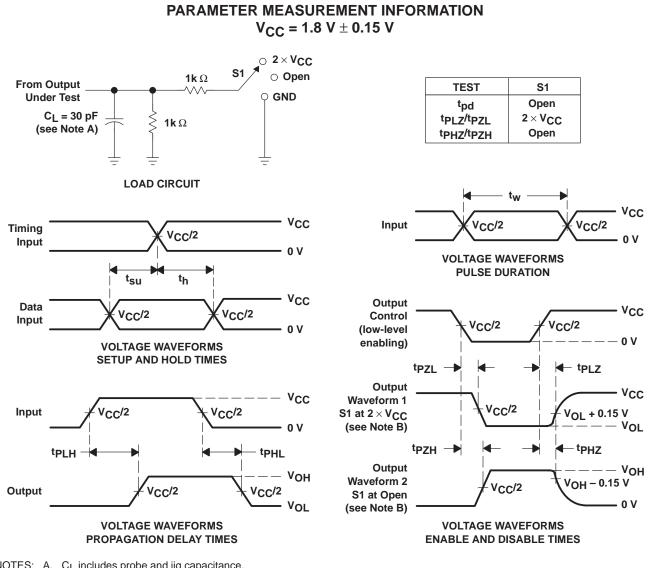
		V _{CC} = ± 0.1		= ۷ _{CC} ± 0.2		V _{CC} =	2.7 V	V _{CC} = ± 0.3	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		‡		‡		150		150	MHz
tw	Pulse duration, CLK high or low	‡		‡		3.3		3.3		ns
t _{su}	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	‡		‡		3.2		2.9		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	‡		‡		0		0.3		ns

[‡] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 4)

PARAMETER		TO	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		†		150		150		MHz
	A or B	B or A	†	†	†	†		6.8	1.3	5.7	
^t pd	CLKAB or CLKBA	A or B	+	†	†	†		7.9	1.8	6.7	ns
	SAB or SBA		+	†	†	†		9.2	1.7	7.7	
ten		A or P	†	†	†	†		8.5	1.3	6.9	
^t dis	OE	A or B	†	†	†	†		7.7	2.1	6.9	ns
t _{en}		A or P	†	†	†	†		8.5	1.4	7.2	
^t dis	DIR	A or B	†	†	†	†		7.8	2	7	ns

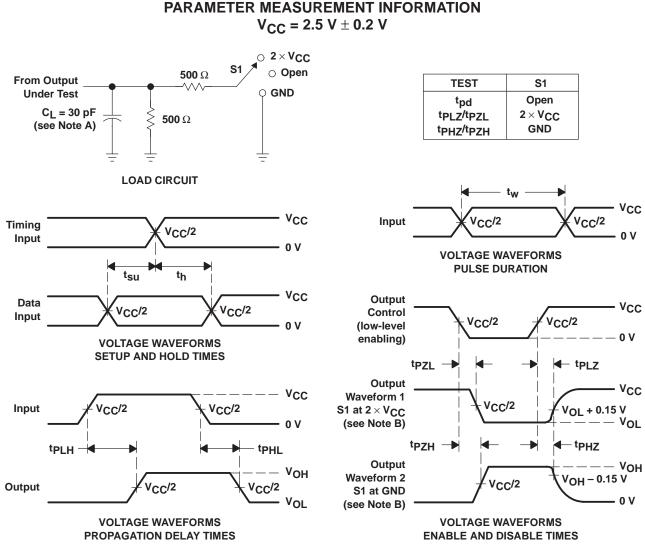
[†] This information was not available at the time of publication.


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V_{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \mathrm{V_{CC}} = 2.5 \ \mathrm{V} \\ \pm \ 0.2 \ \mathrm{V} \end{array}$	$\begin{array}{c} \text{V}_{\text{CC}} = 3.3 \text{ V} \\ \pm 0.3 \text{ V} \end{array}$	UNIT	
				TYP	TYP	TYP	
Card	Power dissipation capacitance	Outputs enabled	6 40 MU	†	†	60	~ Г
C _{pd} per transce	per transceiver	Outputs disabled	f = 10 MHz	†	†	12	pF

[†] This information was not available at the time of publication.

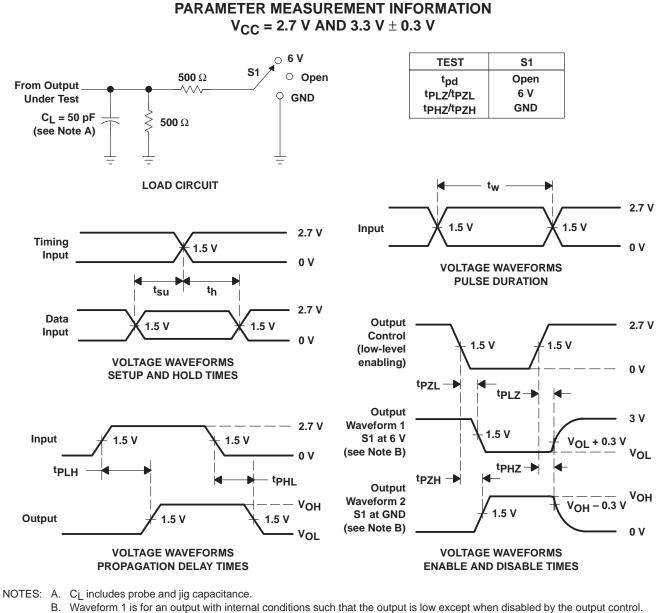
SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

SCAS318H - NOVEMBER 1993 - REVISED JUNE 1998

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated