查询SN55976A供应商

捷多邦,专业PCB打样工厂,2**SN759月66**,SN55976A 9-CHANNEL DIFFERENTIAL TRANSCEIVER

SN75976A DGG or DL SN55976A WD

(TOP VIEW)

SLLS218B - MAY 1995 - REVISED MAY 1997

- Improved Speed and Package Replacement for the SN75LBC976
- Designed to Operate at up to 20 Million Data Transfers per Second (Fast-20 SCSI)
- Nine Differential Channels for the Data and Control Paths of the Small Computer Systems Interface (SCSI) and Intelligent Peripheral Interface (IPI)
- SN75976A Packaged in Shrink Small-Outline Package with 25-Mil Terminal Pitch (DL) and Thin Shrink Small-Outline Package with 20-Mil Terminal Pitch (DGG)
- SN55976A Packaged in a 56-Pin Ceramic Flat Pack (WD)
- Two Skew Limits Available
- ESD Protection on Bus Terminals Exceeds 12 kV
- Low Disabled Supply Current 8 mA Typ
- Thermal Shutdown Protection
- Positive- and Negative-Current Limiting
- Power-Up/Down Glitch Protection

description

The SN75976A is an improved replacement for the industry's first 9-channel **RS-485** transceiver — the SN75LBC976. The A version offers improved switching performance, a smaller package, and higher ESD protection. The SN75976A is offered in two versions. The '976A2 skew limits of 4 ns for the differential drivers and 5 ns for the differential receivers complies with the recommended skew budget of the Fast-20 SCSI standard for data transfer rates up to 20 million transfers per second. The '976A1 supports the Fast SCSI skew budget for 10 million

		(TOP	VIEW)	
	GND [1	56	CDE2	
	BSR [2	55	CDE1	
	CRE [3	54	CDE0	
	1A [4	53] 9B+	
1D	E/RE	5	52	9B–	
	2A [6	51	8B+	
2D	e/RE	7	50] 8B-	
	3A [8	49] 7B+	
3DI	e/RE	9	48]7B-	
	4A [10	47]6B+	
4D	e/re [11	46]6B-	
	Vcc [12	45	Vcc	
. 6	GND [13	44] GND	
615	GND [14	43] GND	
2. 1-	GND [15	42] GND	
	GND [16	41] GND	
	GND [17	40] GND	
	V _{CC} [18	39] V _{CC}	
	5A [19	38] 5B+	
5D	e/re [20	37] 5B-	
	6A [21	36] 4B+	
6D	e/re [22	35] 4B-	
	7A [23	34] 3B+	
7D	E/RE	24	33] 3B-	
	8A [25	32] 2B+	
8D	E/RE	26	31] 2B–	
	9A [27	30] 1B+	
9DI	e/re [28	29] 1B–	

Terminals 13 through 17 and 40 through 44 are connected together to the package lead frame and signal ground.

transfers per second. The skew limit ensures that the propagation delay times, not only from channel-to-channel but from device-to-device, are closely matched for the tight skew budgets associated with high-speed parallel data buses.

The patented thermal enhancements made to the 56-pin shrink small-outline package (SSOP) of the SN75976 have been applied to the new, thin shrink, small-outline package (TSSOP). The TSSOP package offers even less board area requirements than the SSOP while reducing the package height to 1 mm. This provides more board area and allows component mounting to both sides of the printed circuit boards for low-profile, space-restricted applications such as small form-factor hard disk drives.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS218B - MAY 1995 - REVISED MAY 1997

description (continued)

In addition to speed improvements, the '976A can withstand electrostatic discharges exceeding 12 kV using the human-body model, and 600 V using the machine model of MIL-PRF-38535, Method 3015.7 on the RS-485 I/O terminals. This is six times the industry standard and provides protection from the noise that can be coupled into external cables. The other terminals of the device can withstand discharges exceeding 4 kV and 400 V respectively.

Each of the nine channels of the '976A typically meet or exceed the requirements of EIA RS-485 (1983) and ISO 8482-1987/TIA TR30.2 referenced by American National Standard of Information (ANSI) Systems, X3.131-1994 (SCSI-2) standard, X2.277-1996 (Fast-20 Parallel Interface), and the Intelligent Peripheral Interface Physical Layer-ANSI X3.129-1986 standard.

The SN75976A is characterized for operation over an ambient air temperature range of 0°C to 70°C. The SN55976A is characterized for operation over an ambient air temperature range of -55° C to 125° C.

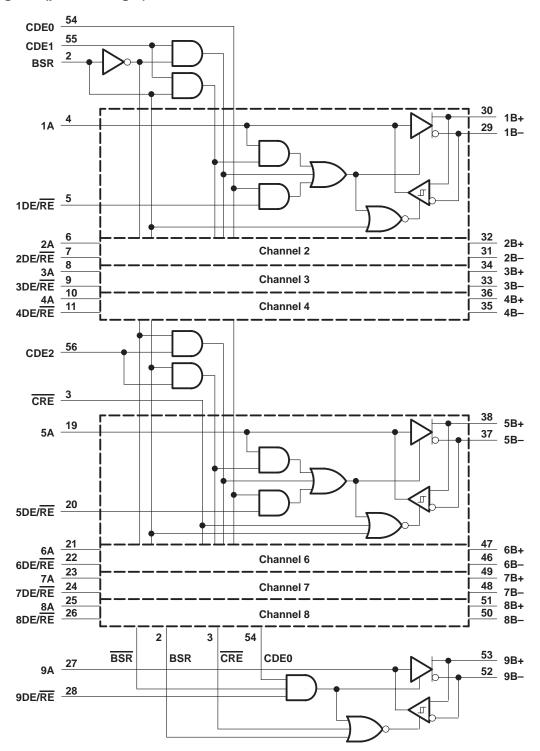
T	Skew Limit (ns) Driver Receiver		PACKAGE [†]					
TA			TSSOP (DGG)	SSOP (DL)	CERAMIC FLAT PACK (WD)			
8 9		SN75976A1DGG SN75976A1DGGR						
0°C to 70°C	4	5	SN75976A2DGG SN75976A2DGGR	SN75976A2DL SN75976A2DLR	—			
8 9		—	—	SN55976A1WD				
–55°C to 125°C	4	5	—	_	SN55976A2WD			

AVAILABLE OPTIONS

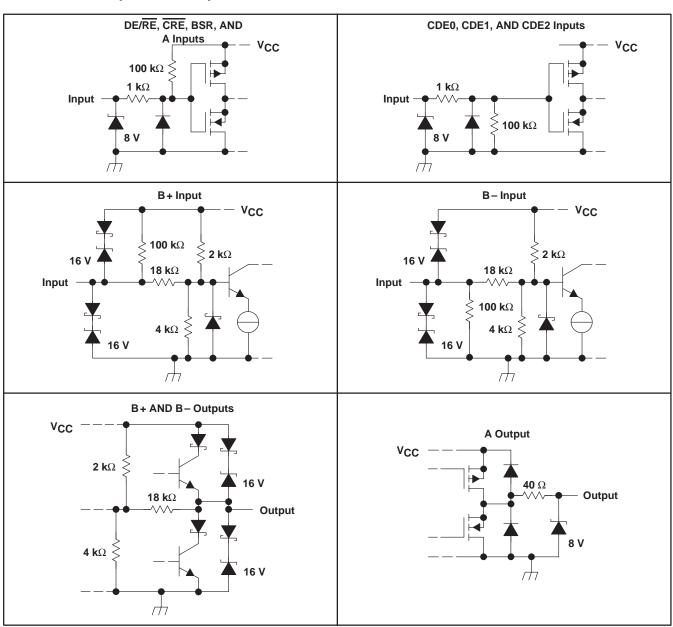
[†] The R suffix indicates taped and reeled packages.

SLLS218B - MAY 1995 - REVISED MAY 1997

TERM	INAL	Logic	1/0	Termination	DESCRIPTION
NAME	NO.	Level	1/0	Termination	DESCRIPTION
1A to 9A	4,6,8,10, 19,21,23, 25,27	TTL	I/O	Pullup	1A to 9A carry data to and from the communication controller.
1B- to 9B-	29,31,33, 35,37,.46, 48,50,52	RS-485	I/O	Pulldown	1B- to $9B-$ are the inverted data signals of the balanced pair to/from the bus.
1B+ to 9B+	30,32,34, 36,38,47, 49,51,53	RS-485	I/O	Pullup	1B+ to 9B+ are the noninverted data signals of the balanced pair to/from the bus.
BSR	2	TTL	Input	Pullup	BSR is the bit significant response. BSR disables receivers 1 through 8 and enables wired-OR drivers when BSR and DE/RE and $CDE1$ or $CDE2$ are high. Channel 9 is placed in a high-impedance state with BSR high.
CDE0	54	TTL	Input	Pulldown	CDE0 is the common driver enable 0. Its input signal enables all drivers when CDE0 and $1DE/RE - 9DE/RE$ are high.
CDE1	55	TTL	Input	Pulldown	CDE1 is the common driver enable 1. Its input signal enables drivers 1 to 4 when CDE1 is high and BSR is low.
CDE2	56	TTL	Input	Pulldown	CDE2 is the common driver enable 2. When CDE2 is high and BSR is low, drivers 5 to 8 are enabled.
CRE	3	TTL	Input	Pullup	CRE is the common receiver enable. When high, CRE disables receiver channels 5 to 9.
1DE/ <u>RE</u> to 9DE/RE	5,7,9,11, 20,22,24, 26,28	TTL	Input	Pullup	1DE/RE–9DE/RE are direction controls that transmit data to the bus when it and CDE0 are high. Data is received from the bus when 1DE/RE–9DE/RE and CRE and BSR are low and CDE1 and CDE2 are low.
GND	1,13,14, 15,16,17, 40,41,42, 43,44	NA	Power	NA	GND is the circuit ground. All GND terminals except terminal 1 are physically tied to the die pad for improved thermal conductivity. [†]
VCC	12,18,39, 45	NA	Power	NA	Supply voltage


Terminal Functions

[†] Terminal 1 must be connected to signal ground for proper operation.


SLLS218B - MAY 1995 - REVISED MAY 1997

logic diagram (positive logic)

SLLS218B - MAY 1995 - REVISED MAY 1997

schematics of inputs and outputs

SLLS218B - MAY 1995 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	
Bus voltage range	
Data I/O and control (A side) voltage range	
Electrostatic discharge: B side and GND, Class 3, A: (see Note 2)	12 kV
B side and GND, Class 3, B: (see Note 2)	400 V
All terminals, Class 3, A:	
All terminals, Class 3, B:	400 V
Continuous total power dissipation (see Note 3)	internally limited
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the GND terminals.

- 2. This absolute maximum rating is tested in accordance with MIL-PRF-38535, Method 3015.7.
- 3. The maximum operating junction temperature is internally limited. Use the Dissipation Rating Table to operate below this temperature.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	OPERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
DGG	2500 mW	20 mW/°C	1600 mW	—
DL	2500 mW	20 mW/°C	1600 mW	—
WD	1300 mW	10.5 mW/°C	827 mW	250 mW

[‡]This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

package thermal characteristics

		MIN NON	MAX	UNIT
Junction-to-ambient thermal resistance, R _{A.IA}	DGG, board-mounted, no air flow)	°C/W
Sunction-to-ambient thermal resistance, κ_{θ} JA	DL, board-mounted, no air flow	50)	°C/W
Junction-to-ambient thermal resistance, $R_{ heta JA}$	WD	95.4	1	°C/W
Junction-to-case thermal resistance, Re.IC	DGG	2	7	°C/W
	DL	1:	2	°C/W
Junction-to-case thermal resistance, $R_{\theta JC}$	WD	5.6	7	°C/W
Thermal-shutdown junction temperature, T_{JS}		16	5	°C

SLLS218B - MAY 1995 - REVISED MAY 1997

recommended op	erating conditions
----------------	--------------------

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	Except nB+, nB-†	2			V
Low-level input voltage, VIL	Except nB+, nB-†			0.8	V
Voltage at any bus terminal (separately or common mode). Ve. V. or V.	nB+ or nB –			12	V
Voltage at any bus terminal (separately or common-mode), V _O , V _I , or V _{IC}				-7	V
	Driver			-60	mA
High-level output current, I _{OH}	Receiver			-8	mA
	Driver			60	mA
Low-level output current, IOL	Receiver			8	mA
Operating case temperature, T _C	SN75976A	0		125	°C
Operating free air temperature T	SN75976A	0		70	°C
Operating free-air temperature, T _A	SN55976A	-55		125	°C

†n=1-9

SLLS218B - MAY 1995 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		-			l s	N55976/	۹.	S	N75976	A	
	PARAMETER	'	EST CONDI	IUNS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
		S1 to A,	V _T = 5 V,	See Figure 1	0.7			1	1.8		V
VODH	Driver differential high- level output voltage	S1 to B, T _C ≥ 25°C		V _T = 5 V, See Figure 1				1	1.4		V
	lovol output voltago	S1 to B, See Figure 1		V _T = 5 V,	0.7			0.8			V
		S1 to A, T _C ≥ 25°C		V _T = 5 V, See Figure 1	0.7	-1.4		-1	-1.4		V
VODL	Driver differential low- level output voltage	S1 to B,	V _T = 5 V,	See Figure 1	0.7	-1.8		-1	-1.8		V
	level output voltage	S1 to A, See Figure 1		V _T = 5 V,	-0.8	-1.4		-0.8	-1.4		V
Vон	High-level output volt- age	A side, I _{OH} = −8 mA		V _{ID} = 200 mV, See Figure 3	4	4.5		4	4.5		V
-	age	B side,	V _T = 5 V,	See Figure 1		3			3		V
VOL	Low-level output volt-	A side, I _{OH} = 8 mA		V _{ID} = -200 mV, See Figure 3		0.6	0.8		0.6	0.8	V
-	age	A side,	$V_{T} = 5 V,$	See Figure 1		1			1		V
V _{IT+}	Receiver positive-go- ing differential input threshold voltage	I _{OH} = -8 mA,		See Figure 3			0.2			0.2	V
V _{IT-}	Receiver negative- going differential input threshold voltage	I _{OL} = 8 mA,		See Figure 3			-0.2			-0.2	V
V _{hys}	Receiver input hysteresis (VIT+ [_] VIT_)	V _{CC} = 5 V,		$T_A = 25^{\circ}C$	24	45		24	45		mV
		V _{IH} = 12 V,	V _{CC} = 5 V,	Other input at 0 V		0.4	1		0.4	1	mA
	Pup input ourrept	V _{IH} = 12 V,	$V_{CC} = 0,$	Other input at 0 V		0.5	1		0.5	1	mA
łı	Bus input current	$V_{IH} = -7 V,$	V _{CC} = 5 V,	Other input at 0 V		-0.4	-0.8		-0.4	-0.8	mA
		$V_{IH} = -7 V,$	$V_{CC} = 0,$	Other input at 0 V		-0.3	-0.8		-0.3	-0.8	mA
I	High-level input cur-	A, BSR, DE/R	E, and CRE,	V _{IH} = 2 V			-100			-100	μΑ
ΙΗ	rent	CDE0, CDE1,	and CDE2,	$V_{IH} = 2V$			100			100	μΑ
L.		A, BSR, DE/R	E, and CRE,	V _{IL} = 0.8 V			-100			-100	μΑ
ŧι∟	Low-level input current	CDE1, CDE1,	and CDE2,	V _{IL} = 0.8 V			100			100	μΑ
los	Short circuit output current	nB+ or nB–					±260			±260	mA
1	High-impedance-state	А			See	lIH and	۱ _{IL}	See	e I _{IH} and	۱ _{IL}	
loz	output current	nB+ or nB–				See I _I			See I _I		
		Disabled					10			10	mA
ICC	Supply current	All drivers ena	bled, no load				60			60	mA
		All receivers e	nabled, no loa	ad			45			45	mA
CO	Output capacitance	nB+ or nB– to	GND			18			18	25	pF
	Power dissipation capacitance	Receiver				40			40		pF
C _{pd}	(see Note 4)	Driver				100			100		pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 4: C_{pd} determines the no-load dynamic supply current consumption, I_S = C_{PD} × V_{CC} × f + I_{CC}

SLLS218B - MAY 1995 - REVISED MAY 1997

driver switching characteristics over recommended operating conditions (unless otherwise noted)

	DADAMETED		TEAT OF		S	N75976A	1	
	PARAMETER		TESTCO	ONDITIONS	MIN	TYP†	MAX	UNIT
					2.5		13.5	ns
		'976A1	$V_{CC} = 5 V,$	T _C = 25°C	3		11	ns
. .	Propagation delay time, tPHL or tPLH		$V_{CC} = 5 V,$	$T_C = 100^{\circ}C$	5		13	ns
^t pd					4.5		11.5	ns
		'976A2	$V_{CC} = 5 V,$	$T_{C} = 25^{\circ}C$	5		9	ns
			$V_{CC} = 5 V,$	$T_C = 100^{\circ}C$	7		11	ns
• • • • •	Skew limit, maximum t _{pd} – minimum t _{pd}	'976A1					8	ns
^t sk(lim)	(see Note 5)	'976A2					4	ns
^t sk(p)	Pulse skew, tpHL - tpLH						4	ns
t _f	Fall time		S1 to B,	See Figure 2		4		ns
tr	Rise time		See Figure 2			8		ns
t _{en}	Enable time, control inputs to active output						50	ns
^t dis	Disable time, control inputs to high-impedance ou	tput					100	ns
^t PHZ	Propagation delay time, high-level to high-impeda	ince output				17	100	ns
^t PLZ	Propagation delay time, low-level to high-impedar	nce output		and C		25	100	ns
^t PZH	Propagation delay time, high-impedance to high-le	evel output	See Figures 5	anu o		17	50	ns
t _{PZL}	Propagation delay time, high-impedance to low-le	vel output]			17	50	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 5: This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions and to any two devices.

driver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	SN55976A			UNIT
	PARAMETER		TEST CO	MIN	TYP [†]	MAX	UNIT	
L .	Propagation delay time, tPHL or tPLH	'976A1	$V_{CC} = 5 V,$	$T_A = 25^{\circ}C$			15	ns
^t pd	(see Figures 1 and 2)	'976A2	V _{CC} = 5 V,	$T_A = 25^{\circ}C$			13.5	ns
+	Skew limit, maximum t _{pd} – minimum t _{pd}	'976A1					8	ns
^t sk(lim)	(see Note 5)	'976A2					4	ns
t _{sk(p)}	Pulse skew, t _{PHL} – t _{PLH}						4	ns
t _f	Fall time		S1 to B,	See Figure 2		4		ns
t _r	Rise time		See Figure 2			8		ns
t _{en}	Enable time, control inputs to active output						60	ns
t _{dis}	Disable time, control inputs to high-impedance output	t					140	ns
^t PHZ	Propagation delay time, high-level to high-impedance	e output					120	ns
^t PLZ	Propagation delay time, low-level to high-impedance	output		and C			120	ns
^t PZH	Propagation delay time, high-impedance to high-leve	loutput	See Figures 5	anu o			60	ns
^t PZL	Propagation delay time, high-impedance to low-level	output]				60	ns

 † All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 5. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions and to any two devices.

SLLS218B - MAY 1995 - REVISED MAY 1997

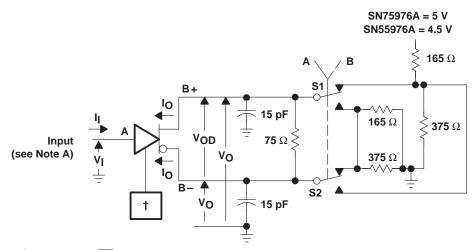
receiver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	S	N75976A	λ	UNIT
	PARAMETER		TESTCO	MIN	TYP†	MAX	UNIT	
		'976A1			7.5		16.5	ns
	Propagation delay time, tPHL or tPLH				8.5		14.5	ns
^t pd	(see Figures 3 and 4)	'976A2	$V_{CC} = 5 V,$	$T_C = 25^{\circ}C$	8.6		13.6	ns
			$V_{CC} = 5 V,$	$T_{C} = 100^{\circ}C$	9		14	ns
+	Skew limit, maximum t _{pd} – minimum t _{pd}	'976A1					9	ns
^t sk(lim)	(see Note 5)	'976A2					5	ns
^t sk(p)	Pulse skew, t _{PHL} - t _{PLH}					0.6	4	ns
t _t	Transition time (t _r or t _f)		See Figure 4			2		ns
t _{en}	Enable time, control inputs to active output						50	ns
^t dis	Disable time, control inputs to high-impedance output	ıt					60	ns
^t PHZ	Propagation delay time, high-level to high-impedance	e output					60	ns
t _{PLZ}	Propagation delay time, low-level to high-impedance	output		and Q			50	ns
^t PZH	Propagation delay time, high-impedance to high-leve	el output	See Figures 7	anu o			50	ns
t _{PZL}	Propagation delay time, high-impedance to low-level	loutput]				50	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

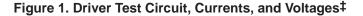
NOTE 5. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions and to any two devices.

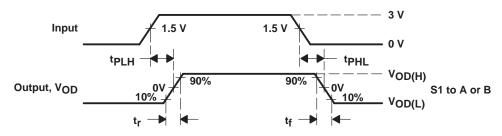
receiver switching characteristics over recommended operating conditions (unless otherwise noted)

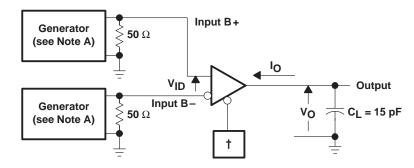

PARAMETER			TEST CONDITIONS		SN55976A		UNIT	
	FARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
Propagation delay time, tPHL or tPLH		'976A1	V _{CC} = 5 V,	$T_A = 25^{\circ}C$			19	ns
^t pd	(see Figures 3 and 4)	'976A2	V _{CC} = 5 V,	$T_A = 25^{\circ}C$			16	ns
+							9	ns
^t sk(lim)							5	ns
t _{sk(p)}	Pulse skew, tpHL - tpLH					0.6	4	ns
tt	tt Transition time (tr or tf)		See Figure 4			2		ns
t _{en}	t _{en} Enable time, control inputs to active output						70	ns
t _{dis}	t _{dis} Disable time, control inputs to high-impedance output						80	ns
^t PHZ	tPHZ Propagation delay time, high-level to high-impedance output						80	ns
^t PLZ	tPLZ Propagation delay time, low-level to high-impedance output		See Figures 7 and 8			70	ns	
^t PZH	tPZH Propagation delay time, high-impedance to high-level output			anu o			70	ns
tPZL Propagation delay time, high-impedance to low-level output		1				70	ns	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 5. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions and to any two devices.




SLLS218B - MAY 1995 - REVISED MAY 1997


PARAMETER MEASUREMENT INFORMATION

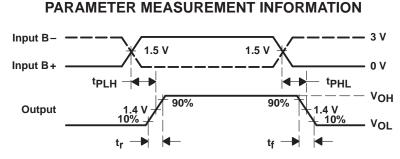
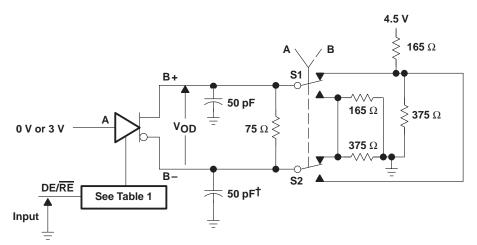
[†] CDE0 and DE/RE are at 2 V, BSR is at 0.8 V and, for the SN75976A only, all others are open. [‡] For the SN75976A only, all nine drivers are enabled, similarly loaded, and switching.

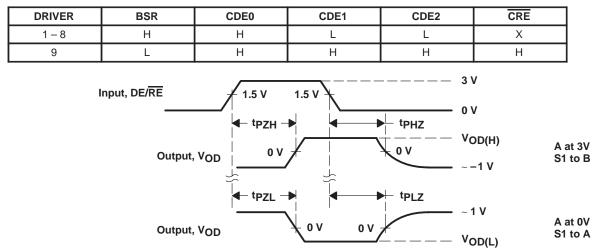
[†] CDE0, CDE1, CDE2, BSR, CRE, and DE/RE at 0.8 V [‡] For the SN75976A only, all nine receivers are enabled and switching.

Figure 3. Receiver Propagation Delay and Transition Time Test Circuit[‡]

- NOTES: A. All input pulses are supplied by a generator having the following characteristics: $t_f \le 6$ ns, $t_f \le 6$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \ \Omega$.
 - B. All resistances are in Ω and \pm 5%, unless otherwise indicated.
 - C. All capacitances are in pF and \pm 10%, unless otherwise indicated.
 - D. All indicated voltages are \pm 10 mV.

SLLS218B - MAY 1995 - REVISED MAY 1997

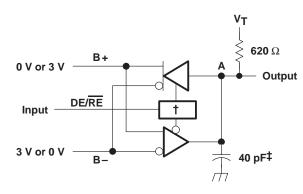




Figure 4. Receiver Delay and Transition Time Waveforms

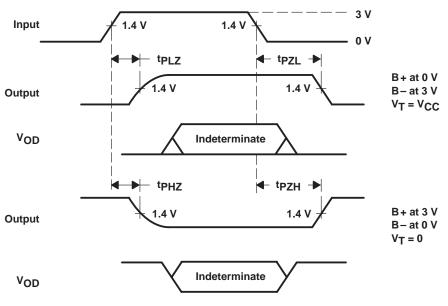
[†] Includes probe and jig capacitance in two places.

Figure 5. Driver Enable and Disable Time Test Circuit

Table 1. Enabling For Driver Enable And Disable Time


Figure 6. Driver Enable Time Waveforms

- NOTES: A. All input pulses are supplied by a generator having the following characteristics: $t_r \le 6$ ns, $t_f \le 6$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \Omega$.
 - B. All resistances are in Ω and \pm 5%, unless otherwise indicated.
 - C. All capacitances are in pF and \pm 10%, unless otherwise indicated.
 - D. All indicated voltages are \pm 10 mV.


SLLS218B - MAY 1995 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

[†] CDE0 is high, CDE1, CDE2, BSR, and CRE are low and, for the SN75976A only, all others are open.
[‡] Includes probe and jig capacitance.

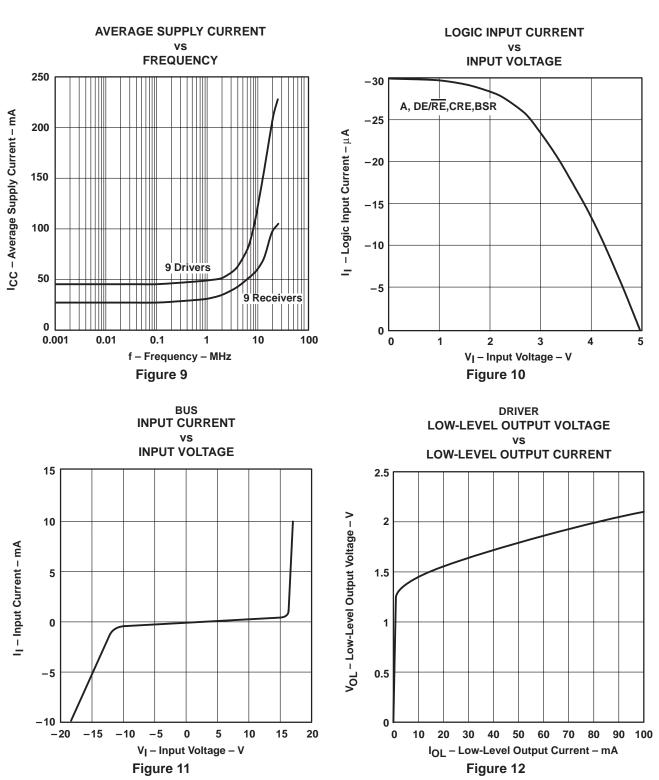


Figure 8. Receiver Enable and Disable Time Waveforms

- NOTES: A. All input pulses are supplied by a generator having the following characteristics: $t_f \le 6$ ns, $t_f \le 6$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_O = 50 \Omega$.
 - B. All resistances are in Ω and \pm 5%, unless otherwise indicated.
 - C. All capacitances are in pF and \pm 10%, unless otherwise indicated.
 - D. All indicated voltages are \pm 10 mV.

SLLS218B - MAY 1995 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLLS218B - MAY 1995 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLLS218B - MAY 1995 - REVISED MAY 1997

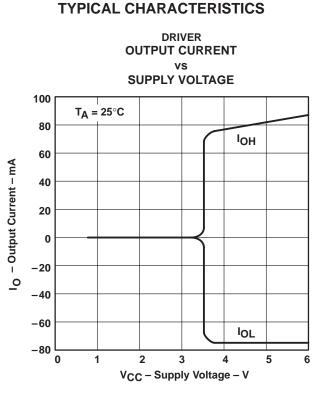


Figure 17

SLLS218B - MAY 1995 - REVISED MAY 1997

APPLICATION INFORMATION

SIGNAL	TERMINAL	SCSI DATA	SCSI CONTROL	IPI DATA	IPI CONTROL
CDE0	54	DIFFSENSE	DIFFSENSE	VCC	VCC
CDE1	55	GND	GND	XMTA, XMTB	GND
CDE2	56	GND	GND	XMTA, XMTB	SLAVE/MASTER
BSR	2	GND	GND	GND, BSR	GND
CRE	3	GND	GND	GND	V _{CC}
1A	4	DB0, DB8	ATN	AD7, BD7	NOT USED
1DE/RE	5	DBE0, DBE8	INIT EN	GND	GND
2A	6	DB1, DB9	BSY	AD6, BD6	NOT USED
2DE/RE	7	DBE1, DBE9	BSY EN	GND	GND
ЗA	8	DB2, DB10	ACK	AD5, BD5	SYNC IN
3DE/RE	9	DBE2, DBE10	INIT EN	GND	GND
4A	10	DB3, DB11	RST	AD4, BD4	SLAVE IN
4DE/RE	11	DBE3, DBE11	GND	GND	GND
5A	19	DB4, DB12	MSG	AD3, BD3	NOT USED
5DE/RE	20	DBE4, DBE12	TARG EN	GND	GND
6A	21	DB5, DB13	SEL	AD2, BD2	SYNC OUT
6DE/RE	22	DBE5, DBE13	SEL EN	GND	GND
7A	23	DB6, DB14	C/D	AD1, BD1	MASTER OUT
7DE/RE	24	DBE6, DBE14	TARG EN	GND	GND
8A	25	DB7, DB15	REQ	AD0, BD0	SELECT OUT
8DE/RE	26	DBE7, DBE15	TARG EN	GND	GND
9A	27	DBP0, DBP1	I/O	AP, BP	ATTENTION IN
9DE/RE	28	DBPE0, DBPE1	TARG EN	XMTA, XMTB	V _{CC}

Table 2. Typical Signal and Terminal Assignments

ABBREVIATIONS:

 $DBn = data bit n, where n = (0, 1, \dots, 15)$

DBEn = data bit n enable, where n = (0, 1, ..., 15)

DBP0 = parity bit for data bits 0 through 7 or IPI bus A

DBPE0 = parity bit enable for P0

DBP1 = parity bit for data bits 8 through 15 or IPI bus B

DBPE1 = parity bit enable for P1

ADn or BDn = IPI Bus A – Bit n (ADn) or Bus B – Bit n (BDn), where n = (0, 1, ..., 7)

AP or BP = IPI parity bit for bus A or bus B

XMTA or XMTB = transmit enable for IPI bus A or B

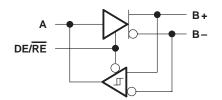
BSR = bit significant response

INIT EN = common enable for SCSI initiator mode

TARG EN = common enable for SCSI target mode

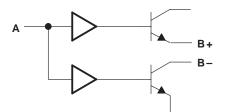
NOTE A: Signal inputs are shown as active high. When only active-low inputs are available, logic inversion is accomplished by reversing the B + and B – connector terminal assignments.

SLLS218B - MAY 1995 - REVISED MAY 1997

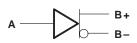

APPLICATION INFORMATION

Function Tables

RECEIVER


INP	INPUTS		
B+†	в_†	Α	
L	Н	L	
Н	L	Н	

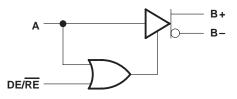
TRANSCEIVER


INPUTS				OUTPUTS		
DE/RE	Α	в+†	в_†	Α	B+	В-
L	-	L	Н	L	-	-
L	_	Н	L	н	-	-
н	L	-	-	-	L	Н
н	Н	-	-	-	Н	L

WIRED-OR DRIVER

INPUT	OUTPUTS		
Α	B+	В-	
L	Z	Ζ	
н	Н	L	

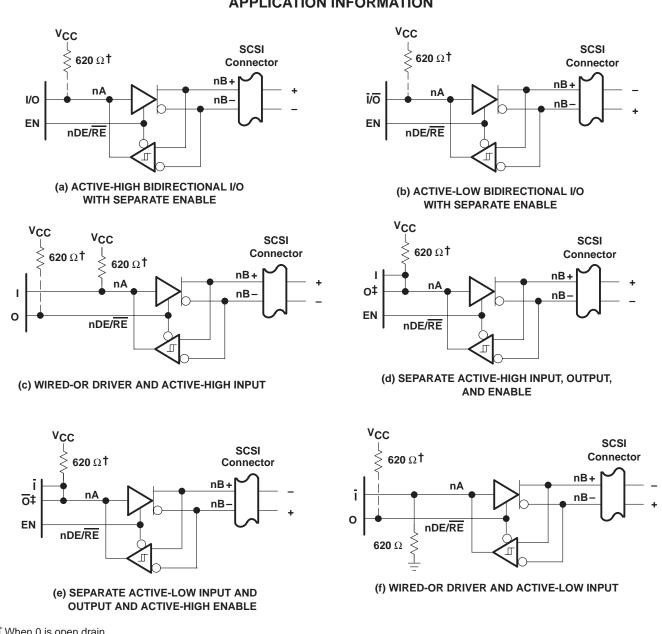
DRIVER


INPUT	OUTPUTS		
Α	B+	B-	
L	L	Н	
Н	н	L	

DRIVER WITH ENABLE

INPUT	S	OUTPUTS		
DE/RE A		B+	В-	
L	L	Z	Z	
L	Н	Z	Z	
Н	L	L	н	
Н	Н	н	L	

TWO-ENABLE INPUT DRIVER


INPUTS		OUTPUTS		
DE/RE	Α	B+	В-	
L	L	Z	Z	
L	Н	н	L	
Н	L	L	н	
Н	Н	Н	L	

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

⁺ An H in this column represents a voltage of 200 mV or higher than the other bus input. An L represents a voltage of 200 mV or lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.

SLLS218B - MAY 1995 - REVISED MAY 1997

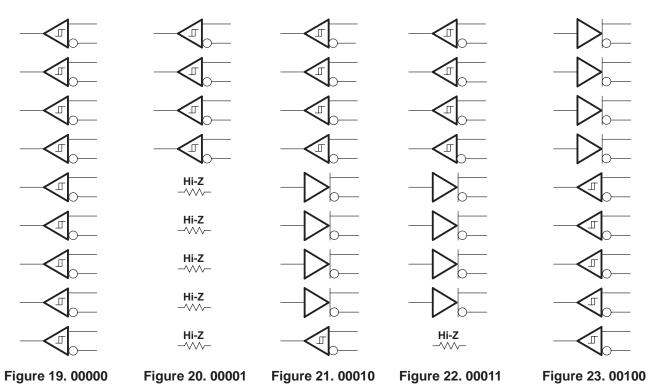
APPLICATION INFORMATION

[†]When 0 is open drain

[‡] Must be open-drain or <u>3</u>-state output

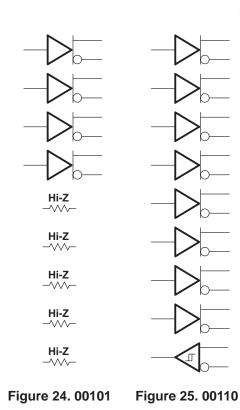
NOTE A: The BSR, CRE, A, and DE/RE inputs have internal pullup resistors. CDE0, CDE1, and CDE2 have internal pulldown resistors.

Figure 18. Typical SCSI Transceiver Connections



SLLS218B - MAY 1995 - REVISED MAY 1997

APPLICATION INFORMATION


channel logic configurations with control input logic

The following logic diagrams show the positive-logic representation for all combinations of control inputs. The control inputs are from MSB to LSB; the BSR, CDE0, CDE1, CDE2, and CRE bit values are shown below the diagrams. Channel 1 is at the top of the logic diagrams; channel 9 is at the bottom of the logic diagrams.

SLLS218B - MAY 1995 - REVISED MAY 1997

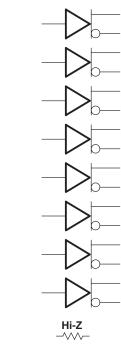
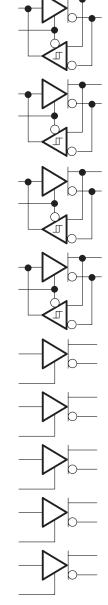
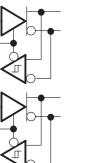
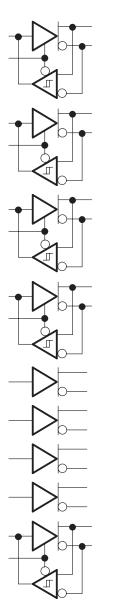
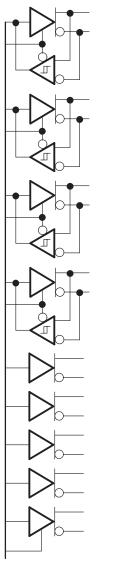
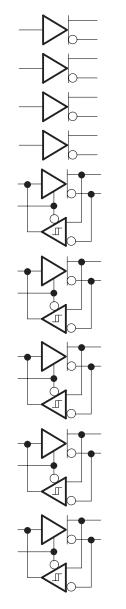



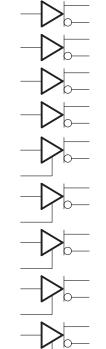
Figure 26. 00111

APPLICATION INFORMATION

Figure 28. 01001


Figure 27. 01000


SLLS218B - MAY 1995 - REVISED MAY 1997

APPLICATION INFORMATION

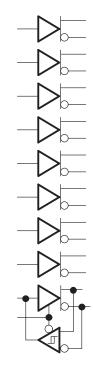


Figure 32. 01101

Figure 33. 01110

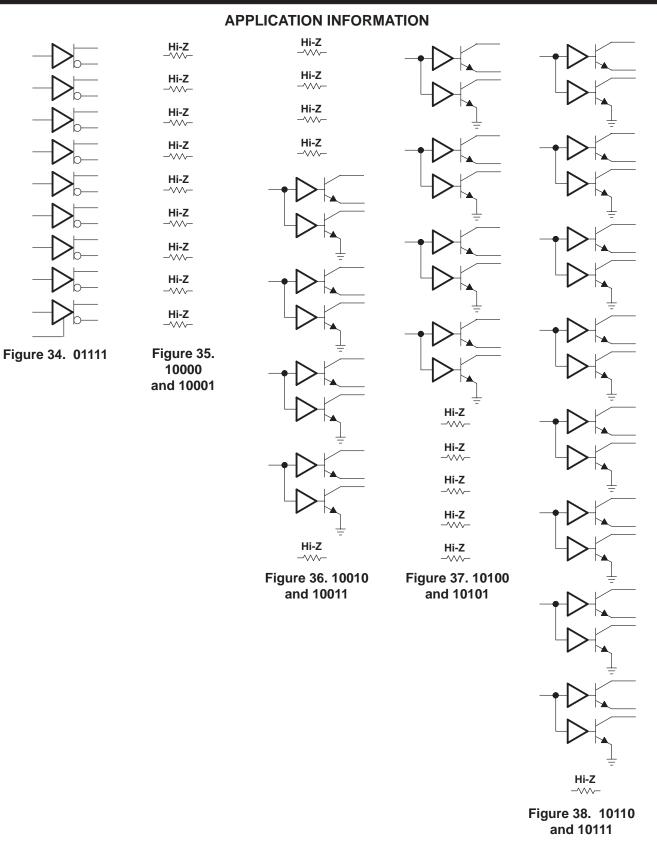

Figure 29. 01010

Figure 30. 01011

Figure 31. 01100

SLLS218B - MAY 1995 - REVISED MAY 1997

SLLS218B - MAY 1995 - REVISED MAY 1997

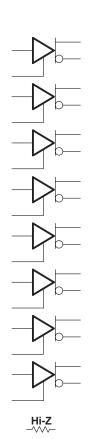


Figure 39. 11000 and 11001

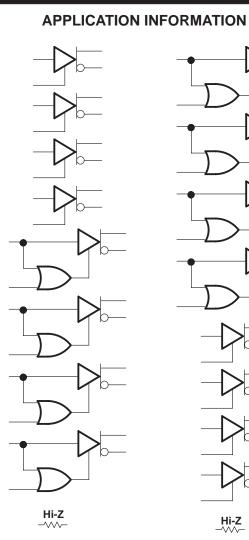


Figure 40. 11010 and 11011

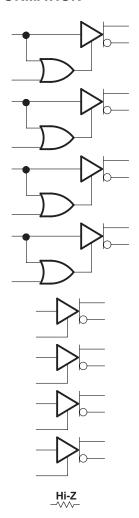


Figure 41. 11100 and 11101

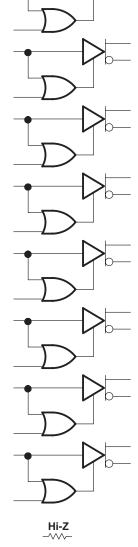
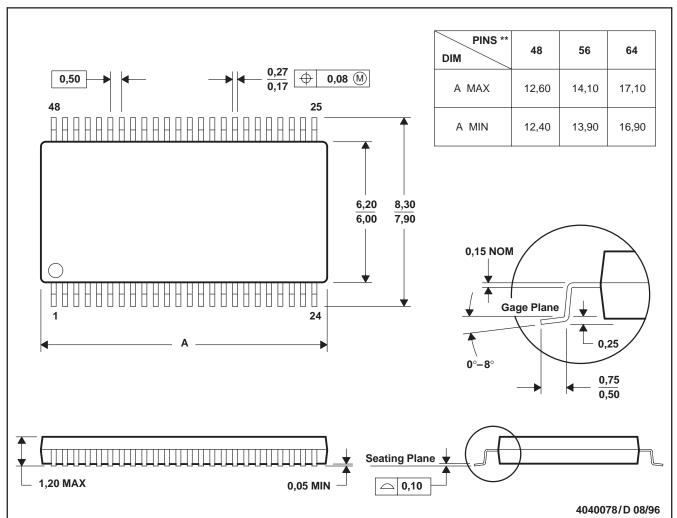


Figure 42. 11110 and 11111


SLLS218B - MAY 1995 - REVISED MAY 1997

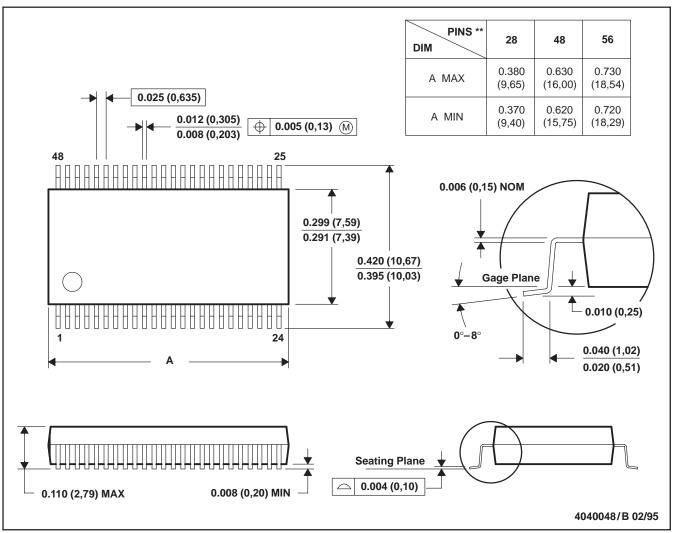
MECHANICAL INFORMATION

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: B. All linear dimensions are in millimeters. C. This drawing is subject to change without notice.

D. Falls within JEDEC MO-153


SLLS218B - MAY 1995 - REVISED MAY 1997

MECHANICAL INFORMATION

DL (R-PDSO-G**)

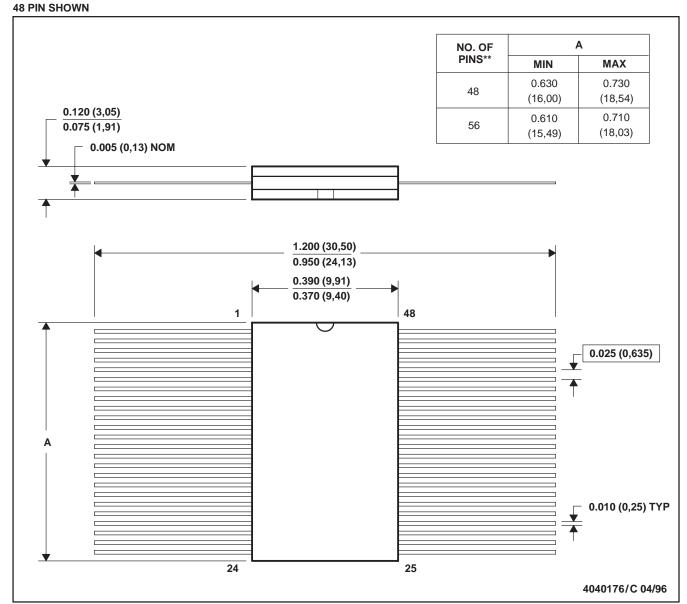
PLASTIC SMALL-OUTLINE PACKAGE

48 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).



SLLS218B - MAY 1995 - REVISED MAY 1997

MECHANICAL INFORMATION

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for pin identification only
- E. Falls within MIL-STD-1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated