
6B273

Data Sheet **26180.122**

ADVANCE INFORMATION

January 24, 2000

Note that the A6B273KA (DIP) and the A6B273KLW (SOIC) are electrically identical and share a common terminal number assignment.

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Output Voltage, V _O 50 V
Output Drain Current,
Continuous, I _O 150 mA*
Peak, I _{OM} 500 mA†
Single-Pulse Avalanche Energy,
E _{AS} 30 mJ
Logic Supply Voltage, V _{DD} 7.0 V
Input Voltage Range,
V ₁ 0.3 V to +7.0 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
T _A 40°C to +125°C
Storage Temperature Range,
T _S 55°C to +150°C
* Each output, all outputs on.

† Pulse duration $\leq 100 \,\mu s$, duty cycle $\leq 2\%$.

Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if posed to extremely high static electrical charges.

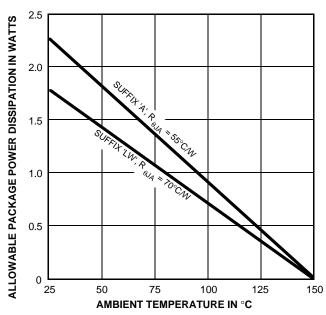
df.dzsc.com

8-BIT LATCHED **DMOS POWER DRIVER**

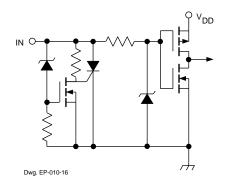
The A6B273KA and A6B273KLW combine eight (positive-edgetriggered D-type) data latches and DMOS outputs for systems requiring relatively high load power. Driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads. The CMOS inputs and latches allow direct interfacing with microprocessor-based systems. Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

The DMOS output inverts the DATA input. All of the output drivers are disabled (the DMOS sink drivers turned OFF) with the CLEAR input low. The A6B273KA/KLW DMOS open-drain outputs are capable of sinking up to 500 mA. Similar devices with reduced r_{DS(on)} are available as the A6273KA/KLW.

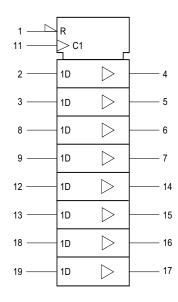
The A6B273KA is furnished in a 20-pin dual in-line plastic package. The A6B273KLW is furnished in a 20-lead wide-body, small-outline plastic package (SOIC) with gull-wing leads for surfacemount applications. Copper lead frames, reduced supply current requirements, and low on-state resistance allow both devices to sink 150 mA from all outputs continuously, to ambient temperatures over 85°C.


FEATURES

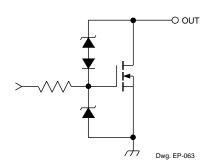
- 50 V Minimum Output Clamp Voltage
- 150 mA Output Current (all outputs simultaneously)
- 5 Ω Typical $r_{DS(on)}$
- Low Power Consumption
- Replacements for TPIC6B273N and TPIC6B273DW


Always order by complete part number:

Part Number	Package	$R_{\theta JA}$	$R_{ heta JC}$
A6B273KA	20-pin DIP	55°C/W	25°C/W
A6B273KLW	20-lead SOIC	70°C/W	17°C/W



Dwg. GS-004A



LOGIC INPUTS

LOGIC SYMBOL

Dwg. FP-046-1

DMOS POWER DRIVER OUTPUT

FUNCTION TABLE

CLEAR	Inputs STROBE	IN _X	OUT _X
L	Χ	Х	Н
Н		Н	L
Н		L	Н
Н	L	X	R


L = Low Logic Level

H = High Logic Level

X = Irrelevant

R = Previous State

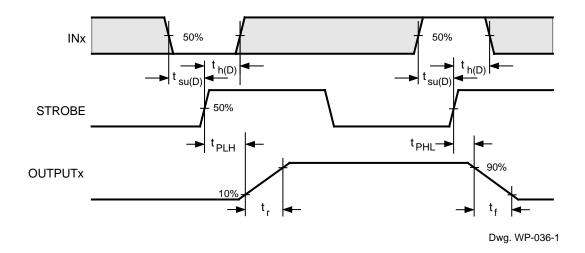
FUNCTIONAL BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

over operating temperature range

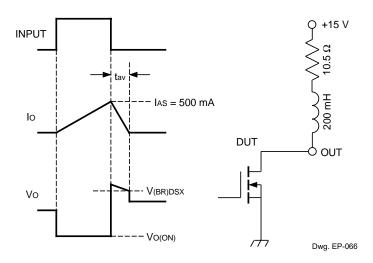
Logic Supply Voltage Range, V _{DD} 4.	5 V to 5.5 V
High-Level Input Voltage, V _{IH}	. ≥ 0.85V _{DD}
Low-level input voltage, V _{II}	≤0.15V _{DD}

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{DD} = 5 V, t_{ir} = $t_{if} \le$ 10 ns (unless otherwise specified).


				Lin	nits	
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Logic Supply Voltage	V_{DD}	Operating	4.5	5.0	5.5	V
Output Breakdown Voltage	$V_{(BR)DSX}$	I _O = 1 mA	50	_	_	V
Off-State Output	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V		0.1	5.0	μА
Current		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C		0.15	8.0	μА
Static Drain-Source	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V		4.2	5.7	Ω
On-State Resistance		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C	_	6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)		5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	_	90	_	mA
Logic Input Current	I _{IH}	V _I = V _{DD} = 5.5 V	_	_	1.0	μΑ
	I _{IL}	V _I = 0, V _{DD} = 5.5 V	_	_	-1.0	μА
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF	_	150	_	ns
	t _{PHL}	I _O = 100 mA, C _L = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF		200	_	ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs off	_	20	100	μΑ
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs on	_	150	300	μΑ

Typical Data is at $V_{DD} = 5 \text{ V}$ and is for design information only.

NOTE — Pulse test, duration $\leq 100 \,\mu s$, duty cycle $\leq 2\%$.



TIMING REQUIREMENTS

Input Active Time Before Strobe	
(Data Set-Up Time), t _{su(D)}	ns
Input Active Time After Strobe	
(Data Hold Time), t _{h(D)} 20	ns
Input Pulse Width, t _{w(D)}	ns
Input Logic High, V_{IH} $\geq 0.85V_{IH}$	V_{CC}
Input Logic Low, V_{II} \leq 0.15V	$I_{\rm CC}$

TEST CIRCUITS

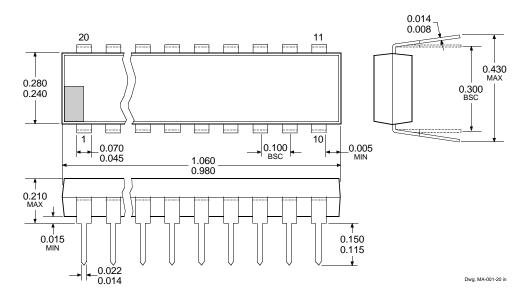
 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

Single-Pulse Avalanche Energy Test Circuit and Waveforms

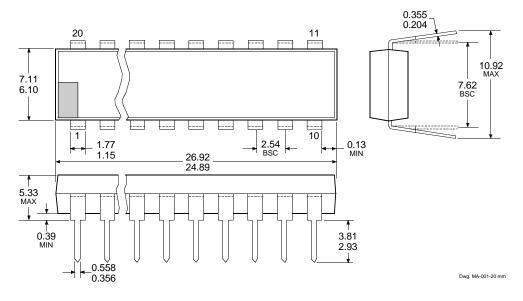
TYPICAL CHA	ARACTE	RISTICS		

6B273 8-BIT LATCHED DMOS POWER DRIVER		
DWOSTOWERDRIVER		

TYPICAL CHARACTERISTICS			

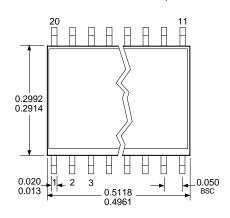


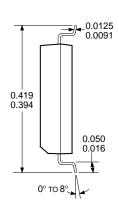
TERMINAL DESCRIPTIONS

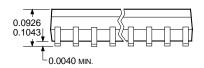

Terminal No.	Terminal Name	Function		
1	CLEAR	When (active) LOW, all latches are reset and all outputs go HIGH (turn OFF).		
2	IN_1	CMOS data input to a latch. When strobed, the output then inverts the data input (IN $_1$ = HIGH, OUT $_1$ = LOW).		
3	IN_2	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₂ = HIGH, OUT ₂ = LOW).		
4	OUT_1	Current-sinking, open-drain DMOS output.		
5	OUT_2	Current-sinking, open-drain DMOS output.		
6	OUT_3	Current-sinking, open-drain DMOS output.		
7	OUT_4	Current-sinking, open-drain DMOS output.		
8	IN_3	CMOS data input to a latch. When strobed, the output then inverts the data input (IN $_3$ = HIGH, OUT $_3$ = LOW).		
9	IN ₄	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₄ = HIGH, OUT ₄ = LOW).		
10	GROUND	Reference terminal for all voltage measurements.		
11	STROBE	A CMOS dynamic input to all latches. Data on each IN_x terminal is loaded into its associated latch on a low-to-high STROBE transition.		
12	IN_5	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₅ = HIGH, OUT ₅ = LOW).		
13	IN ₆	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₆ = HIGH, OUT ₆ = LOW).		
14	OUT ₅	Current-sinking, open-drain DMOS output.		
15	OUT ₆	Current-sinking, open-drain DMOS output.		
16	OUT ₇	Current-sinking, open-drain DMOS output.		
17	OUT ₈	Current-sinking, open-drain DMOS output.		
18	IN_7	CMOS data input to a latch. When strobed, the output then inverts the data input (IN $_7$ = HIGH, OUT $_7$ = LOW).		
19	IN ₈	CMOS data input to a latch. When strobed, the output then inverts the data input (IN ₈ = HIGH, OUT ₈ = LOW).		
20	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).		

A6B273KA

Dimensions in Inches (controlling dimensions)

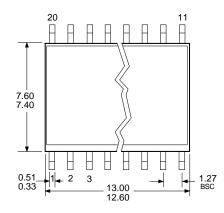

Dimensions in Millimeters (for reference only)

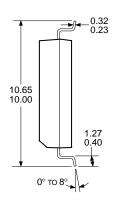


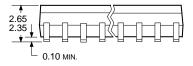

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.

A6B273KLW

Dimensions in Inches (for reference only)







Dwg. MA-008-20 in

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-008-20 mm

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

