features

－Smallest Pin－Compatible Single DACs：
LTC2606： 16 Bits
LTC2616： 14 Bits
LTC2626： 12 Bits
－Guaranteed 16－Bit Monotonic Over Temperature
－ 27 Selectable Addresses
－ $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ Interface
－Wide 2．7V to 5．5V Supply Range
－Low Power Operation：270 $\mu \mathrm{A}$ at 3 V
－Power Down to 1 $\mu \mathrm{A}$ ，Max
－High Rail－to－Rail Output Drive（ $\pm 15 \mathrm{~mA}$ ，Min）
－Double－Buffered Data Latches
－Asynchronous DAC Update Pin
－LTC2606／LTC2616／LTC2626：Power－On Reset to Zero Scale
－LTC2606－1／LTC2616－1／LTC2626－1：Power－On Reset to Midscale
－Tiny（ $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ）10－Lead DFN Package

APPLICATIONS

－Mobile Communications
－Process Control and Industrial Automation
－Instrumentation
－Automatic Test Equipment

DESCRIPTION

The LTC ${ }^{\circledR} 2606 /$ LTC2616／LTC2626 are single 16－， $14-$ and 12－bit，2．7V－to－5．5V rail－to－rail voltage output DACs in a 10－lead DFN package．They have built－in high perfor－ mance output buffers and are guaranteed monotonic．
These parts establish new board－density benchmarks for 16－and 14－bit DACs and advance performance standards for output drive and load regulation in single－supply， voltage－output DACs．
The parts use a 2－wire， $1^{2} \mathrm{C}$ compatible serial interface．The LTC2606／LTC2616／LTC2626 operate in both the standard mode（clock rate of 100 kHz ）and the fast mode（clock rate of 400 kHz ）．An asynchronous DAC update pin（LDAC）is also included．
The LTC2606／LTC2616／LTC2626 incorporate a power－on reset circuit．During power－up，the voltage outputs rise less than 10 mV above zero scale；and after power－up，they stay at zero scale until a valid write and update take place．The power－on reset circuit resets the LTC2606－1／LTC2616－1／ LTC2626－1 to midscale．The voltage outputs stay at midscale until a valid write and update take place．
$\overline{\mathbf{1 7}}$ ，LTC and LT are registered trademarks of Linear Technology Corporation． All other trademarks are the property of their respective owners．

BLOCK DIAGRAM

Differential Nonlinearity （LTC2606）

LTC2606/LTC2616/LTC2626

ABSOLUTE mAXIMUM RATINGS
 (Note 1)

Any Pin to GND \qquad -0.3 V to 6 V . 6 V to 0.3 V
Maximum Junction Temperature \qquad
Storage Temperature Range \qquad $125^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec)
$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
\qquad $300^{\circ} \mathrm{C}$

Operating Temperature Range: LTC2606C/LTC2616C/LTC2626C
LTC2606-1C/LTC2616-1C/LTC2626-1C ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC2606I/LTC2616I/LTC2626I
LTC2606-1I/LTC2616-1//LTC2626-1I.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

	ORDER PART NUMBER	ORDER PART NUMBER	ORDER PART NUMBER
	LTC2606CDD LTC2606IDD	LTC2616CDD LTC2616IDD	LTC2626CDD LTC2626IDD
	LTC2606CDD-1 LTC2606IDD-1	LTC2616CDD-1 LTC2616IDD-1	LTC2626CDD-1 LTC2626IDD-1
	DD PART MARKING	DD PART MARKING	DD PART MARKING
	LAJX	LBPQ	LBPS
	LAJW	LBPR	LBPT

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICPL CHARACTERISTICS The e denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{REF}=4.096 \mathrm{~V}\left(\mathrm{~V}_{C C}=5 \mathrm{~V}\right)$, $\mathrm{REF}=2.048 \mathrm{~V}\left(\mathrm{~V}_{C C}=2.7 \mathrm{~V}\right)$, $\mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted.

ELECTRACA CHRRACTERASTCS The o denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{REF}=4.096 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right), R E F=2.048 \mathrm{~V}(\mathrm{~V}$ CC $=2.7 \mathrm{~V})$, $\mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted. (Note 11)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
PSR	Power Supply Rejection	$V_{C C}= \pm 10 \%$			-81		dB
ROUT	DC Output Impedance	$V_{\text {REF }}=V_{\text {CC }}=5 \mathrm{~V}$, Midscale; $-15 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA}$ $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$, Midscale; $-7.5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7.5 \mathrm{~mA}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	S
ISC	Short-Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5.5 \mathrm{~V}$ Code: Zero Scale; Forcing Output to $V_{C C}$ Code: Full Scale; Forcing Output to GND	\bullet	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 34 \\ & 36 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	mA mA
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.7 \mathrm{~V}$ Code: Zero Scale; Forcing Output to $V_{C C}$ Code: Full Scale; Forcing Output to GND	\bullet	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 22 \\ & 29 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	mA mA

Reference Input

	Input Voltage Range		\bullet	0		$\mathrm{V}_{\text {c }}$	V
	Resistance	Normal Mode	\bullet	88	124	160	$k \Omega$
	Capacitance				15		pF
$\underline{\text { REF }}$	Reference Current, Power Down Mode	DAC Powered Down	\bullet		0.001	1	$\mu \mathrm{A}$
Power Supply							
$\mathrm{V}_{\text {CC }}$	Positive Supply Voltage	For Specified Performance	\bullet	2.7		5.5	V
$\mathrm{I}_{\text {CC }}$	Supply Current	$V_{\text {CC }}=5 \mathrm{~V}$ (Note 3) $V_{C C}=3 V($ Note 3) DAC Powered Down (Note 3) $V_{C C}=5 \mathrm{~V}$ DAC Powered Down (Note 3) $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 0.340 \\ 0.27 \\ 0.35 \\ 0.10 \end{gathered}$	0.5 0.4 1 1	mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$

Digital I/O (Note 11)

VIL	Low Level Input Voltage (SDA and SCL)		\bullet	-0.5	$0.3 \mathrm{~V}_{\text {CC }}$	V
$\overline{V_{I H}}$	High Level Input Voltage (SDA and SCL)	(Note 8)	\bullet	$0.7 \mathrm{~V}_{C C}$		V
$\overline{V_{\text {IL(}}(\overline{\mathrm{LDAC}})}$	Low Level Input Voltage ($\overline{\mathrm{LDAC}}$)	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{C C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	V
$\overline{\mathrm{V}_{1 H}(\overline{\mathrm{LDAC}})}$	High Level Input Voltage ($\overline{\mathrm{LDAC}}$)	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & V_{C C}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$		V
$\overline{\text { VIL(CAn) }}$	Low Level Input Voltage on CAn ($n=0,1,2$)	See Test Circuit 1	\bullet		$0.15 \mathrm{~V}_{\text {c }}$	V
$\overline{\mathrm{V}_{\text {H(CAn }}}$	High Level Input Voltage on CAn ($n=0,1,2$)	See Test Circuit 1	\bullet	$0.85 \mathrm{~V}_{\text {CC }}$		V
RINH	Resistance from CAn ($n=0,1,2$) to $V_{C C}$ to Set CAn $=V_{C C}$	See Test Circuit 2	\bullet		10	k Ω
$\mathrm{R}_{\text {INL }}$	$\text { Resistance from CAn }(n=0,1,2)$ to GND to Set CAn = GND	See Test Circuit 2	\bullet		10	k Ω
RINF	Resistance from CAn ($n=0,1,2$) to $V_{C C}$ or GND to Set CAn = Float	See Test Circuit 2	\bullet	2		$\mathrm{M} \Omega$
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage	Sink Current $=3 \mathrm{~mA}$	\bullet	0	0.4	V
t_{OF}	Output Fall Time	$\begin{aligned} & V_{0}=V_{\text {IH(MIIN) }} \text { to } V_{0}=V_{\text {IL(MAX }}, \\ & \left.C_{B}=10 \mathrm{pF} \text { to 400pF (Note } 9\right) \end{aligned}$	\bullet	$20+0.1 C_{B}$	250	ns
$\mathrm{t}_{\text {SP }}$	Pulse Width of Spikes Suppressed by Input Filter		\bullet	0	50	ns
$1{ }^{1 N}$	Input Leakage	$0.1 \mathrm{~V}_{\text {CC }} \leq \mathrm{V}_{\text {IN }} \leq 0.9 \mathrm{~V}_{\text {CC }}$	\bullet		1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	I/O Pin Capacitance		\bullet		10	pF
C_{B}	Capacitive Load for Each Bus Line		\bullet		400	pF
$\mathrm{C}_{\text {CAX }}$	External Capacitive Load on Address Pins $\operatorname{CAn}(n=0,1,2)$		\bullet		10	pF

LTC2606/LTC2616/LTC2626

ELECTRCRL CHARFCTERISTACS The e denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{REF}=4.096 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right), R E F=2.048 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right)$, $\mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted.

		CONDITIONS	LTC2626/LTC2626-1		LTC2616/LTC2616-1			LTC2606/LTC2606-1			UNITS
SYMBOL	PARAMETER		MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
AC Performance											
ts	Settling Time (Note 6)	$\begin{array}{\|l\|} \hline \pm 0.024 \% ~(\pm 1 \mathrm{LSB} \text { at } 12 \text { Bits) } \\ \pm 0.006 \% ~(\pm 1 \mathrm{LSB} \text { at } 14 \text { Bits) } \\ \pm 0.0015 \% \text { (} \pm 1 \mathrm{LSB} \text { at } 16 \text { Bits }) \\ \hline \end{array}$	7			$\begin{aligned} & 7 \\ & 9 \end{aligned}$			$\begin{gathered} 7 \\ 9 \\ 10 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
	Settling Time for 1LSB Step (Note 7)	$\begin{aligned} & \pm 0.024 \% \text { (} \pm 1 \mathrm{LSB} \text { at } 12 \text { Bits) } \\ & \pm 0.006 \% ~(\pm 1 \mathrm{LSB} \text { at } 14 \text { Bits) } \\ & \pm 0.0015 \% \text { (} \pm 1 \mathrm{LSB} \text { at } 16 \text { Bits }) \end{aligned}$	2.7			$\begin{aligned} & 2.7 \\ & 4.8 \end{aligned}$			$\begin{aligned} & 2.7 \\ & 4.8 \\ & 5.2 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
	Voltage Output Slew Rate		0.75			0.75			0.75		V/us
	Capacitive Load Driving		1000			1000			1000		pF
	Glitch Impulse	At Midscale Transition	12			12			12		$\mathrm{nV} \cdot \mathrm{s}$
	Multiplying Bandwidth		180			180			180		kHz
e_{n}	Output Voltage Noise Density	$\begin{aligned} & \text { At } f=1 \mathrm{kHz} \\ & \text { At } f=10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$			$\begin{aligned} & 120 \\ & 100 \end{aligned}$			$\begin{aligned} & 120 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Output Voltage Noise	0.1 Hz to 10 Hz	15			15			15		$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$

TIIIC CHARACTERIST|CS The • denotes specifications which apply over the full operating temperature

 range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (See Figure 1) (Notes 10, 11)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 5.5 V | | | | | | | |
| fSCL | SCL Clock Frequency | | \bullet | 0 | | 400 | kHz |
| thD(STA) | Hold Time (Repeated) Start Condition | | \bullet | 0.6 | | | $\mu \mathrm{S}$ |
| tow | Low Period of the SCL Clock Pin | | \bullet | 1.3 | | | US |
| $\mathrm{t}_{\text {HIGH }}$ | High Period of the SCL Clock Pin | | \bullet | 0.6 | | | US |
| tsu(STA) | Set-Up Time for a Repeated Start Condition | | \bullet | 0.6 | | | US |
| thD(DAT) | Data Hold Time | | \bullet | 0 | | 0.9 | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {SU(DAT }}$ | Data Set-Up Time | | \bullet | 100 | | | ns |
| tr_{r} | Rise Time of Both SDA and SCL Signals | (Note 9) | \bullet | $20+0.1 C_{B}$ | | 300 | ns |
| t_{f} | Fall Time of Both SDA and SCL Signals | (Note 9) | \bullet | $20+0.1 C_{B}$ | | 300 | ns |
| tisu(STO) | Set-Up Time for Stop Condition | | \bullet | 0.6 | | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {BUF }}$ | Bus Free Time Between a Stop and Start Condition | | \bullet | 1.3 | | | uS |
| t_{1} | Falling Edge of 9th Clock of the 3rd Input Byte to $\overline{\text { LDAC }}$ High or Low Transition | | \bullet | 400 | | | ns |
| t_{2} | $\overline{\text { LDAC Low Pulse Width }}$ | | \bullet | 20 | | | ns |

Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: Linearity and monotonicity are defined from code k_{L} to code $2^{N}-1$, where N is the resolution and k_{L} is given by $k_{L}=0.016\left(2^{N} / V_{R E F}\right)$, rounded to the nearest whole code. For $V_{\text {REF }}=4.096 \mathrm{~V}$ and $\mathrm{N}=16, \mathrm{k}_{\mathrm{L}}=$ 256 and linearity is defined from code 256 to code 65,535.
Note 3: Digital inputs at OV or V_{CC}.
Note 4: Guaranteed by design and not production tested.
Note 5: Inferred from measurement at code 256 (LTC2606/LTC2606-1), code 64 (LTC2616/LTC2616-1) or code 16 (LTC2626/LTC2626-1) and at full scale.

Note 6: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}$. DAC is stepped $1 / 4$ scale to $3 / 4$ scale and $3 / 4$ scale to $1 / 4$ scale. Load is 2 k in parallel with 200 pF to GND.
Note 7: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}$. DAC is stepped $\pm 1 \mathrm{LSB}$ between half scale and half scale -1 . Load is 2 k in parallel with 200pF to GND.
Note 8: Maximum $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}(\mathrm{mAX})}+0.5 \mathrm{~V}$
Note 9: $\mathrm{C}_{\mathrm{B}}=$ capacitance of one bus line in pF .
Note 10: All values refer to $\mathrm{V}_{\mathrm{IH}(\mathrm{MIN})}$ and $\mathrm{V}_{\mathrm{IL}(\mathrm{MAX})}$ levels.
Note 11: These specifications apply to LTC2606/LTC2606-1,
LTC2616/LTC2616-1, LTC2626/LTC2626-1.

TYPICAL PGRFORMANCE CHARACTGRISTICS

LTC2606

LTC2606/LTC2616/LTC2626

TYPICAL PGRFORMANCE CHARACTGRISTICS

LTC2616

2606 G09
LTC2626

2606 G10

Differential Nonlinearity (DNL)

Settling to \pm 1LSB

$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}$
1/4-SCALE TO $3 / 4$-SCALE STEP
$R_{L}=2 k, C_{L}=200 \mathrm{pF}$
AVERAGE OF 2048 EVENTS

Settling to ± 1 LSB

$V_{C C}=5 \mathrm{~V}, V_{\text {REF }}=4.096 \mathrm{~V}$
1/4-SCALE TO 3/4-SCALE STEP
$R_{L}=2 k, C_{L}=200 \mathrm{pF}$
AVERAGE OF 2048 EVENTS

TYPICAL PGRFORMANCE CHARACTERISTICS

LTC2606/LTC2616/LTC2626

LTC2606/LTC2616/LTC2626

TYPICAL PERFORMARCE CHARACTERISTICS

LTC2606/LTC2616/LTC2626

2606 G28

Power-On Reset to Midscale

$500 \mu \mathrm{~s} / \mathrm{DIV}$

TYPICAL PGRFORMANCE CHARACTERISTICS

LTC2606/LTC2616/LTC2626

Output Voltage Noise, 0.1 Hz to 10 Hz

Short-Circuit Output Current vs
$V_{\text {OUT }}$ (Sourcing)

LTC2606/LTC2616/LTC2626

PIn functions

CA2 (Pin 1): Chip Address Bit 2. Tie this pin to V_{CC}, GND or leave it floating to select an $\mathrm{I}^{2} \mathrm{C}$ slave address for the part (Table 1).
SDA (Pin 2): Serial Data Bidirectional Pin. Data is shifted into the SDA pin and acknowledged by the SDA pin. This pin is high impedance while data is shifted in. Open drain N-channel output during acknowledgment. SDA requires a pull-up resistor or current source to $V_{C C}$.
SCL (Pin 3): Serial Clock Input Pin. Data is shifted into the SDA pin at the rising edges of the clock. This high impedance pin requires a pull-up resistor or current source to $V_{C C}$.
CAO (Pin 4): Chip Address Bit 0. Tie this pin to $V_{C C}$, GND or leave it floating to select an $I^{2} \mathrm{C}$ slave address for the part (Table 1).
CA1 (Pin 5): Chip Address Bit 1. Tie this pin to V_{CC}, GND or leave it floating to select an $I^{2} \mathrm{C}$ slave address for the part (Table 1).

REF (Pin 6): Reference Voltage Input. $0 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{CC}}$.
$V_{\text {OUT }}$ (Pin 7): DAC Analog Voltage Output. The output range is 0 V to $\mathrm{V}_{\mathrm{REF}}$.
GND (Pin 8): Analog Ground.
$V_{C C}$ (Pin 9): Supply Voltage Input. $2.7 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$.
$\overline{\text { LDAC (Pin 10): Asynchronous DAC Update. A falling edge }}$ on this input after four bytes have been written into the part immediately updates the DAC register with the contents of the input register. A low on this input without a complete 32-bit (four bytes including the slave address) data write transfer to the part does not update the DAC output. Software power-down is disabled when $\overline{\mathrm{LDAC}}$ is low.
Exposed Pad (Pin 11): Ground. Must be soldered to PCB ground.

BLOCK DIAGRAM

TEST CIRCUITS

Test Circuit 1
Test Circuit 2

LTC2606/LTC2616/LTC2626

timing Dingrams

operation

Power-On Reset

The LTC2606/LTC2616/LTC2626 clear the outputs to zero scale when power is first applied, making system initialization consistent and repeatable. The LTC2606-1/ LTC2616-1/LTC2626-1 set the voltage outputs to midscale when power is first applied.

For some applications, downstream circuits are active during DAC power-up, and may be sensitive to nonzero outputs from the DAC during this time. The LTC2606/ LTC2616/LTC2626 contain circuitry to reduce the poweron glitch; furthermore, the glitch amplitude can be made arbitrarily small by reducing the ramp rate of the power supply. For example, if the power supply is ramped to 5 V in 1 ms , the analog outputs rise less than 10 mV above ground (typ) during power-on. See Power-On Reset Glitch in the Typical Performance Characteristics section.

Power Supply Sequencing

The voltage at REF (Pin 6) should be kept within the range $-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq \mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$ (see Absolute Maximum Ratings). Particular care should be taken to observe these limits during power supply turn-on and turn-offsequences, when the voltage at $\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 9)$ is in transition.

Transfer Function

The digital-to-analog transfer function is:

$$
V_{0 U T(I D E A L)}=\left(\frac{k}{2^{N}}\right) V_{\mathrm{REF}}
$$

where k is the decimal equivalent of the binary DAC input code, N is the resolution and $\mathrm{V}_{\text {REF }}$ is the voltage at REF (Pin 6).

Serial Digital Interface

The LTC2606/LTC2616/LTC2626 communicate with a host using the standard 2 -wire ${ }^{2} \mathrm{C}$ interface. The Timing Diagrams (Figures 1 and 2) show the timing relationship of the signals on the bus. The two bus lines, SDA and SCL, must be high when the bus is not in use. External pull-up resistors or current sources are required on these lines. The value of these pull-up resistors is dependent on the
power supply and can be obtained from the $I^{2} \mathrm{C}$ specifications. For an $I^{2} \mathrm{C}$ bus operating in the fast mode, an active pull-up will be necessary if the bus capacitance is greater than 200pF.
The LTC2606/LTC2616/LTC2626 are receive-only (slave) devices. The master can write to the LTC2606/LTC2616/ LTC2626. The LTC2606/LTC2616/LTC2626 do not respond to a read from the master.

The START (S) and STOP (P) Conditions

When the bus is not in use, both SCL and SDA must be high. A bus master signals the beginning of a communication to a slave device by transmitting a START condition. A START condition is generated by transitioning SDA from high to low while SCL is high.
When the master has finished communicating with the slave, it issues a STOP condition. A STOP condition is generated by transitioning SDA from low to high while SCL is high. The bus is then free for communication with another $I^{2} \mathrm{C}$ device.

Acknowledge

The Acknowledge signal is used for handshaking between the master and the slave. An Acknowledge (active LOW) generated by the slave lets the master know that the latest byte of information was received. The Acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the Acknowledge clock pulse. The slave-receiver must pull down the SDA bus line during the Acknowledge clock pulse so that it remains a stable LOW during the HIGH period of this clock pulse. The LTC2606/LTC2616/LTC2626 respond to a write by a master in this manner. The LTC2606/LTC2616/ LTC2626 do not acknowledge a read (retains SDA HIGH during the period of the Acknowledge clock pulse).

Chip Address

The state of CA0, CA1 and CA2 decides the slave address of the part. The pins CA0, CA1 and CA2 can be each set to any one of three states: V_{CC}, GND or float. This results in 27 selectable addresses for the part. The slave address assignments are shown in Table 1.

LTC2606/LTC2616/LTC2626

operation

Table 1. Slave Address Map

CA2	CA1	CAO	A6	A5	A4	A3	A2	A1	A0
GND	GND	GND	0	0	1	0	0	0	0
GND	GND	FLOAT	0	0	1	0	0	0	1
GND	GND	$V_{C C}$	0	0	1	0	0	1	0
GND	FLOAT	GND	0	0	1	0	0	1	1
GND	FLOAT	FLOAT	0	1	0	0	0	0	0
GND	FLOAT	$V_{C C}$	0	1	0	0	0	0	1
GND	$V_{C C}$	GND	0	1	0	0	0	1	0
GND	$V_{C C}$	FLOAT	0	1	0	0	0	1	1
GND	$V_{C C}$	$V_{C C}$	0	1	1	0	0	0	0
FLOAT	GND	GND	0	1	1	0	0	0	1
FLOAT	GND	FLOAT	0	1	1	0	0	1	0
FLOAT	GND	$V_{C C}$	0	1	1	0	0	1	1
FLOAT	FLOAT	GND	1	0	0	0	0	0	0
FLOAT	FLOAT	FLOAT	1	0	0	0	0	0	1
FLOAT	FLOAT	$V_{C C}$	1	0	0	0	0	1	0
FLOAT	$V_{C C}$	GND	1	0	0	0	0	1	1
FLOAT	$V_{C C}$	FLOAT	1	0	1	0	0	0	0
FLOAT	$V_{C C}$	$V_{C C}$	1	0	1	0	0	0	1
$V_{C C}$	GND	GND	1	0	1	0	0	1	0
$V_{C C}$	GND	FLOAT	1	0	1	0	0	1	1
$V_{C C}$	GND	$V_{C C}$	1	1	0	0	0	0	0
$V_{C C}$	FLOAT	GND	1	1	0	0	0	0	1
$V_{C C}$	FLOAT	FLOAT	1	1	0	0	0	1	0
$V_{C C}$	FLOAT	$V_{C C}$	1	1	0	0	0	1	1
$V_{C C}$	$V_{C C}$	GND	1	1	1	0	0	0	0
$V_{C C}$	$V_{C C}$	FLOAT	1	1	1	0	0	0	1
$V_{C C}$	$V_{C C}$	$V_{C C}$	1	1	1	0	0	1	0
GLOBALADDRESS	1	1	1	0	0	1	1		
				1					

In addition to the address selected by the address pins, the parts also respond to a global address. This address allows a common write to all LTC2606, LTC2616 and LTC2626 parts to be accomplished with one 3-byte write transaction on the $I^{2} \mathrm{C}$ bus. The global address is a 7 -bit on-chip hardwired address and is not selectable by CAO, CA1 and CA2.
The addresses corresponding to the states of CAO, CA1 and CA2 and the global address are shown in Table 1. The maximum capacitive load allowed on the address pins (CAO, CA1 and CA2) is 10 pF , as these pins are driven during address detection to determine if they are floating.

Write Word Protocol

The master initiates communication with the LTC2606/ LTC2616/LTC2626 with a START condition and a7-bitslave address followed by the Write bit $(W)=0$. The LTC2606/ LTC2616/LTC2626 acknowledges by pulling the SDA pin low at the 9th clock if the 7 -bit slave address matches the address of the parts (set by CAO, CA1 and CA2) or the global address. The master thentransmits three bytes of data. The LTC2606/LTC2616/LTC2626 acknowledges each byte of data by pulling the SDA line low at the 9th clock of each data byte transmission. After receiving three complete bytes of data, the LTC2606/LTC2616/LTC2626 executes the command specified in the 24-bit input word.
If more than three data bytes are transmitted after a valid 7-bit slave address, the LTC2606/LTC2616/LTC2626 do not acknowledge the extra bytes of data (SDA is high during the 9th clock).
The format of the three data bytes is shown in Figure 3. The first byte of the input word consists of the 4-bit command and four don't care bits. The next two bytes consist of the 16 -bit data word. The 16 -bit data word consists of the 16-, 14- or 12-bit input code, MSB to LSB, followed by 0 , 2 or 4 don't care bits (LTC2606, LTC2616 and LTC2626 respectively). Atypical LTC2606 write transaction is shown in Figure 4.
The command assignments (C3-CO) are shown in Table 2. The first four commands in the table consist of write and update operations. A write operation loads a 16 -bit data word from the 32 -bit shift register into the input register. In an update operation, the data word is copied from the input register to the DAC register and converted to an analog voltage at the DAC output. The update operation also powers up the DAC ifithad been in power-down mode. The data path and registers are shown in the Block Diagram.

Power-Down Mode

For power-constrained applications, power-down mode can be used to reduce the supply current whenever the DAC output is not needed. When in power-down, the buffer amplifier, bias circuit and reference input is disabled and draws essentially zero current. The DAC output is put into

OPERATION

Write Word Protocol for LTC2606/LTC2616/LTC1626

Figure 3

Table 2

COMMAND*				
C3	C2	C1	C0	
0	0	0	0	Write to Input Register
0	0	0	1	Update (Power Up) DAC Register
0	0	1	1	Write to and Update (Power Up)
0	1	0	0	Power Down
1	1	1	1	No Operation
${ }^{*}$ Command codes not shown are reserved and should not be used.				

a high impedance state, and the output pin is passively pulled to ground through 90k resistors. Input- and DACregister contents are not disturbed during power-down.
The DAC channel can be put into power-down mode by using command 0100_{b}. The 16-bit data word is ignored. The supply and reference currents are reduced to almost zero when the DAC is powered down; the effective resistance at REF becomes a high impedance input (typically > 1G Ω).
Normal operation can be resumed by executing any command which includes a DAC update, as shown in Table 2 or performing an asychronous update (LDAC) as described in the next section. The DAC is powered up as its voltage output is updated. When the DAC in powereddown state is powered up and updated, normal settling is delayed. The main bias generation circuit block has been
automatically shut down in addition to the DAC amplifier and reference input and so the power up delay time is

$$
12 \mu \mathrm{~S}\left(\text { for } V_{C C}=5 \mathrm{~V}\right) \text { or } 30 \mu \mathrm{~S}\left(\text { for } V_{C C}=3 \mathrm{~V}\right)
$$

Asynchronous DAC Update Using LDAC

In addition to the update commands shown in Table 2, the LDAC pin asynchronously updates the DAC register with the contents of the input register. Asynchronous update is disabled when the input word is being clocked into the part.
If a complete input word has been written to the part, a low on the LDAC pin causes the DAC register to be updated with the contents of the input register.

If the input word is being written to the part, a low going pulse on the LDAC pin before the completion of three bytes of data powers up the DAC but does not cause the output to be updated. If $\overline{\text { LDAC }}$ remains low after a complete input word has been written to the part, then LDAC is recognized, the command specified in the 24-bit word just transferred is executed and the DAC output is updated.
The DAC is powered up when $\overline{\mathrm{LDAC}}$ is taken low, independent of any activity on the $\mathrm{I}^{2} \mathrm{C}$ bus.
If $\overline{\mathrm{LDAC}}$ is low at the falling edge of the 9th clock of the 3rd byte of data, it inhibits any software power-down command that was specified in the input word.

LTC2606/LTC2616/LTC2626

OPERATION

Voltage Output

The rail-to-rail amplifier has guaranteed Ioad regulation when sourcing or sinking up to 15 mA at $5 \mathrm{~V}(7.5 \mathrm{~mA}$ at 3 V$)$.
Load regulation is a measure of the amplifier's ability to maintain the rated voltage accuracy over a wide range of load conditions. The measured change in output voltage per milliampere of forced load current change is expressed in LSB/mA.
DC output impedance is equivalent to load regulation, and may be derived from it by simply calculating a change in units from LSB/mA to Ohms. The amplifiers' DC output impedance is 0.050Ω when driving a load well away from the rails.
When drawing a load current from either rail, the output voltage headroom with respect to that rail is limited by the 25Ω typical channel resistance of the output devices; e.g., when sinking 1 mA , the minimum output voltage $=$ $25 \Omega \cdot 1 \mathrm{~mA}=25 \mathrm{mV}$. See the graph Headroom at Rails vs Output Current in the Typical Performance Characteristics section.

The amplifier is stable driving capacitive loads of up to 1000 pF .

Board Layout

The excellent load regulation performance is achieved in part by keeping "signal" and "power" grounds separated internally and by reducing shared internal resistance.
The GND pin functions both as the node to which the reference and output voltages are referred and as a return path for power currents in the device. Because of this, careful thought should be given to the grounding scheme and board layout in order to ensure rated performance.

The PC board should have separate areas for the analog and digital sections of the circuit. This keeps digital signals away
from sensitive analog signals and facilitates the use of separate digital and analog ground planes which have minimal capacitive and resistive interaction with each other.
Digital and analog ground planes should be joined at only one point, establishing a system star ground as close to the device's ground pin as possible. Ideally, the analog ground plane should be located on the component side of the board, and should be allowed to run under the part to shield it from noise. Analog ground should be a continuous and uninterrupted plane, except for necessary lead pads and vias, with signal traces on another layer.
The GND pin of the part should be connected to analog ground. Resistance from the GND pinto system star ground should be as low as possible. Resistance here will add directly to the effective DC output impedance of the device (typically 0.050Ω). Note that the LTC2606/LTC2616/ LTC2626 are no more susceptible to these effects than other parts of theirtype; on the contrary, they allow layout-based performance improvements to shine rather than limiting attainable performance with excessive internal resistance.

Rail-to-Rail Output Considerations

In any rail-to-rail voltage output device, the output is limited to voltages within the supply range.

Since the analog output of the device cannot go below ground, it may limit for the lowest codes as shown in Figure 5b. Similarly, limiting can occur near full scale when the REF pin is tied to V_{CC}. If $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}$ and the DAC full-scale error (FSE) is positive, the output for the highest codes limits at $\mathrm{V}_{C C}$ as shown in Figure 5c. No full-scale limiting can occur if $\mathrm{V}_{\text {REF }}$ is less than $\mathrm{V}_{C C}-\mathrm{FSE}$.
Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur.
SLAVE ADDRESS

Figure 4. Typical LTC2606 Input Waveform—Programming DAC Output for Full Scale

LTC2606/LTC2616/LTC2626

OPERATION

PACKAGE DESCRIPTION

DD Package
10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

LTC2606/LTC2616/LTC2626

TYPICAL APPLICATION
Demo Circuit Schematic. Onboard 20-Bit ADC Measures Key Performance Parameters

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1458/LTC1458L	Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality	LTC1458: $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 4.096 V LTC1458L: $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to 2.5 V
LTC1654	Dual 14-Bit Rail-to-Rail V Out $^{\text {DAC }}$	Programmable Speed/Power, 3.5 $/$ s/750 $\mu \mathrm{A}, 8 \mu \mathrm{~s} / 450 \mu \mathrm{~A}$
LTC1655/LTC1655L	Single 16-Bit $\mathrm{V}_{\text {0ut }}$ DACs with Serial Interface in S0-8	$\mathrm{V}_{C C}=5 \mathrm{~V}(3 \mathrm{~V})$, Low Power, Deglitched
LTC1657/LTC1657L	Parallel 5V/3V 16-Bit V ${ }_{\text {OUT }}$ DACs	Low Power, Deglitched, Rail-to-Rail $\mathrm{V}_{\text {OUT }}$
LTC1660/LTC1665	Octal 10/8-Bit V ${ }_{\text {Out }}$ DACs in 16-Pin Narrow SSOP	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 5.5V, Micropower, Rail-to-Rail Output
LTC1821	Parallel 16-Bit Voltage Output DAC	Precision 16-Bit Settling in $2 \mu \mathrm{~s}$ for 10V Step
LTC2600/LTC2610 LTC2620	Octal 16-/14-/12-Bit V OUT DACs in 16-Lead SSOP	250 A per DAC, 2.5 V to 5.5 V Supply Range, Rail-to-Rail Output, SPI Serial Interface
$\begin{aligned} & \text { LTC2601/LTC2611 } \\ & \text { LTC2621 } \end{aligned}$	Single 16-/14-/12-Bit $\mathrm{V}_{\text {OUT }}$ DACs in 10-Lead DFN	250 $\mu \mathrm{A}$ per DAC, 2.5 V to 5.5 V Supply Range, Rail-to-Rail Output, SPI Serial Interface
LTC2602/LTC2612 LTC2622	Dual 16-/14-/12-Bit V ${ }_{\text {Out }}$ DACs in 8-Lead MSOP	$300 \mu \mathrm{~A}$ per DAC, 2.5 V to 5.5 V Supply Range, Rail-to-Rail Output, SPI Serial Interface
$\begin{aligned} & \text { LTC2604/LTC2614 } \\ & \text { LTC2624 } \end{aligned}$	Quad 16-/14-/12-Bit V ${ }_{\text {OUT }}$ DACs in 16-Lead SSOP	250 $\mu \mathrm{A}$ per DAC, 2.5 V to 5.5 V Supply Range, Rail-to-Rail Output, SPI Serial Interface

