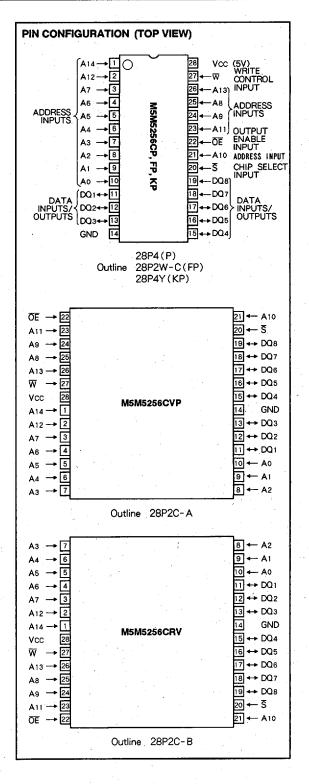
262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

DESCRIPTION

This M5M5256CP, FP, KP, VP, RV is a 262144-bit CMOS static RAMs organized as 32768-words by 8-bits which is fabricated using high-performance 3 polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery result in a high-density and low-power static RAM. Stand-by current is small enough for battery back-up application. It is ideal for the memory systems which require simple interface.

Especially the M5M5256CVP, RV are packaged in a 28-pin thin small outline package. Two types of devices are available, M5M5256CVP (normal lead bend type package) and M5M5256CRV (reverse lead bend type package). Using both type of devices, it becomes very easy to design a printed circuit board.


FEATURES

,		Power supply currer			
Type name	Access time (max)	Active (max)	Stand-by (max)		
M5M5256CP, FP, KP, VP, RV-55LL M5M5256CP, FP, KP, VP, RV-70LL	55ns 70ns	60mA (۷α=5. 5۷)	20 μ A (Vcc = 5.5V)		
M5M5256CP, FP, KP, VP, RV-55XL M5M5256CP, FP, KP, VP, RV-70XL	55ns 70ns		5 μ A (Vcc = 5.5V) 0.05 μA (Vcc = 3V, typ)		

- Single + 5V power supply
- No clocks, no refresh
- Data-hold on + 2V power supply
- Directly TTL compatible: All inputs and outputs
- Three-state outputs : OR-tie capability
- Simple memory expansion by S̄
- OE prevents data contention in the I/O bus
- Common data I/O
- Low stand-by current 0.05 µ A (typ)

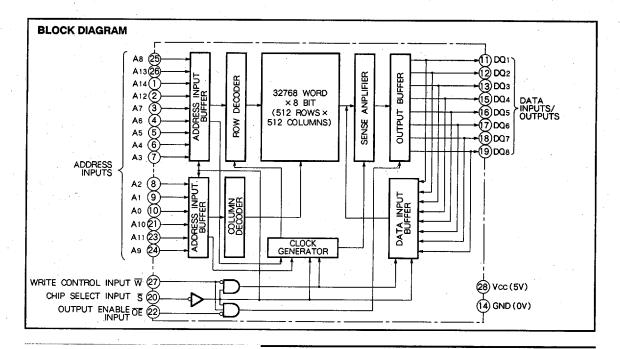
APPLICATION

Small capacity memory units

262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

FUNCTION

The operation mode of the M5M5256CP, FP, KP, VP, RV is determined by a combination of the device control inputs S, \overline{W} and \overline{OE} . Each mode is summariezed in the function table.


A write cycle is executed whenever the low level \overline{W} overlaps with the low level \overline{S} . The address must be set-up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of \overline{W} , \overline{S} , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high-level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting \overline{W} at a high level and \overline{OE} at a low level while \overline{S} are in an active state.

When setting S at a high level, the chip is in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by S. The power supply current is reduced as low as the stand-by current which is specified as locs or loc4, and the memory data can be held +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

\$	W	ŌĒ	Mode	DQ	lcc
Н	Х	Х	Non selection	High-impedance	Stand-by
L	L	Х	Write	Din	Active
L	Τ	L	Read	Dout	Active
L	Η	Н		High-impedance	Active

262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		- 0.3~7	V
Vı	Input voltage	With respect to GND	- 0.3*~Vcc + 0.3	٧
Vo	Output voltage	1	0~Vcc	٧
Pd	Power dissipation	Ta = 25 ℃	700	mW
Topr	Operating temperature		0~70	℃
Tstg	Storage temperature		- 65~150	Ç

^{* - 3.0}V in case of AC(Pulse width ≤ 30ns)

DC ELECTRICAL CHARACTERISTICS (Ta = 0~70 °C, Vcc = 5V ± 10 %, unless otherwise noted)

O b. ad	D	_		Limits			
Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
ViH	High-level input voltage			2.2		Vcc+0. 3	٧
VIL .	Low-level input voltage			- 0.3*		0.8	V
Voнi	High-level output voltage 1	lон = 1mA		2.4			٧
Vон2	High-level output voltage 2	Iон = - 0.1mA		Vcc-0. 5			٧
Vol.	Low-level output voltage	lot = 2mA				0.4	V
h	Input leakage current	VL = 0~Vcc				± 1	μΑ
lo	Output leakage current	$\overline{S} = V_{IH}$ or $\overline{OE} = V_{IH}$, $V_{I/O} = 0 \sim V_{CC}$				± 1	μA
loci	Active supply current (AC MOS level)	$S \le 0.2V$ Other inputs $\le 0.2V$ or $\ge Vcc - 0.2V$	55ns		35	55	mA
	(AC, MOS level)	Output open Min.cycle	70ns		-30	50	•
lcc2	Active supply current (AC, TTL level)	S = V _{IL} Other inputs = V _{IH} or V _{IL}	55ns		40	60	mA
	Output open Min.cycle	70ns		35	55		
	Canada harananananan	\$ ≥ Vcc - 0.2V,	-LL			20	μА
lcc3	Stand-by supply current	Other inputs = 0~Vcc -XL			0.1	. 5	μА
lcc4	Stand-by supply current	$\overline{S} = V_{IH}$, Other inputs = $0 \sim V_{C}$	c	1		3	mA

^{* - 3.0}V in case of AC(Pulse width 30ns)

CAPACITANCE (Ta = 0~70 ℃, Vcc = 5V ± 10 %, unless otherwise noted)

Combat	Symbol Parameter Test conditions		Limits			Unit
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit
Cı	Input capacitance (Ta = 25 ℃)	Vi = GND, Vi = 25mVrms, f = 1MHz			6	ρF
Co	Output capacitance (Ta = 25 ℃)	Vo = GND, Vo = 25mVrms, f = 1MHz			8	ρF

Note 1. Direction for current flowing into IC is indicated as positive.(no mark)

^{2.} Typical value is Vcc = 5V, Ta = 25 °C.
3. Cl. Co are periodically sampled and are not 100 % tested.

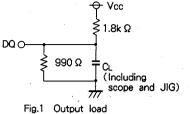
262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70 \, \text{C}$, Vcc = $5 \text{V} \pm 10 \, \text{M}$, unless otherwise noted)

(1) MEASUREMENT CONDITONS

input pulse level······VIH = 2.4V, $V_{IL} = 0.6V$

Input rise and fall time5ns


Reference level······VoH = VoL = 1.5V

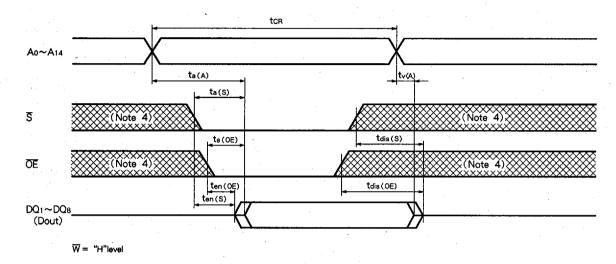
Transition is measured ± 500mV from steady

state voltage.(for ten, tdis)

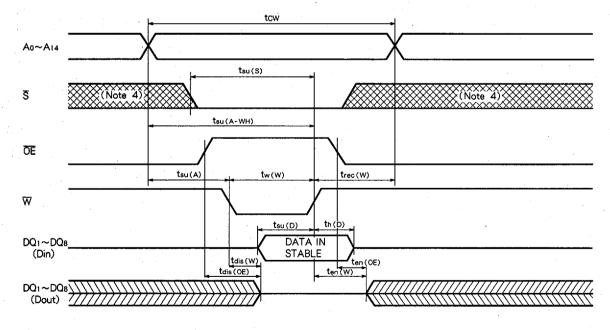
Output loads·····Fig.1. CL = 50pF

CL = 5pF(for ten, tdis)

(2) READ CYCLE

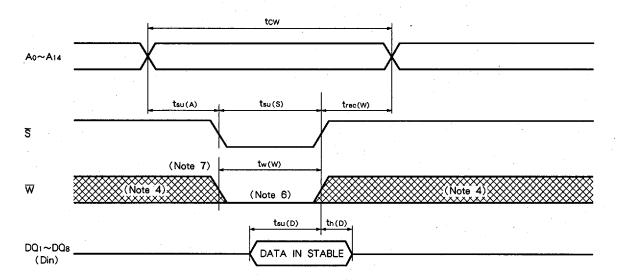

			Limits						
Symbol	Parameter		5256C- 5256C-			5256C- 5256C-		Unit	
		Min	Тур	Max	Min	Тур	Max		
tcr	Read cycle time	55			70			ns	
ta(A)	Address access time			55			70	ns	
ta(S)	Chip select access time			55			70	ns	
ta(OE)	Output enable access time			30			35	ns	
tdis(S)	Output disable time after \$\overline{S}\$ high		,	20			25	ns	
tdis(OE)	Output disable time after OE high			20			25	ns	
ten(S)	Output enable time after \$\overline{5}\$ low	5			5			ns .	
ten (OE)	Output enable time after OE low	5			5			ns	
tv(A)	Data valid time after address	10			10			ns	

(3) WRITE CYCLE


,			Limits					
Symbol	Parameter	1	5256C- 5256C-			256C- 256C-		Unit
		Min	Тур	Max	Min	Тур	Max	
tcw	Write cycle time	55			70			ns
tw(W)	Write pulse width	45			55			ns
tsu(A)	Address set up time	0			0			ns
tsu(A-WH)	Address set up time with respect to W high	- 50			65			ns
tsu(S)	Chip select set up time	50			65			ns
tsu(D)	Data set up time	25			30			ns.
th(D)	Data hold time	0			0			ns
trec(W)	Write recovery time	0			0			ns
tdis(W)	Output disable time after W low			20			- 25	ns
tdis(OE)	Output disable time after OE high	1		20			25	ns
ten(W)	Output enable time after W high	5			5			ns
ten(OE)	Output enable time after OE low	5			5			ns

262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

(4) TIMING DIAGRAMS Read Cycle



Write cycle (W control mode)

262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

Write cycle (S control mode)

Note 4. Hatching indicates the state is don't care.

- 5. Writing is executed in overlap of \$\overlap\$ and \$\overlap\$ low.
- 6. If \overline{W} goes low simultaneously with or prior to \overline{S} , the output remains in the high-impedance state.
- 7. Don't apply inverted phase signal externally when DQ pin is in output mode.
- 8. ten, tdis are periodically sampled and are not 100% tested.

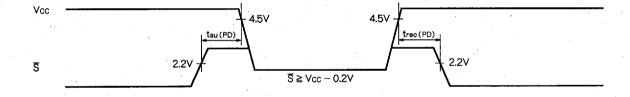
6249825 0027811 015

262144-BIT(32768-WORD BY 8-BIT)CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70 \, \text{°C}$, $V_{CC} = 5 \text{V} \pm 10 \, \text{%}$, unless otherwise noted)

Cll	D	Took conditions	Total conditions				Unit
Symbol Parameter Te		Test conditions	at conditions		Тур	Max	Unit
Vcc(PD)	Power down supply voltage			2			V
V	Ohio adast issue C	2.2V ≤ Vcc(PD)		2.2			· · · · · · · · · · · · · · · · · · ·
Vı(§)	Chip select input S	2V ≤ Vcc(PD) ≤ 2.2V			Vcc (PD)		ν .
1	B	Vcc = 3V	-LL			10*	μА
Icc(PD) Power	Power down supply current	Other inputs = 3V	-XL		0.05	2**	μА


^{*} Ta = 25°C, ICC(PD) = 1 µ A

(2) TIMING REQUIREMENTS (Ta = $0 \sim 70 \,^{\circ}\text{C}$, $Vcc = 5V \pm 10 \,^{\circ}\text{M}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
		lest conditions	Min	Тур	Max	Onit
tsu(PD)	Power down set up time	•	0	·		ns
trec(PD)	Power down recovery time		tcR			ns

(3) POWER COWN CHARACTERISTICS

S control mode

^{* *} Ta = 25°C, ICC (PD) = 0.2 µ A

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com