RELIABILITY REPORT

FOR

MAX6816EUS

PLASTIC ENCAPSULATED DEVICES

February 28, 2003

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by

Jim Pedicord
Quality Assurance
Reliability Lab Manager

Reviewed by

Bryan J. Preeshl
Quality Assurance
Executive Director

Conclusion

The MAX6816 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
 II.Manufacturing Information
 III.Packaging Information
 IV.Die Information

V.Quality Assurance Information
 VI.Reliability Evaluation

......Attachments

I. Device Description

A. General

The MAX6816 is a single switch debouncers that provide clean interfacing of mechanical switches to digital systems. It accepts one or more bouncing inputs from a mechanical switch and produce a clean digital output after a short, preset qualification delay. Both the switch opening bounce and the switch closing bounce are removed. Robust switch inputs handle $\pm 25 \mathrm{~V}$ levels and are $\pm 15 \mathrm{kV}$ ESD-protected for use in harsh industrial environments. It features a single-supply operation from +2.7 V to +5.5 V . Undervoltage lockout circuitry ensures the output is in the correct state upon power-up.

The single MAX6816 is offered in a SOT package and requirea no external components. It's low supply current makes it ideal for use in portable equipment.
B. Absolute Maximum Ratings

Item	Rating
Voltage (with respect to GND)	
VCC	-0.3 V to +6V
IN_ (Switch Inputs)	-30 V to +30 V
EN	-0.3V to +6V
OUT_, CH	-0.3 V to (VCC + 0.3V)
OUT Short-Circuit Duration (One or Two Outputs to GND)	Continuous
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec)	$+300^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$)	
4-Pin SOT143	320 mW
Derates above $+70^{\circ} \mathrm{C}$	
4-Pin SOT143	$4.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

II. Manufacturing Information

A. Description/Function:
B. Process:
C. Number of Device Transistors:
D. Fabrication Location:
E. Assembly Location:
F. Date of Initial Production:
$\pm 15 \mathrm{kV}$ ESD-Protected, Single CMOS Switch Debouncers
S3 (Standard 3 micron silicon gate CMOS) 284

Oregon, USA
Malaysia or Thailand
January, 1999

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:

4-Pin SOT143

Alloy 42 or Copper
Solder Plate
Silver-Filled Epoxy
Gold (1.0 mil dia.)
Epoxy with silica filler
\# 05-1601-0055
Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions:
43×30 mils
B. Passivation:
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
C. Interconnect:
Aluminum/Si $(\mathrm{Si}=1 \%)$
D. Backside Metallization:
None
E. Minimum Metal Width: 3 microns (as drawn)
F. Minimum Metal Spacing: 3 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: $\quad \mathrm{SiO}_{2}$
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager) Bryan Preeshl (Executive Director) Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).
B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD $=20$ or less before shipment as standard product. Additionally, the industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ testing is done per generic device/package family once a quarter.
C. E.S.D. and Latch-Up Testing

The MS22 die type has been found to have all pins able to withstand a transient pulse of ± 2500 V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 250 \mathrm{~mA}$ and/or $\pm 20 \mathrm{~V}$.

Table 1
Reliability Evaluation Test Results
MAX6816EUS

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test (Note 1)					
	$\mathrm{Ta}=135^{\circ} \mathrm{C}$	DC Parameters		80	0
	Biased	\& functionality			
	Time $=192 \mathrm{hrs}$.				
Moisture Testing (Note 2)					
Pressure Pot	$\mathrm{Ta}=121^{\circ} \mathrm{C}$	DC Parameters \& functionality	SOT143	77	0
	$\mathrm{P}=15 \mathrm{psi}$.				
	$\mathrm{RH}=100 \%$				
	Time $=96 \mathrm{hrs}$.				
85/85	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	DC Parameters \& functionality		77	0
	$\mathrm{RH}=85 \%$				
	Biased				
	Time $=1000 \mathrm{hrs}$.				

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77	0
Cycle	1000 Cycles			

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic package/process data.

Attachment \#1

TABLE II. Pin combination to be tested. 1/2/

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except $\mathrm{V}_{\mathrm{PS} 1} \underline{3 /}$	All $\mathrm{V}_{\mathrm{PS} 1}$ pins
2.	All input and output pins	All other input-output pins

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $\mathrm{V}_{S S 1}$, or $\mathrm{V}_{S S 2}$ or $\mathrm{V}_{S S 3}$ or $\mathrm{V}_{\mathrm{CC} 1}$, or $\mathrm{V}_{\mathrm{CC} 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D
Method 3015.7
Notice 8

PKG.CDIE: $\mathrm{U} 4-1$		APPRLVALS	DATE	/VI/XI/VI	
CAV./PAD SIIE:	PKG.			BUILDSHEET NUMBER:	REV:
45×32	DESIGN			05-1601-0055	A

