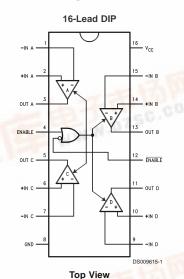
查询DS26F32M供应商

National Semiconductor

DS26F32M Quad Differential Line Receivers

General Description

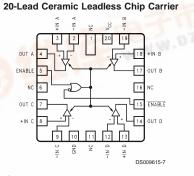

The DS26F32 is a guad differential line receiver designed to meet the requirements of EIA Standards RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The DS26F32 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F32 features lower power, extended temperature range, and improved specifications.

The device features an input sensitivity of 200 mV over the input common mode range of ±7.0V. The DS26F32 provides an enable function common to all four receivers and TRI-STATE ® outputs with 8.0 mA sink capability. Also, a fail-safe input/output relationship keeps the outputs high when the inputs are open.

The DS26F32 offers optimum performance when used with the DS26F31 Quad Differential Line Driver.

Connection Diagrams



See NS Package Number J16A For Complete Military Product Specifications, refer to the appropriate SMD or MDS. Order Number DS26F32ME/883, DS26F32MJ/883 or DS26F32MW/883 See NS Package Number E20A, J16A or W16A

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Features

- Military temperature range
- Input voltage range of ±7.0V (differential or common mode) ±0.2V sensitivity over the input voltage range
- Meets all the requirements of EIA standards RS-422 and RS-423
- High input impedance (18k typical)
- 30 mV input hysteresis
- Operation from single +5.0V supply
- Input pull-down resistor prevents output oscillation on unused channels
- TRI-STATE outputs, with choice of complementary enables, for receiving directly onto a data bus
- Propagation delay 15 ns typical

Function Table

Differential Inputs	Enables		Outputs	
$V_{ID} = (V_{IN}+) - (V_{IN}-)$	Е	Ē	OUT	
V _{ID} ≥ 0.2V	Н	Х	Н	
	Х	L	н	
$V_{ID} \leq -0.2V$	Н	Х	L	
	X	L	L	
Х	L	Н	Z	

www.national.com

H = High Level = Low Level

X = Immaterial

© 1999 National Semiconductor Corporation DS009615 May 1999

dzsc.con

Absolute Maximum Ratings (Note 2)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	
Ceramic DIP	–65°C + to 175°C
Operating Temperature Range	
DS26F32M	–55°C to +125°C
DS26F32C	0°C to +70°C
Lead Temperature	
Ceramic DIP (soldering, 60	
sec)	300°C
Maximum Power Dissipation (Note 1) at 2	25°C

Cavity Package	1500 mW
Supply Voltage	7.0V
Common Mode Voltage Range	±25V
Differential Input Voltage	±25V
Enable Voltage	7.0V
Output Sink Current	50 mA

Operating Range

DS26F32M	
Temperature	–55°C to +125°C
Supply Voltage	4.5V to 5.5V
Note 1: Derate cavity package 10 mW/°C above 25°C	С.

Electrical Characteristics (Notes 3, 4)

Over operating range, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{TH}	Differential Input Voltage	e $-7.0V \le V_{CM} \le +7.0V,$ V _O = V _{OL} or V _{OH}		-0.2	±0.06	+0.2	V
R _I	Input Resistance	$-15V \le V_{CM} \le +15V$, One Input AC Ground		14	18		kΩ
I _I	Input Current (under Test) $V_{\perp} = +15V$,					2.3	
,		Other Input $-15V \le V_1 \le +15V$					mA
		$V_{1} = -15V,$				-2.8	
		Other Input –15V ≤	≤ V _I ≤ +15V				
V _{OH} Output Voltage HIGH	Output Voltage HIGH	V _{CC} = Min,	0°C to +70°C	2.8	3.4		
		$\Delta V_{I} = +1.0V,$					V
		$V_{ENABLE} = 0.8V,$	-55°C to +125°C	2.5	3.4		
		I _{OH} = -440 μA					
V _{OL}	Output Voltage LOW	V _{CC} = Min,	I _{OL} = 4.0 mA			0.4	
		$\Delta V_{I} = -1.0 V,$	I _{OL} = 8.0 mA			0.45	V
		$V_{ENABLE} = 0.8V$					
VIL	Enable Voltage LOW					0.8	V
VIH	Enable Voltage HIGH			2.0			V
V _{IC}	Enable Clamp Voltage	$V_{CC} = Min, I_I = -1$	$V_{CC} = Min, I_1 = -18 mA$			-1.5	V
l _{oz}	Off State (High Impedance)	V _{CC} = Max	V _O = 2.4V			20	μA
	Output Current		$V_{\rm O} = 0.4 V$			-20	1
I _{IL}	Enable Current LOW	$V_1 = 0.4V$			-0.2	-0.36	mA
I _{IH}	Enable Current HIGH	V ₁ = 2.7V			0.5	10	μA
l _i	Enable Input High Current	V ₁ = 5.5V			1.0	50	μA
l _{os}	Output Short Circuit Current	$V_{O} = 0V, V_{CC} = Max, (Note 5)$ $\Delta V_{I} = +1.0V$		-15	-50	-85	mA
I _{cc}	Supply Current	V _{CC} = Max, All V _I	$V_{CC} = Max$, All $V_I = GND$,		30	50	mA
		Outputs Disabled					
V _{HYST}	Input Hysteresis	T _A = 25°C, V _{CC} =	$T_{A} = 25^{\circ}C, V_{CC} = 5.0V, V_{CM} = 0V$		30		mV

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 3: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS26F32M and across the 0°C to $+70^{\circ}$ C range for the DS26F32C. All typicals are given for V _{CC} = 5V and T_A = 25^{\circ}C.

Note 4: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are reference to ground unless otherwise specified. Note 5: Only one output at a time should be shorted.

Switching Characteristics V _{CC} = 5.0V, T _A = 25°C								
Symbol	Parameter	Conditions		Min	Тур	Max	Units	
t _{PLH}	Input to Output	(Figures 2, 3)	C _L = 15 pF		15	22	ns	
t _{PHL}	Input to Output				15	22	ns	
t _{LZ}	Enable to Output		C _L = 5 pF		14	18	ns	
t _{HZ}	Enable to Output	(Figures 2, 4)			15	20	ns	
t _{ZL}	Enable to Output		C _L = 15 pF		13	18	ns	
t _{ZH}	Enable to Output				12	16	ns	

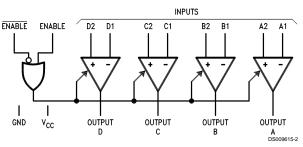


FIGURE 1. Logic Symbol

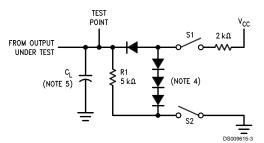
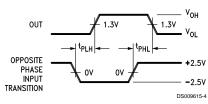
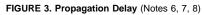
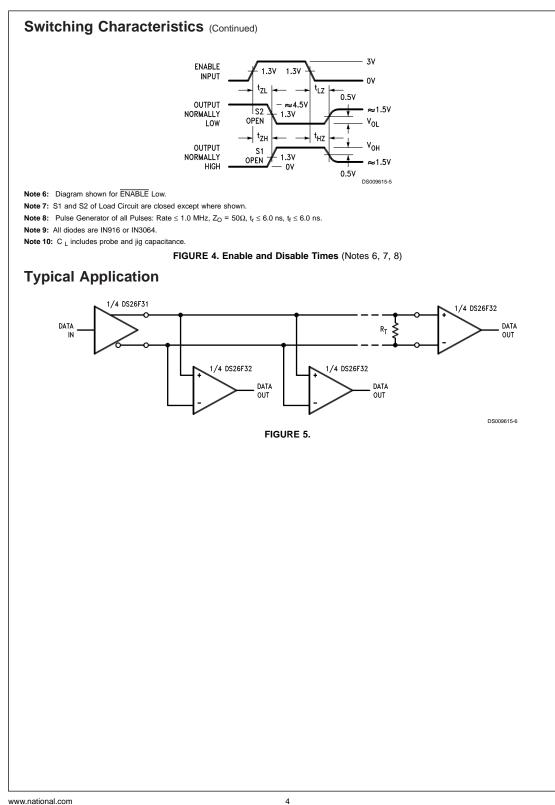
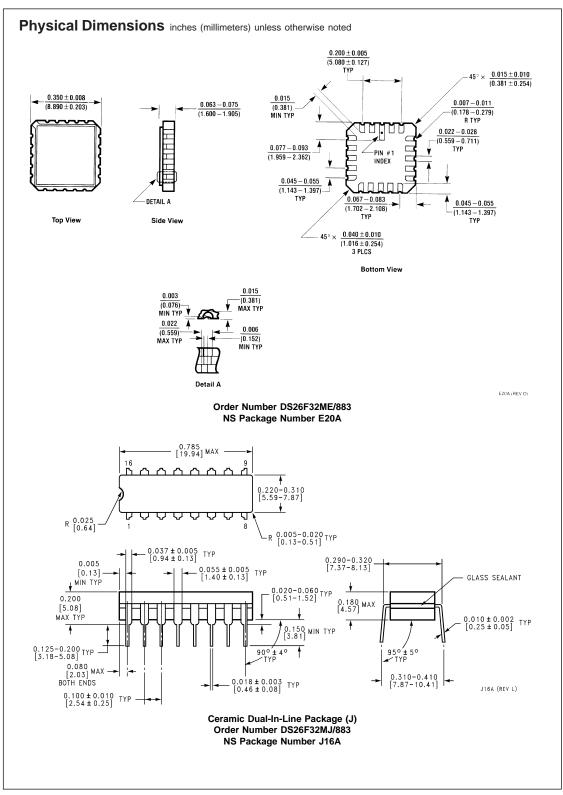
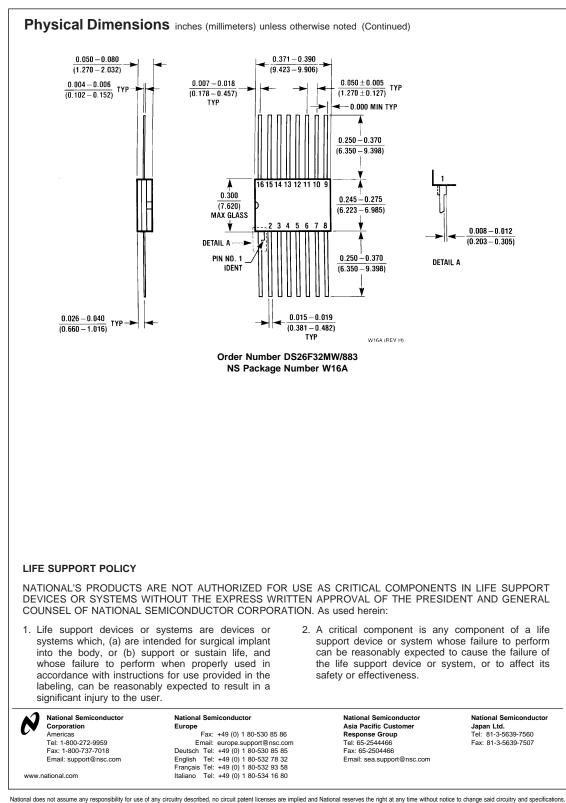






FIGURE 2. Load Test Circuit for Three-State Outputs



www.national.com

