General Description

The DS16F95／DS36F95 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines．The transceiver meets both EIA－485 and EIA－422A standards．
The DS16F95／DS36F95 offers improved performance due to the use of L－FAST bipolar technology．The L－FAST technol－ ogy allows for higher speeds and lower currents by minimiz－ ing gate delay times．Thus，the DS16F95 and DS36F95 con－ sume less power，and feature an extended temperature range as well as improved specifications．
The DS16F95／DS36F95 combines a TRI－STATE ${ }^{\circledR}$ differen－ tial line driver and a differential input line receiver，both of which operate from a single 5.0 V power supply．The driver and receiver have an active Enable that can be externally connected to function as a direction control．The driver differ－ ential outputs and the receiver differential inputs are inter－ nally connected to form differential input／output（I／O）bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ ．These ports feature wide positive and negative common mode volt－ age ranges，making the device suitable for multipoint appli－ cations in noisy environments．
The driver is designed to accommodate loads of up to 60 mA of sink or source current and features positive and negative current limiting in addition to thermal shutdown for protection from line fault conditions．

The DS16F95／DS36F95 can be used in transmission line applications employing the DS96F172 and the DS96F174 quad differential line drivers and the DS96F173 and DS96F175 quad differential line receivers．

Features

－Meets EIA－485 and EIA－422A
－Meets SCSI－1（ 5 MHZ ）specifications
－Designed for multipoint transmission
－Wide positive and negative input／output bus voltage ranges
－Thermal shutdown protection
－Driver positive and negative current－limiting
－High impedance receiver input
－Receiver input hysteresis of 50 mV typical
－Operates from single 5.0 V supply
－Reduced power consumption
－Pin compatible with DS3695 and SN75176A
－Military temperature range available
－Qualified for MIL－STD 883C
－Standard Military Drawings（SMD）available
－Available in DIP（J），SOIC（M），LCC（E），and Flatpak （W）packages

Function Tables

Driver

Driver Input	Enable	Outputs	
DI	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

Receiver

Differential Inputs	Enable	Output
$\mathbf{A}-\mathbf{B}$	$\overline{\mathbf{R E}}$	RO
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	L	H
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z

$\mathrm{H}=$ High Level
L＝Low Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance（Off）

COMMERCIAL

Absolute Maximum Ratings (Note 2)
Specifications for the 883 version of this product are listed separately on the following pages.

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature	
\quad (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Maximum Package Power Dissipation (Note 1) at $25^{\circ} \mathrm{C}$	
'J' Package	1300 mW
'M' Package	735 mW
Supply Voltage	7.0 V
Input Voltage (Bus Terminal)	$+15 \mathrm{~V} /-10 \mathrm{~V}$
Enable Input Voltage	5.5 V

Recommended Operating Conditions

Note 1: Derate 'J' package $8.7 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Derate ' M ' package $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Driver Electrical Characteristics (Notes 3, 4)
Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Driver Electrical Characteristics (Notes 3, 4) (Continued)
Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Min	Typ	Max	Units
I_{cc}	Supply Current (Total Package)	No Load, All Inputs Open	$\overline{D E}=2 \mathrm{~V}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}$ Outputs Enabled			28	mA
$\mathrm{I}_{\operatorname{ccx}}$			$\mathrm{DE}=0.8 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$ Outputs Disabled			25	

COMMERCIAL

Driver Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {D }}$	Differential Output Delay Time	$R_{L}=60 \Omega$, Figure 3	8.0	15	20	ns
$\mathrm{t}_{\text {TD }}$	Differential Output Transition Time		8.0	15	22	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 4	6.0	12	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output		6.0	12	16	ns
t_{zH}	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		25	32	ns
t_{zL}	Output Enable Time to Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		25	32	ns
$t_{H z}$	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		20	25	ns
t_{Lz}	Output Disable Time from Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		20	25	ns
$\mathrm{t}_{\text {LZL }}$	Output Disable Time from Low Level with Load Resistor to GND	Load per Figure 5 Timing per Figure 6		300		ns
$\mathrm{t}_{\text {SKEW }}$	Skew (Pulse Width Distortion)	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 3		1.0	4.0	ns

Receiver Electrical Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Receiver Electrical Characteristics (Continued)
Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units	
I_{Cc}	Supply Current (Total Package)	No Load, All Inputs Open	$\mathrm{DE}=2 \mathrm{~V}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}$ Outputs Enabled			28	
$\mathrm{I}_{\mathrm{ccx}}$			$\mathrm{DE}=0.8 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$ Outputs Disabled			25	mA

COMMERCIAL

Receiver Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V} \text { to }+3.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \text {, Figure } 7 \end{aligned}$	14	19	24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output		14	19	24	ns
t_{zH}	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 8		10	16	ns
t_{zL}	Output Enable Time to Low Level			12	18	ns
t_{Hz}	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 8		12	20	ns
t_{Lz}	Output Disable Time from Low Level			12	18	ns
$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$	Pulse Width Distortion (SKEW)	Figure 7		1.0	4.0	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 3: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS16F95 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS36F95. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 5: $\Delta\left|\mathrm{V}_{\mathrm{OD}}\right|$ and $\Delta\left|\mathrm{V}_{\mathrm{OC}}\right|$ are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.
Note 6: In TIA/EIA-422A and TIA/EIA-485 Standards, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, Vos.
Note 7: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.
Note 8: Hysteresis is the difference between the positive-going input threshold voltage, $\mathrm{V}_{\mathrm{T}^{+}}$, and the negative-going input threshold voltage, $\mathrm{V}_{\mathrm{T}_{-}}$.
Note 9: Refer to TIA/EIA-485 Standard for exact conditions.
Note 10: Only one output at a time should be shorted.
Order Number:
DS16F95J, NS Package Number J08A
DS36F95J, NS Package Number J08A
DS36F95M, NS Package Number M08A

Driver Electrical Characteristics (Notes 3, 4)
Over recommended supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Min	Max	Units
V_{IH}	Input Voltage HIGH	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$		2.0		V
V_{LL}	Input Voltage LOW	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			0.8	V
V_{OH}	Output Voltage HIGH	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		3.0		V
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=+20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			2.0	V
V_{10}	Input Clamp Voltage	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.3	V
$\left\|\mathrm{V}_{\text {ODI } 1}\right\|$	Differential Output Voltage	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IV }}=0.8 \mathrm{~V}$ or $2 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}$			6.0	V
\|V ${ }_{\text {ODI }} \mid$	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Figure 1		2.0		V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, Figure 1		1.5		
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in Magnitude of Differential Output Voltage (Note 5)	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure $1, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			± 0.2	V
$\mathrm{V}_{\text {OD3 }}$	Differential Output Voltage	$\mathrm{V}_{\mathrm{CM}}=-7 \mathrm{~V}$ to +12 V		1.0		V
$\mathrm{V}_{\text {oc }}$	Common Mode Output Voltage (Note 6)	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω			3.0	V
$\Delta \mid \mathrm{V}_{\text {ocl }}$	Change in Magnitude of Common Mode Output Voltage (Note 5)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω			± 0.2	v
Io	Output Current (Note 9) (Includes Receiver I_{1})	Output Disabled$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}$		1.0	mA
			$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}$		-0.8	
I_{IH}	Input Current HIGH	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	Input Current LOW	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$
los	Short Circuit Output	$\mathrm{V}_{\mathrm{O}}=-7.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 3 V			-250	
	Current (Note 10)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IV }}=0 \mathrm{~V}$ or 3 V			-150	mA
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 3 V			150	
		$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 3 V			250	
I_{cc}	Supply Current (Total Package)	No Load, $\mathrm{DE}=2 \mathrm{~V}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}$, Inputs Open			28	mA
$\mathrm{I}_{\operatorname{ccx}}$		No Load, $\mathrm{DE}=0.8 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$, Inputs Open			25	

MIL-STD 883C

Driver Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ \operatorname{Max} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \operatorname{Max} \end{gathered}$	Units
t_{DD}	Differential Output Delay Time	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 3	8.0	15	25	30	30	ns
$\mathrm{t}_{\text {TD }}$	Differential Output Transition Time		8.0	15	25	30	30	ns
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 4	6.0	12	18	25	25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output		6.0	12	18	25	25	ns
t_{zH}	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		25	35	45	45	ns
t_{zL}	Output Enable Time to Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		25	40	50	50	ns
t_{HZ}	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 5		20	30	40	40	ns
t_{Lz}	Output Disable Time from Low Level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 6		20	30	40	40	ns
$\mathrm{t}_{\text {LZL }}$	Output Disable Time from Low Level with Load Resistor to GND	Load per Figure 5 Timing per Figure 6		300				ns
$\mathrm{t}_{\text {SKEW }}$	Skew (Pulse Width Distortion)	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 3		1.0	6	12	12	ns

Receiver Electrical Characteristics

Over recommended supply voltage and operating temperature ranges, unless otherwise specified

MIL-STD 883C

Receiver Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \\ & \text { Max } \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 125^{\circ} \mathrm{C} \\ \text { Max } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \\ \text { Max } \end{gathered}$	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V} \text { to }+3.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \text {, Figure } 7 \end{aligned}$	10	19	27	38	38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output		10	19	27	38	38	ns
t_{zH}	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 8		10	20	30	30	ns
t_{zL}	Output Enable Time to Low Level			12	20	30	30	ns
t_{Hz}	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, Figure 8		12	20	30	30	ns
		$\mathrm{C}_{\mathrm{L}}=20.0 \mathrm{pF}$, Figure 8 (Note 16)		12	30	40	40	ns
t_{Lz}	Output Disable Time from Low Level	$\mathrm{C}_{\mathrm{IL}}=50 \mathrm{pF}$, Figure 8		12	20	30	30	ns
$\underline{\mid t_{\text {PLH }}-t_{\text {PHL }}}$	Pulse Width Distortion (SKEW)	Figure 7		1.0	8	16	16	ns

Ordering Number:

DS16F95J/883, NS Package Number J08A
DS16F95E/883, NS Package Number E20A
DS16F95W/883, NS Package Number W10A

SMD Number:

DS16F95J/883 $\leftrightarrow 5962-8961501$ PA
DS16F95W-SMD $\leftrightarrow 5962-8961501 \mathrm{HA}$
DS16F95E/883 $\leftrightarrow 5962-89615012 \mathrm{~A}$

Parameter Measurement Information

FIGURE 1. Driver V_{OD} and V_{OC} (Note 15)

FIGURE 2. Receiver V_{OH} and V_{OL}

tsKEw $=\mid$ tpLhD $^{\text {tphLD }}$
FIGURE 3. Driver Differential Output Delay and Transition Times (Notes 12, 14)

Parameter Measurement Information (Continued)

FIGURE 4. Driver Propagation Times (Notes 12, 13)

FIGURE 5. Driver Enable and Disable Times ($\mathrm{t}_{\mathbf{z H}}, \mathrm{t}_{\mathrm{Hz}}$) (Notes 12, 13, 14)

FIGURE 6. Driver Enable and Disable Times ($\mathbf{t}_{\mathbf{z L}}, \mathbf{t}_{\mathbf{L Z}}, \mathbf{t}_{\mathbf{L z L}}$) (Notes 12, 13, 14)

FIGURE 7. Receiver Propagation Delay Times (Notes 12, 13)

Parameter Measurement Information (Continued)

FIGURE 8. Receiver Enable and Disable Times (Notes 12, 13, 15)
Note 12: The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=1.0 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$. Note 13: C_{L} includes probe and stray capacitance.
Note 14: DS16F95/DS36F95 Driver enable is Active-High.
Note 15: All diodes are 1N916 or equivalent.
Note 16: Testing at 20 pF assures conformance to 5 pF specification.

Typical Application

The line should be terminated at both ends in its characteristic impedance, typically 120Ω. Stub lengths off the main line should be kept as short as possible.

Connection Diagrams

8-Lead Dual-In-Line Package or Small Outline Molded
Package

Order Number DS16F95, DS16F95J/883, DS36F95J, DS36F95M
See NS Package Number J08A, or M08A

Order Number DS16F95E/883 See NS Package Number E20A

Order Number DS16F95W/883
See NS Package Number W10A

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Ceramic Leadless Chip Carrier (E) Order Number DS16F95E/883 NS Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8 Narrow Lead Ceramic Dual-In-Line Package (J) Order Number DS16F95J, DS16F95J/883 or DS36F95J

NS Package Number J08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

- National Semiconductor ${ }_{\text {Corporation }}$	National Semiconductor	National Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

