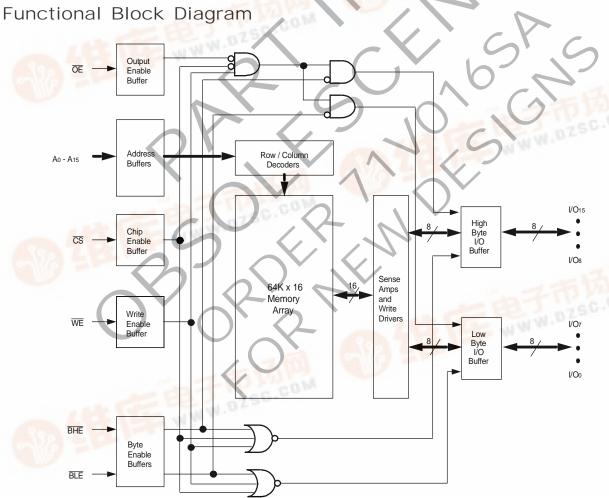


3.3V CMOS Static RAM 1 Meg (64K x 16-Bit)

IDT71V016

Features

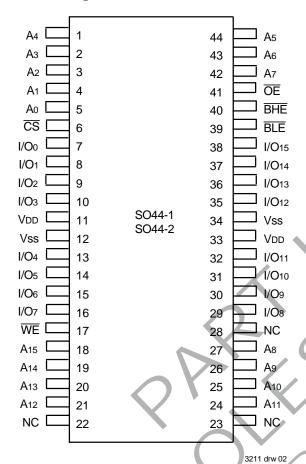

- 64K x 16 advanced high-speed CMOS Static RAM
- ◆ Commercial (0° to +70°C) and Industrial (-40°C to +85°C)
- Equal access and cycle times
 - Commercial and Industrial: 15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 3.3V (±0.3V) power supply
- Available in 44-pin Plastic SOJ and 44-pin TSOP package.

Description

The IDT71V016 is a 1,048,576-bit high-speed Static RAM organized as 64K x 16. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V016 has an output enable pin which operates as fast as 7ns, with address access times as fast as 12ns. All bidirectional inputs and outputs of the IDT71V016 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71V016 is packaged in a JEDEC standard 44-pin Plastic SOJ and 44-pin TSOP Type II.



3211 drw 01

Pin Configuration

Pin Description

SOJ/TSOP Top View

Truth Table⁽¹⁾

CS	ŌĒ	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O8-I/O15	Function
Н	Х	Х	X	X	High-Z	High-Z	Deselected – Standby
L	L	Н	L	#	DATAout	High-Z	Low Byte Read
L	L	Н	H	L	High-Z	DATAout	High Byte Read
L	L	Н	L	L	DATAout	DATAout	Word Read
L	Х	L	L	L	DATAIN	DATAIN	Word Write
L	Х	L	L	Н	DATAIN	High-Z	Low Byte Write
L	Х	L	Н	L	High-Z	DATAIN	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Outputs Disabled
L	Х	Х	Н	Н	High-Z	High-Z	Outputs Disabled

NOTE:

1. H = VIH, L = VIL, X = Don't care.

3211 tbl 02

Absolute Maximum Ratings(1)

Symbol	Rating	Value	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Та	Operating Temperature	0 to +70	۰C
TBIAS	Temperature Under Bias	-55 to +125	۰C
Tstg	Storage Temperature	–55 to +125	۰C
Рт	Power Dissipation	1.0	W
Іоит	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. VDD terminals only.
- 3. Input, Output, and I/O terminals; 4.6V maximum.

Recommended Operating Temperature and Supply Voltage

Grade	Grade Temperature		V DD
Commercial	0°C to +70°C	0V	3.3V ± 0.3V
Industrial	–40°C to +85°C	0V	3.3V ± 0.3V

3211 tbl 04

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	٧
GND	Supply Voltage	0	0	0	٧
Vih	Input High Voltage – Inputs	2.0	_	4.6	٧
Vih	Input High Voltage – I/O	2.0		VDD+0.3	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	٧

NOTE:

1. VIL (min.) = -1.5V for pulse width less than tRC/2, once per cycle.

3211 tbl 05

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	6	pF
Cı⁄o	I/O Capacitance	Vout = 3dV	7	pF

NOTE

3211 tbl 06

3211 tbl 07

DC Electrical Characteristics

(VDD = 3.3V ± 0.3V, Commercial and Industrial Temperature Ranges)

		2	IDT71V016		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
Iu	Input Leakage Current	VDD = Max., VIN = GND to VDD		5	μA
ILO	Output Leakage Current	$V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = GND to V_{DD}$		5	μA
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	10H = -4mA, $VDD = Min$.	2.4		V

DC Electrical Characteristics(1)

 $(VDD = 3.3V \pm 0.3V, VLC = 0.2V, VHC = VDD-0.2V)$

		71V0 ⁻	16S15	71V016S20		
Symbol	Parameter	Com'l	Ind.	Com'l.	Ind.	Unit
Icc	Dynamic Operating Current $\overline{CS} \le V_{IL}$, Outputs Open, $V_{DD} = Max.$, $f = f_{MAX}^{(2)}$	130	130	120	120	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{\text{CS}} \geq \text{ViH, Outputs Open, Vdd} = \text{Max., } f = \text{fmax}^{(2)}$	35	35	30	30	mA
ISB1	Standby Power Supply Current (CMOS Level) $\overline{\text{CS}} \geq \text{V}_{HC}, \text{ Outputs Open, V}_{DD} = \text{Max., } f = 0^{(2)}$ $\text{V}_{IN} \leq \text{V}_{LC} \text{ or V}_{IN} \geq \text{V}_{HC}$	5	7	5	7	mA

NOTES:

- 1. All values are maximum guaranteed values.
- 2. $f_{MAX} = 1/t_{RC}$ (all address inputs are cycling at f_{MAX}); f = 0 means no address input lines are changing.

3211 tbl 08

^{1.} This parameter is guaranteed by device characterization, but not production tested.

AC Test Conditions

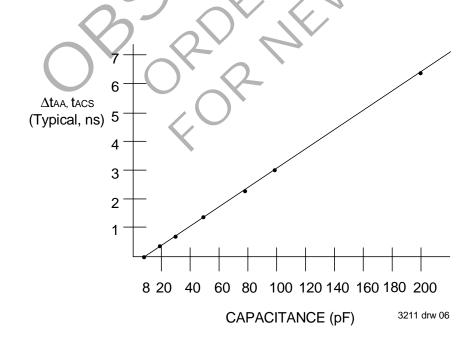
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

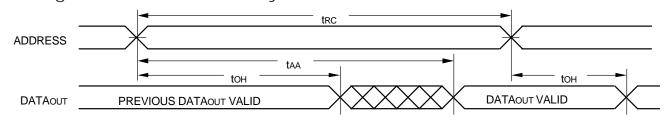
3211 tbl 09

Including jig and scope capacitance.

Figure 1. AC Test Load

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)




Figure 3. Output Capacitive Derating

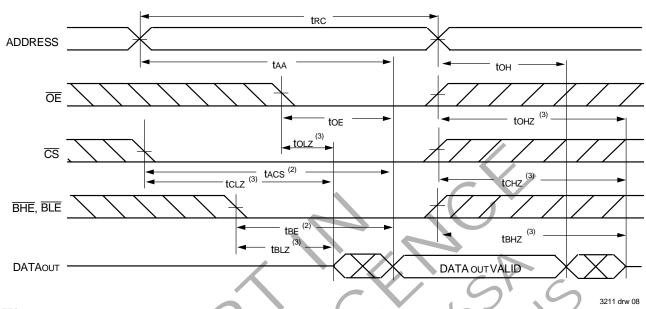
AC Electrical Characteristics (VDD = 3.3V ± 0.3V, Commercial and Industrial Temperature Ranges)

		71V0	16S15	71V0	16S20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
READ CYCL	E					
trc	Read Cycle Time	15		20		ns
taa	Address Access Time		15		20	ns
tacs	Chip Select Access Time		15		20	ns
tclz ⁽¹⁾	Chip Select Low to Output in Low-Z	5		5		ns
tcHz ⁽¹⁾	Chip Select High to Output in High-Z		6	7	8	ns
toE	Output Enable Low to Output Valid		8	(-)	10	ns
tolz ⁽¹⁾	Output Enable Low to Output in Low-Z	0	- (0		ns
tonz ⁽¹⁾	Output Enable High to Output in High-Z	_	6)_	8	ns
tон	Output Hold from Address Change	4	(-)	5	_	ns
tBE	Byte Enable Low to Output Valid		8	4>	10	ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0		0	(-	ns
tвнz ⁽¹⁾	Byte Enable High to Output in High-Z		6		8	ns
WRITE CYC	LE		1			
twc	Write Cycle Time	15	<u>O</u> -,	20		ns
taw	Address Valid to End of Write	10	U _ C	12		ns
tcw	Chip Select Low to End of Write	10	1	12		ns
tвw	Byte Enable Low to End of Write	10		12		ns
tas	Address Set-up Time	0	V	0		ns
twr	Address Hold from End of Write	0		0		ns
twp	Write Pulse Width	10		12		ns
tow	Data Valid to End of Write	8		10		ns
tон	Data Hold Time	0		0		ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	1		1		ns
twHz ⁽¹⁾	Write Enable Low to Output in High-Z		6		8	ns

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

Timing Waveform of Read Cycle No. 1(1,2,3)

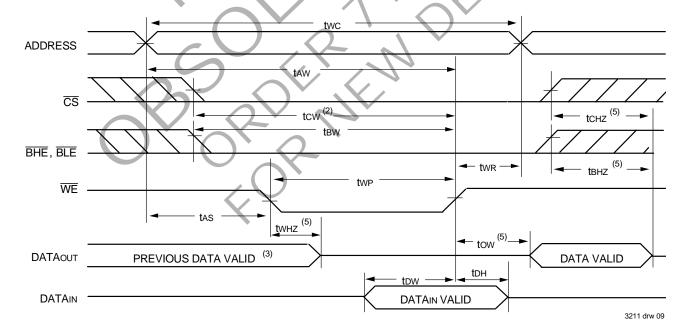
NOTES:


1. WE is HIGH for Read Cycle.

- Device is continuously selected, Sis LOW.
 OE, BHE, and BLE are LOW.

3211 tbl 10

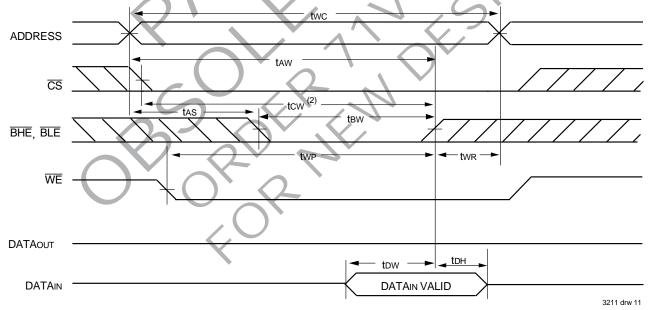
3211 drw 07


Timing Waveform of Read Cycle No. 2(1)

NOTES:

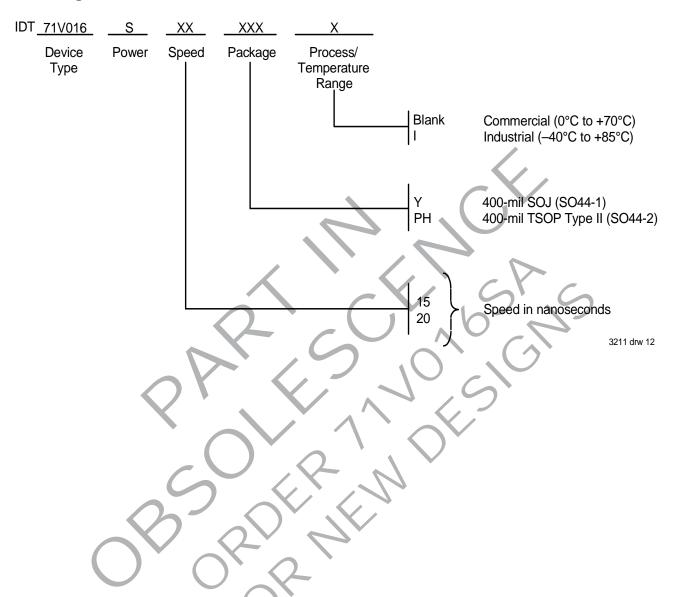
- 1. WE is HIGH for Read Cycle.
- 2. Address must be valid prior to or coincident with the later of CS, BHE, or BLE transition LOW; otherwise tax is the limiting parameter.
- 3. Transition is measured ±200mV from steady state.


Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,2,4)


NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} , LOW \overline{BHE} or \overline{BLE} , and a LOW \overline{WE} .
- 2. \overline{OE} is continuously HIGH. If during a \overline{WE} controlled write cycle \overline{OE} is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,4)


Timing Waveform of Write Cycle No. 3 (BHE, BLE Controlled Timing)(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$, LOW $\overline{\text{BHE}}$ or $\overline{\text{BLE}}$, and a LOW $\overline{\text{WE}}$.
- 2. \overline{OE} is continuously HIGH. If during a \overline{WE} controlled write cycle \overline{OE} is LOW, twp must be greater than or equal to twnz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the $\overline{\text{CS}}$ LOW or $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ LOW transition occurs simultaneously with or after the $\overline{\text{WE}}$ LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

Datasheet Document History

11/1/99		Updated to new format
	Pg. 3	Expressed commercial and industrial ranges on DC Electrical table
	Pg. 5	Expressed commercial and industrial ranges on AC Electrical table
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
	Pg. 7	Revised footnotes on Write Cycle No. 2 and No. 3 diagrams
	Pg. 9	Added Datasheet Document History
08/30/00	· ·	Part in obsolescence, order part 71V016SA. See PDN# S-0003

