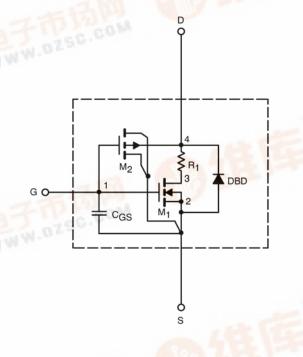


SPICE Device Model SUM110N08-05 Vishay Siliconix

N-Channel 75-V (D-S) 200°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 70511 www.vishay.com

SPICE Device Model SUM110N08-05

Vishay Siliconix

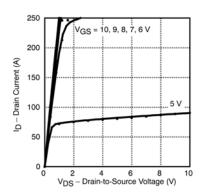
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} > 5 \text{ V}, V_{GS} = 10 \text{ V}$	1197		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A	0.0038	0.0038	Ω
		V _{GS} = 10 V, I _D = 30 A, T _J = 125°C	0.0063		
		V_{GS} = 10 V, I_{D} = 30 A, T_{J} = 200°C	0.0084		
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 30 A	109		S
Forward Voltage ^a	V_{SD}	I_{S} = 110 A, V_{GS} = 0 V	0.92	1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	7663	7900	Pf
Output Capacitance	C _{oss}		936	950	
Reverse Transfer Capacitance	C _{rss}		406	550	
Total Gate Charge ^c	Q _g	V_{DS} = 35 V, V_{GS} = 10 V, I_{D} = 110 A	139	145	NC
Gate-Source Charge ^c	Q_{gs}		36	30	
Gate-Drain Charge ^c	Q_{gd}		45	45	
Turn-On Delay Time ^c	t _{d(on)}	V_{DD} = 35 V, R_L = 0.40 Ω I_D \cong 110 A, V_{GEN} = 10 V, R_G = 2.5 Ω I_F = 85 A, di/dt = 100 A/μs	88	25	Ns
Rise Time ^c	t _r		110	200	
Turn-Off Delay Time ^c	$t_{d(off)}$		130	65	
Fall Time ^c	t _f		149	165	
Reverse Recovery Time	t _{rr}		55	80	

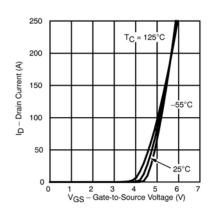
Notes:

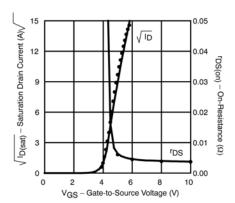
Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2%.
Guaranteed by design, not subject to production testing.
Independent of operating temperature. b.

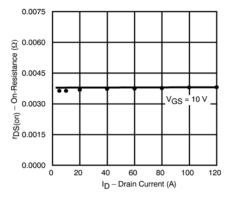
www.vishay.com

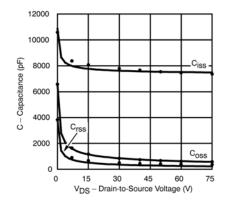
SPICE Device Model SUM110N08-05 Vishay Siliconix

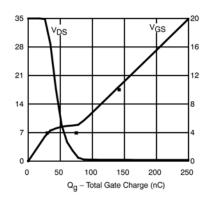

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


Document Number: 70511 www.vishay.com


SPICE Device Model SUM110N08-05


Vishay Siliconix





Note: Dots and squares represent measured data.

Document Number: 70511 www.vishay.com