RELIABILITY REPORT

FOR

MAX3873EGP

PLASTIC ENCAPSULATED DEVICES

January 15, 2001

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager Reviewed by

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX3873 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description

II.Manufacturing Information

III.Packaging Information

IV.Die Information

V.Quality Assurance Information

VI.Reliability Evaluation

IV.Attachments

I. Device Description

A. General

The MAX3873 is a compact, low-power 2.488Gbps/ 2.67Gbps clock-recovery and data-retiming IC for SDH/SONET applications. The phase-locked loop (PLL) recovers a synchronous clock signal from the serial NRZ data input. The input data is then retimed by this recovered clock, providing a clean data output. The MAX3873 meets all SDH/SONET jitter specifications, does not require an external reference clock to aid in frequency acquisition, and provides excellent tolerance to both deterministic and sinusoidal jitter. The MAX3873 provides a PLL loss-of-lock (LOL-bar) output to indicate whether the CDR is in lock. The recovered data and clock outputs are CML with on-chip 50Ω back terminations on each line. The clock output can be powered down if not used.

The MAX3873 is implemented in Maxim's second-generation SiGe process and consumes only 260mW at +3.3V supply (output clock disabled, low output swing). The device is available in a 4mm x 4mm 20-pin QFN exposed-pad package and operates from -40°C to +85°C.

B. Absolute Maximum Ratings

<u>ltem</u>	Rating
Supply Voltage (V _{CC} to GND) Voltage at SDI +/- CML Output Current at SDO +/-, SCLKO+/- Voltage at /LOL, FASTRACK, FIL+/-, SCLKEN MODE,	-0.5V to +5V (VCC-1.0V) to (VCC +0.5V) 22mA
RATEST Storage Temp. Lead Temp. (10 sec.)	(-0.5V to (VCC + 0.5V) -55°C to +150°C +300°C
Power Dissipation 20-Pin QFN Derates above +70°C	1300mW
20-Pin QFN	20.0mW/°C

II. Manufacturing Information

A. Description/Function: Low-Power, Compact 2.5Gbps or 2.7Gbps Clock-Recovery and Data-

Retiming

B. Process: GST4

C. Number of Device Transistors: 2028

D. Fabrication Location: Oregon, USA

E. Assembly Location: Korea

F. Date of Initial Production: July, 2001

III. Packaging Information

A. Package Type: 20-Pin QFN

B. Lead Frame: Copper

C. Lead Finish: Solder Plate

D. Die Attach: Silver-filled epoxy

E. Bondwire: Gold (1.0 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: Buildsheet # 05-7001-0497

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions: 80 x 80 mils

B. Passivation: Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)

C. Interconnect: Au

D. Backside Metallization: None

E. Minimum Metal Width: Metal1: 1.2; Metal2: 1.2; Metal3: 1.2; Metal4: 5.6 microns (as drawn)

F. Minimum Metal Spacing: Metal1: 1.6; Metal2: 1.6; Metal3: 1.6; Metal4: 4.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)

Bryan Preeshl (Executive Director of QA)
Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \text{ x } 4389 \text{ x } 45 \text{ x } 2} \text{ (Chi square value for MTTF upper limit)}$$

$$\text{Temperature Acceleration factor assuming an activation energy of } 0.8eV$$

$$\lambda = 10.78 \text{ x } 10^{-8}$$

$$\lambda = 10.78 \text{ F.I.T. (60% confidence level @ 25°C)}$$

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

The HF80 die type has been found to have all pins able to withstand a transient pulse of \pm 200V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \pm 250mA and/or \pm 20V.

Table 1Reliability Evaluation Test Results

MAX3873EGP

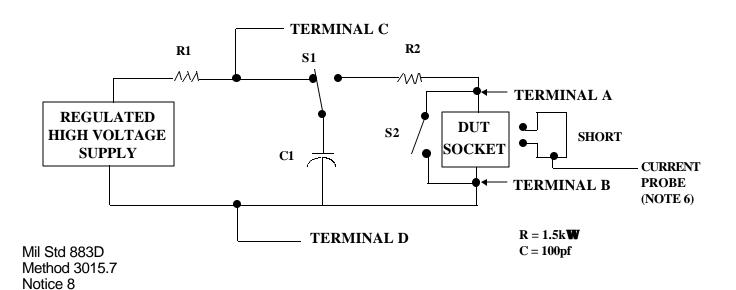
TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Tes	t (Note 1)			
	Ta = 150°C Biased Time = 192 hrs.	DC Parameters & functionality	45	0
Moisture Testi	ng (Note 2)			
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality	77	0
Mechanical St	ress (Note 2)			
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters	77	0

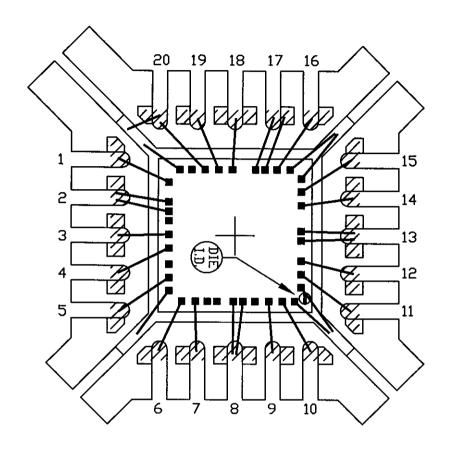
Note 1: Life Test Data may represent plastic D.I.P. qualification lots.

Note 2: Generic process/package data.

Attachment #1

TABLE II. Pin combination to be tested. 1/2/


	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins


- 1/ Table II is restated in narrative form in 3.4 below.
- 2/ No connects are not to be tested.
- Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 Pin combinations to be tested.

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(\lambda_{\mathbb{S}1} \), or \(\lambda_{\mathbb{S}2} \) or \(\lambda_{\mathbb{S}3} \) or \(\lambda_{\mathbb{CC}1} \), or \(\lambda_{\mathbb{CC}2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

BONDABLE AREA

PKG. BODY SIZE: 4x4 mm

PKG. CDDE: G2044-3		SIGNATURES	DATE	CONFIDENTIAL & PROPRIE	
CAV./PAD SIZE:	PKG.			BOND DIAGRAM #:	REV:
91×91	DESIGN			05-7001-0497	Α