Dual J－K Flip－Flop with Reset Negative－Edge Trigger

Features

－Hysteresis on Clock Inputs for Improved Noise Immunity and Increased Input Rise and Fall Times
－Asynchronous Reset
－Complementary Outputs
－Buffered Inputs
－Typical $\mathrm{f}_{\mathrm{MAX}}=60 \mathrm{MHz}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ ， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Fanout（Over Temperature Range）
－Standard Outputs \qquad 10 LSTTL Loads
－Bus Driver Outputs 15 LSTTL Loads
－Wide Operating Temperature Range ．．．$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
－Balanced Propagation Delay and Transition Times
－Significant Power Reduction Compared to LSTTL Logic ICs
－HC Types
－2V to 6V Operation
－High Noise Immunity： $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
－HCT Types
－4．5V to 5．5V Operation
－Direct LSTTL Input Logic Compatibility， $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$（Max）， $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$（Min）
－CMOS Input Compatibility， $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$

Description

The＇HC73 and CD74HCT73 utilize silicon gate CMOS technology to achieve operating speeds equivalent to LSTTL parts．They exhibit the low power consumption of standard CMOS integrated circuits，together with the ability to drive 10 LSTTL loads．

These flip－flops have independent J，K，Reset and Clock inputs and Q and $\overline{\mathrm{Q}}$ outputs．They change state on the negative－going transition of the clock pulse．Reset is accomplished asynchronously by a low level input．This device is functionally identical to the HC／HCT107 but differs in terminal assignment and in some parametric limits．

The HCT logic family is functionally as well as pin compatible with the standard LS logic family．

Ordering Information

PART NUMBER	TEMP．RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD54HC73F3A	-55 to 125	14 Ld CERDIP
CD74HC73E	-55 to 125	14 Ld PDIP
CD74HC73M	-55 to 125	14 Ld SOIC
CD74HC73MT	-55 to 125	14 Ld SOIC
CD74HC73M96	-55 to 125	14 Ld SOIC
CD74HCT73E	-55 to 125	14 Ld PDIP
CD74HCT73M	-55 to 125	14 Ld SOIC

NOTE：When ordering，use the entire part number．The suffix 96 denotes tape and reel．The suffix T denotes a small－quantity reel of 250.

Pinout

Functional Diagram

TRUTH TABLE

INPUTS				OUTPUTS	
$\overline{\mathbf{R}}$	$\overline{\mathbf{C P}}$	J	K	Q	$\overline{\mathbf{Q}}$
L	X	X	X	L	H
H	\downarrow	L	L	No Change	
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	Toggle	
H	H	X	X	No Change	

[^0]
Logic Diagram

Absolute Maximum Ratings

DC Supply Voltage, V_{CC}.	
DC Input Diode Current, $\mathrm{I}_{\text {IK }}$	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Drain Current, per Output, I_{O}	
For $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.	$\pm 25 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, I_{0}	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
C V_{CC} or Ground Current, ICC	$\pm 50 \mathrm{~mA}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
E (PDIP) Package	80
M (SOIC) Package.	86
Maximum Junction Temperature (Hermetic Package	Die) . . $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)	. $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T_{A}) . $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Supply Voltage Range, V_{CC}	
HC Types	2 V to 6V
HCT Types	4.5 V to 5.5 V
Input Rise and Fall Time	
2 V	1000ns (Max)
4.5 V .	500ns (Max)
6 V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	V_{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	$\begin{array}{\|c} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{array}$	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	VOL	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$

CD54HC73, CD74HC73, CD74HCT73
DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		${ }^{-55}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Quiescent Device Current	${ }_{\text {ICC }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	0	6	-	-	4	-	40	-	80	$\mu \mathrm{A}$

HCT TYPES

High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V
Low Level Input Voltage	V_{IL}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V_{OL}	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	V_{CC} and GND	-	5.5	-		± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	0	5.5	-	-	4	-	40	-	80	$\mu \mathrm{A}$
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	$\Delta \mathrm{l}_{\mathrm{CC}}$ (Note 2) (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \end{aligned}$	-	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	-	100	360	-	450	-	490	$\mu \mathrm{A}$

NOTE:
2. For dual-supply systems theoretical worst case $\left(\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)$ specification is 1.8 mA .

HCT Input Loading Table

INPUT	UNIT LOADS
All	0.3

NOTE: Unit Load is $\Delta_{\text {CC }}$ limit specified in DC Electrical Specifica tions table, e.g., $360 \mu \mathrm{~A}$ max at $25^{\circ} \mathrm{C}$.

	HC TYPES	HCT TYPES
Input Level	V_{CC}	3 V
$\mathrm{~V}_{\mathrm{S}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$	1.3 V

NOTE: Transition times and propagation delay times

Prerequisite For Switching Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
$\overline{\text { CP Pulse Width }}$	t_{w}	$-C_{L}=50 \mathrm{pF}$	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
$\overline{\mathrm{R}}$ Pulse Width	t_{w}	$-C_{L}=50 \mathrm{pF}$	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns

CD54HC73, CD74HC73, CD74HCT73
Prerequisite For Switching Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Setup Time, J, K to $\overline{\mathrm{CP}}$	tsu	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Hold Time, J, K to $\overline{\mathrm{CP}}$	${ }_{\text {t }}^{\mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	3	-	-	3	-	3	-	ns
			4.5	3	-	-	3	-	3	-	ns
			6	3	-	-	3	-	3	-	ns
Removal Time	$t_{\text {REM }}$	$-\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
$\overline{\mathrm{CP}}$ Frequency	$f_{\text {MAX }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	6	-	-	5	-	4	-	MHz
			4.5	30	-	-	25	-	20	-	MHz
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	60	-	-	-	-	-	MHz
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	35	-	-	29	-	23	-	MHz
HCT TYPES											
$\overline{\text { CP Pulse Width }}$	t_{w}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	16	-	-	20	-	24	-	ns
$\overline{\mathrm{R}}$ Pulse Width	t_{w}	CL = 50pF	4.5	18	-	-	23	-	27	-	ns
Setup Time, J, K to $\overline{\mathrm{CP}}$	tsu	CL = 50pF	4.5	16	-	-	20	-	24	-	ns
Hold Time, J, K to $\overline{\mathrm{CP}}$	t_{H}	$\mathrm{CL}=50 \mathrm{pF}$	4.5	3	-	-	3	-	3	-	ns
Removal Time	$t_{\text {REM }}$	$\mathrm{CL}=50 \mathrm{pF}$	4.5	12	-	-	15	-	18	-	ns
$\overline{\text { CP Frequency }}$	$\mathrm{f}_{\text {MAX }}$	$\mathrm{CL}=50 \mathrm{pF}$	4.5	30	-	-	25	-	20	-	MHz
		CL $=15 \mathrm{pF}$	5	-	60	-	-	-	-	-	MHz

Switching Specifications Input $t_{r}, t_{f}=6 n s$

PARAMETER	SYMBOL	TEST CONDITIONS	$V_{C c}$ (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \mathrm{TO} 85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay, $\overline{\mathrm{CP}}$ to Q	$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	$C_{L}=50 \mathrm{pF}$	2	-	-	160	-	200	-	240	ns
			4.5	-	-	32	-	40	-	48	ns
		$\mathrm{CL}=15 \mathrm{pF}$	5	-	13	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	28	-	34	-	41	ns
Propagation Delay, $\overline{\mathrm{CP}}$ to $\overline{\mathrm{Q}}$	$t_{\text {PLH }}, t_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	160	-	200	-	240	ns
			4.5	-	-	32	-	40	-	48	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	13	-	-	-	-	-	ns
		$C_{L}=50 \mathrm{pF}$	6	-	-	28	-	34	-	41	ns
Propagation Delay, $\overline{\mathrm{R}}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$	$t_{\text {PLH }}, t_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	145	-	180	-	220	ns
			4.5	-	-	29	-	36	-	44	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	12	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	25	-	31	-	38	ns
Output Transition Time		$C_{L}=50 \mathrm{pF}$	2	-	-	75	-	95	18	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns

Switching Specifications Input $t_{r}, t_{f}=6 n s$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-5^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Input Capacitance	C_{1}	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	CPD	-	5	-	28	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay, $\overline{C P}$ to Q	$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	38	-	48	-	57	ns
Propagation Delay, $\overline{\mathrm{CP}}$ to $\overline{\mathrm{Q}}$	$t_{\text {PLH }}$, tPHL	$\mathrm{CL}=50 \mathrm{pF}$	4.5	-	-	36	-	45	-	54	ns
Propagation Delay, $\overline{\mathrm{R}}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$	$t_{\text {PLH }}$, tPHL	$\mathrm{CL}=50 \mathrm{pF}$	4.5	-	-	34	-	43	-	51	ns
Output Transition Time	$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	C_{1}	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	CPD	-	5	-	28	-	-	-	-	-	pF

NOTES:
3. $\mathrm{C}_{P D}$ is used to determine the dynamic power consumption, per flip-flop.
4. $P_{D}=C_{P D} V_{C C}{ }^{2} f_{i}+\Sigma C_{L} V_{C C}^{2} f_{0}$ where $f_{i}=$ input frequency, $f_{0}=$ output frequency, $C_{L}=$ output load capacitance, $V_{C C}=$ supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from $10 \% \mathrm{~V}_{C C}$ to $90 \% \mathrm{~V}_{\mathrm{CC}}$ in accordance with device truth table. For $f_{\text {MAX }}$, input duty cycle $=50 \%$.
FIGURE 2. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 4. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

NOTE: Outputs should be switching from $10 \% \mathrm{~V}_{\mathrm{CC}}$ to $90 \% \mathrm{~V}_{\mathrm{CC}}$ in accordance with device truth table. For $f_{\text {MAX }}$, input duty cycle $=50 \%$.
FIGURE 3. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 5. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 6. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

FIGURE 7. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS
www.ti.com
26-Sep-2005

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-8515301CA | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| CD54HC73F | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| CD54HC73F3A | ACTIVE | CDIP | J | 14 | 1 | TBD | Call TI | Level-NC-NC-NC |
| CD74HC73E | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| CD74HC73EE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| CD74HC73M | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC73M96 | ACTIVE | SOIC | D | 14 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC73M96E4 | ACTIVE | SOIC | D | 14 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC73ME4 | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC73MT | ACTIVE | SOIC | D | 14 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC73MTE4 | ACTIVE | SOIC | D | 14 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HCT73E | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| CD74HCT73EE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | Level-NC-NC-NC |
| CD74HCT73M | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HCT73ME4 | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb -Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited

PACKAGE OPTION ADDENDUM

www.ti.com
information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ($\operatorname{Dim} A$).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: H =High Level (Steady State)
 $\mathrm{L}=$ Low Level (Steady State)
 X = Irrelevant
 $\downarrow=$ High-to-Low Transition

