查询SN74AC573PW供应商

捷多邦,专业PCB打样工厂SN54A10573,☆SN74AC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS SCAS542B - OCTOBER 1995 - REVISED NOVEMBER 1996

- 3-State Outputs Drive Bus Lines Directly
- EPIC ™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- Package Options Include Plastic Small-Outline (DW) Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic (N) and Ceramic (J) DIPs

description

These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are D-type transparent latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D Inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines in a bus-organized system without need for interface or pullup components.

SN54AC573 J OR W PACKAGE
SN74AC573 DB, DW, N, OR PW PACKAGE
(TOP VIEW)

OE		υ	20	Vcc
1D			19] 1Q
2D	3		18] 2Q
3D			17] 3Q
4D	5		16] 4Q
5D			15] 5Q
6D			14] 6Q
7D			13] 7Q
8D	9		12	8Q
GND	10		11	LE

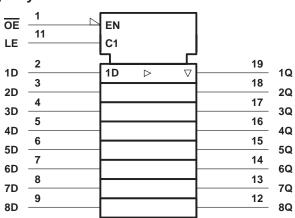
SN54AC573...FK PACKAGE (TOP VIEW)

		2D	1	UU	20 20	ą			
3D 4D 5D 6D 7D] 4] 5] 6] 7] 8	3 9	2 10	1 1	12 0 0 0 0	19 1 1 1 13	18 [17 [16 [15 [14 [2Q 3Q 4Q 5Q 6Q	

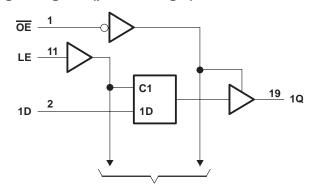
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54AC573 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AC573 is characterized for operation from -40°C to 85°C. FUNCTION TABLE

	FUNCTION TABLE (each latch)									
		INPUTS		OUTPUT						
	OE	LE	D	Q						
5	L	н	Н	Н						
5	0.6	Н	L	L						
	L	L	Х	Q ₀ Z						
	Н	Х	Х	Z						


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cis a trademark of Texas Instruments Incorporated.



SN54AC573, SN74AC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS SCAS542B - OCTOBER 1995 – REVISED NOVEMBER 1996

logic symbol[†]

logic diagram (positive logic)

To Seven Other Channels

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

1 1	$\begin{array}{cccc} -0.5 \mbox{ V to } \mbox{V}_{CC} + 0.5 \mbox{ V} \\ -0.5 \mbox{ V to } \mbox{V}_{CC} + 0.5 \mbox{ V} \\ \pm 20 \mbox{ mA} \\ \pm 20 \mbox{ mA} \\ \pm 50 \mbox{ mA} \\ \pm 200 \mbox{ mA} \\ \end{array} \\ \begin{array}{c} \mbox{ DB package} & 0.6 \mbox{ W} \\ \mbox{ DW package} & 1.6 \mbox{ W} \\ \mbox{ N package} & 0.7 \mbox{ W} \\ \end{array}$
Storage temperature range, T _{stg}	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero.

SN54AC573, SN74AC573 **OCTAL D-TYPE TRANSPARENT LATCHES** WITH 3-STATE OUTPUTS SCAS542B - OCTOBER 1995 – REVISED NOVEMBER 1996

			SN54A	C573	SN74A	C573	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2	6	2	6	V
		V _{CC} = 3 V	2.1		2.1		
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15		3.15		V
		V _{CC} = 5.5 V	3.85		3.85		
		V _{CC} = 3 V		0.9		0.9	
VIL Low-level input voltage	V _{CC} = 4.5 V		1.35		1.35	V	
		V _{CC} = 5.5 V		1.65		1.65	
VI	Input voltage	-	07	Vcc	0	VCC	V
Vo	Output voltage		0	VCC	0	Vcc	V
		V _{CC} = 3 V	0	- 12		- 12	
IОН	High-level output current	V _{CC} = 4.5 V	9	- 24		- 24	mA
		V _{CC} = 5.5 V		- 24		- 24	
		V _{CC} = 3 V		12		12	
IOL	Low-level output current	V _{CC} = 4.5 V		24		24	mA
		V _{CC} = 5.5 V		24		24	
$\Delta t/\Delta v$	Input transition rise or fall rate	·	0	8	0	8	ns/V
TA	Operating free-air temperature		- 55	125	- 40	85	°C

recommended operating conditions (see Note 3)

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS	Mark	T,	₄ = 25°C	;	SN54A	C573	SN74A	C573	LINUT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
VOH	I _{OH} = - 12 mA	3 V	2.58			2.48		2.48		V
	I _{OH} = - 24 mA	4.5 V	3.94			3.8		3.8		
		5.5 V	4.94			4.8	j.	4.8		
	I _{OH} = - 75 mA [†]	5.5 V				3.85	N.	3.85		
		3 V			0.1	4	C 0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1	6	0.1		0.1	
		5.5 V			0.1	20	0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36	Å0	0.44		0.44	V
	1 04 mA	4.5 V			0.36	Q	0.44		0.44	
	I _{OL} = 24 mA	5.5 V			0.36		0.44		0.44	
	I _{OL} = 75 mA	5.5 V					1.65		1.65	
I	$V_{I} = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ
I _{OZ}	$V_{O} = V_{CC} \text{ or } GND$	5.5 V			±0.25		±5		±2.5	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			4		80		40	μΑ
Ci	$V_{I} = V_{CC} \text{ or } GND$	5 V		5						pF

⁺ Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SN54AC573, SN74AC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

SCAS542B - OCTOBER 1995 – REVISED NOVEMBER 1996

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 2	T _A = 25°C		C573	SN74A	C573	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	6		8	12.0	7		ns
t _{su}	Setup time, data before LE \downarrow	3.5		5	NIK.	4		ns
t _h	Hold time, data after LE \downarrow	2		3	·	2		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

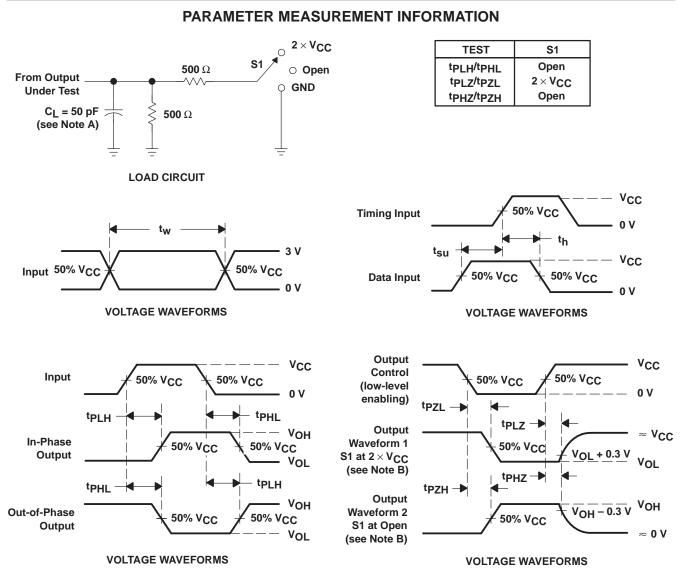
		TA	T _A = 25°C		SN54AC573		C573	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	2	ļ	6	N.C.	5		ns
t _{su}	Setup time, data before LE \downarrow		3	4.5	11r	3.5		ns
t _h	Hold time, data after LE \downarrow	2	2	3		2		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 2	25°C	SN54A	C573	SN74A	C573	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	Q	2.5	13	1.5	16.5	2	15	20
^t PHL	D	Y	2.5	12	1.5	15.5	2	14	ns
^t PLH	LE	Q	2.5	13	1.5	16.5	2	15	ns
^t PHL	LE	Q	2.5	12	1.5	2 15.5	2	14	113
^t PZH	05	Q	2.5	11	1.5	13.5	2	12	20
^t PZL	OE	Q	2.5	11	1.5	14	2	12.5	ns
^t PHZ	OE	Q	2.5	12.5	1.5	15	2	13.5	ns
^t PLZ	UL	Q	2.5	9.5	1.5	12	2	10.5	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 2	25°C	SN54A	C573	SN74A	C573	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	Q	2.5	10	1.5	13	2	11.5	ns
^t PHL	D	y	2.5	9.5	1.5	12.5	2	11	115
^t PLH	LE	Q	2.5	9.5	1.5	12.5	2	11	ns
^t PHL	LE	Q	2.5	8.5	1.5	2 11.5	2	10	115
^t PZH	ŌĒ	Q	2.5	9	1.5	11.5	2	10	ns
^t PZL	UE	y	2.5	8.5	1.5	11	2	9.5	115
^t PHZ	ŌĒ	Q	2.5	11	1.5	13.5	2	12	200
^t PLZ	UL UL	Ŷ	2.5	8	1.5	10.5	2	9	ns


operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}, \text{ f} = 1 \text{ MHz}$	25	pF

SN54AC573, SN74AC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

SCAS542B - OCTOBER 1995 - REVISED NOVEMBER 1996

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated