

FAIRCHILD

SEMICONDUCTOR

September 1986 Revised February 2000

DM7438 • 7438 Quad 2-Input NAND Buffers with Open-Collector Outputs

General Description

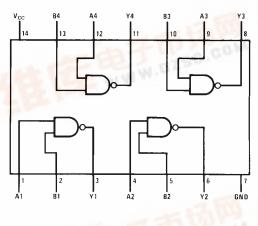
This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

 $\mathsf{R}_{\mathsf{MAX}} = \frac{\mathsf{V}_{\mathsf{CC}} \left(\mathsf{Min}\right) - \mathsf{V}_{\mathsf{OH}}}{\mathsf{N}_1 \left(\mathsf{I}_{\mathsf{OH}}\right) + \mathsf{N}_2 \left(\mathsf{I}_{\mathsf{IH}}\right)}$

Where:

$$\begin{split} R_{MIN} &= \frac{V_{CC}\left(Max\right) - V_{OL}}{I_{OL} - N_3\left(I_{IL}\right)} \\ N_1\left(I_{OH}\right) &= total maximum output high current for all outputs tied to pull-up resistor \\ N_2\left(I_{IH}\right) &= total maximum input high current for \end{split}$$


all inputs tied to pull-up resistor N_3 (I_{IL}) = total maximum input low current for all inputs tied to pull-up resistor

Ordering Code:

Order Number	Package Number	Package Description
DM7438M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM7438N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
7438SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

$Y = \overline{AB}$						
Inp	Output					
A	В	Y				
L	L	Н				
L	Н	н				
н	L	н				
Н	Н	L				

H = HIGH Logic Level L = LOW Logic Level

Absolute Maximum Ratings(Note 1)

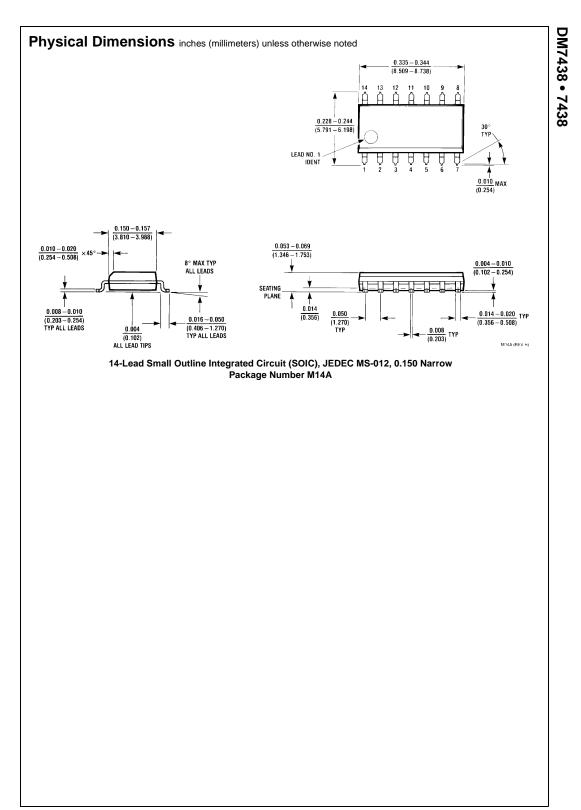
Supply Voltage	7V
Input Voltage	5.5V
Output Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

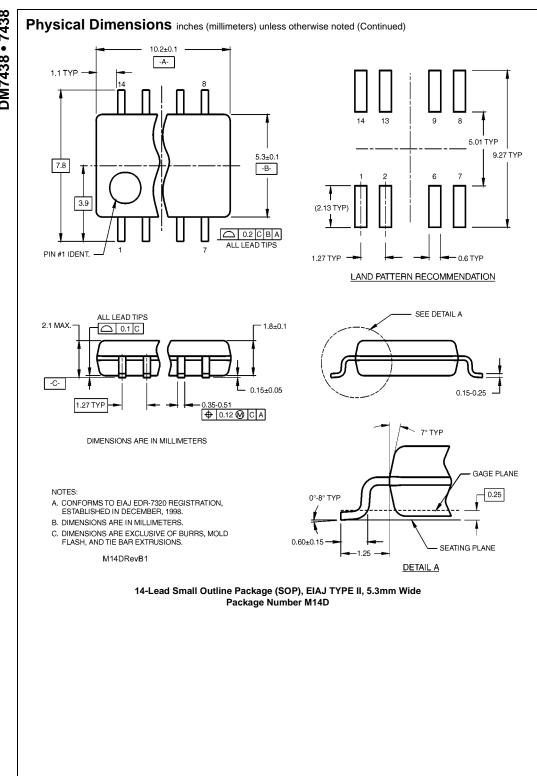
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

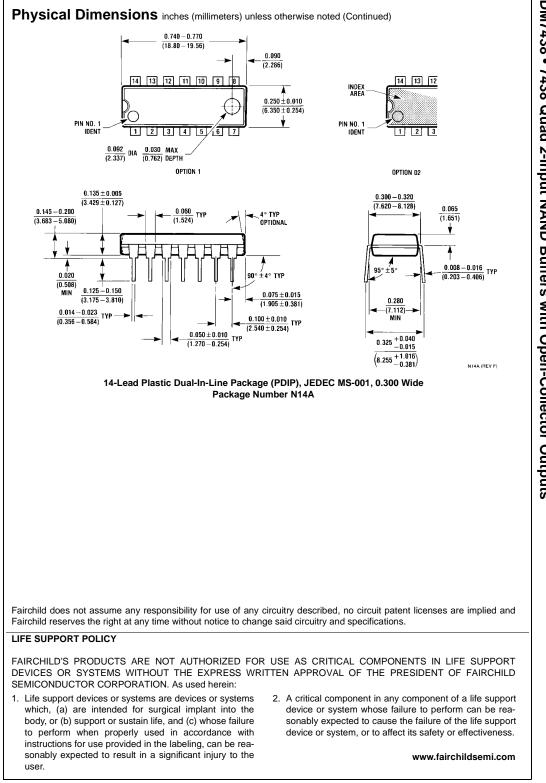
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
V _{OH}	HIGH Level Output Voltage			5.5	V
l _{OL}	LOW Level Output Current			48	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics


over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 mA$			-1.5	V
I _{CEX}	HIGH Level Output Current	$V_{CC} = Min, V_O = 5.5V$ $V_{IL} = Max$			250	μΑ
V _{OL}	LOW Level Output Voltage	V _{CC} = Min, I _{OL} = Max V _{IH} = Min			0.4	V
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.4V$			40	μA
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max		5	8.5	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max		34	54	mA


Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^\circ C$ Symbol Parameter Conditions Min Max Units Propagation Delay Time $C_L = 45 \text{ pF}$ t_{PLH} 22 ns $R_L = 133\Omega$ LOW-to-HIGH Level Output Propagation Delay Time t_{PHL} 18 ns HIGH-to-LOW Level Output

Note 2: All typicals are at V_{CC} = 5V, $T_A = 25^{\circ}C$.

