

November 1987

**Revised January 1999** 

# FAIRCHILD

SEMICONDUCTOR

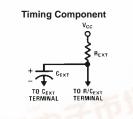
# MM74C221 Dual Monostable Multivibrator

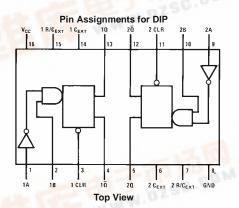
#### **General Description**

The MM74C221 dual monostable multivibrator is a monolithic complementary MOS integrated circuit. Each multivibrator features a negative-transition-triggered input and a positive-transition-triggered input, either of which can be used as an inhibit input, and a clear input.

Once fired, the output pulses are independent of further transitions of the A and B inputs and are a function of the external timing components  $C_{\text{EXT}}$  and  $R_{\text{EXT}}$ . The pulse width is stable over a wide range of temperature and  $V_{\text{CC}}.$ 

Pulse stability will be limited by the accuracy of external timing components. The pulse width is approximately defined by the relationship  $t_{W(OUT)} \approx C_{EXT} R_{EXT}$ . For further information and applications, see AN-138.


#### **Features**


- Wide supply voltage range: 4.5V to 15V
- Guaranteed noise margin: 1.0V
- High noise immunity: 0.45 V<sub>CC</sub> (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L

### Ordering Code:

| Order Number | Package Number | Package Description                                                    |
|--------------|----------------|------------------------------------------------------------------------|
| 74MMC221N    | N16E           | 16-Lead Plastic Dual-in-Line Package (PDIP), JEDEC MS-001, 0.300" Wide |

### **Connection Diagrams**





### Truth Table

| Inputs |              |    | Outputs |   |  |
|--------|--------------|----|---------|---|--|
| Clear  | Α            | В  | Q       | Q |  |
| L      | Х            | Х  | L       | H |  |
| Х      | Н            | Х  | 10 L V  | Н |  |
| Х      | Х            | L. | L       | Н |  |
| Н      | L            | Ŷ  | л       | J |  |
| Н      | $\downarrow$ | Н  | ~       | J |  |

H = HIGH Level \_\_\_ = One HIGH level pulse

L = LOW Level  $\neg$  = One LOW level pulse  $\uparrow$  = Transition from LOW-to-HIGH X= Irrelevant

 $\uparrow$  = Transition from LOW-to-HIGH ↓ = Transition from HIGH-to-LOW

Tansition from HIGH-to-LOW







## Absolute Maximum Ratings(Note 1)

| Voltage at Any Pin              | -0.3V to V <sub>CC</sub> + 0.3V   |
|---------------------------------|-----------------------------------|
| Operating Temperature Range     | $-40^{\circ}C$ to $+85^{\circ}C$  |
| Storage Temperature Range       | $-65^{\circ}C$ to $+150^{\circ}C$ |
| Power Dissipation               |                                   |
| Dual-In-Line                    | 700 mW                            |
| Small Outline                   | 500 mW                            |
| Operating V <sub>CC</sub> Range | 4.5V to 15V                       |

| Absolute Maximum V <sub>CC</sub> |
|----------------------------------|
| $R_{EXT} \ge 80 V_{CC} (\Omega)$ |
| Lead Temperature                 |
| (Soldering, 10 seconds)          |

18V

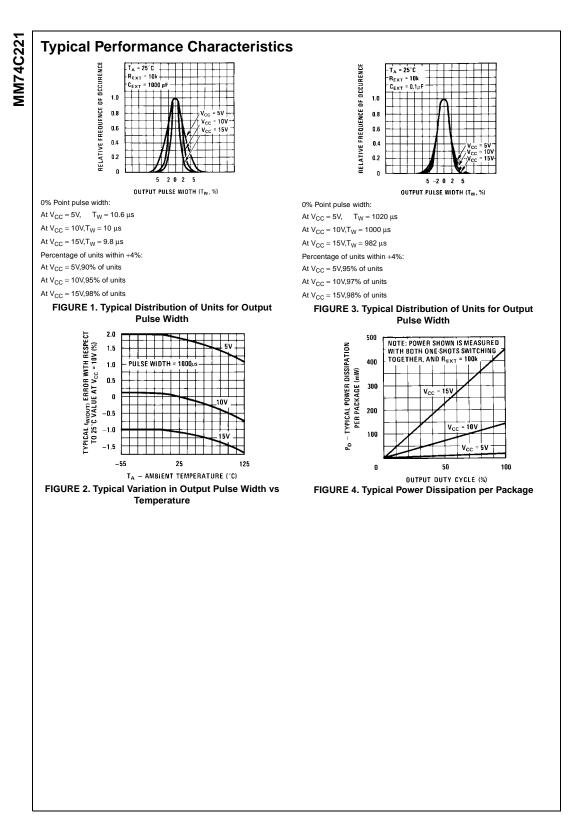
260°C

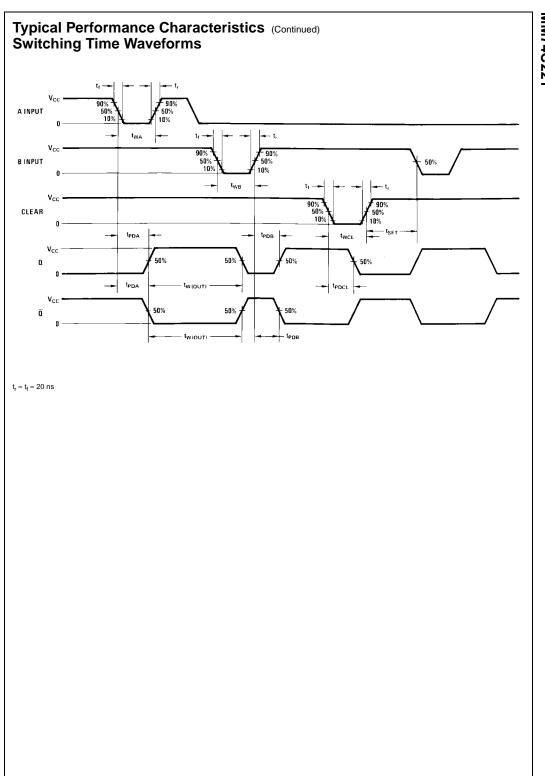
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

## **DC Electrical Characteristics**

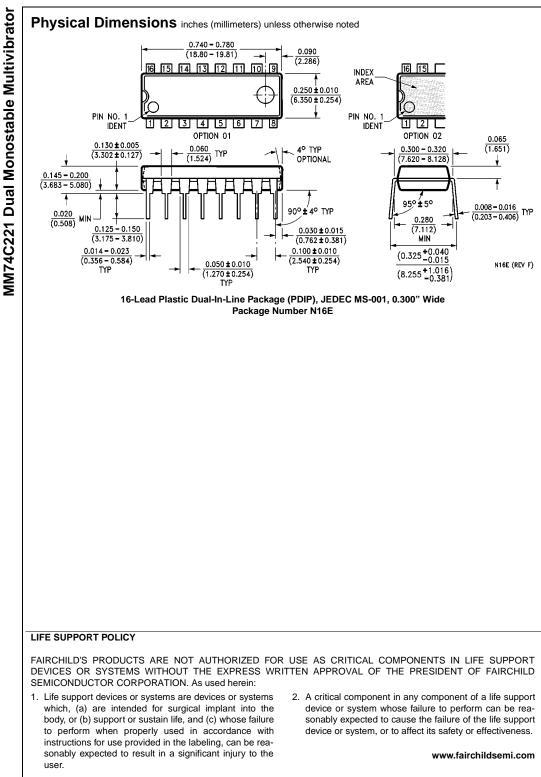
| Symbol              | Parameter                                 | Conditions                                   | Min                   | Тур    | Max | Units |
|---------------------|-------------------------------------------|----------------------------------------------|-----------------------|--------|-----|-------|
| CMOS to C           | MOS                                       |                                              |                       |        |     |       |
| V <sub>IN(1)</sub>  | Logical "1" Input Voltage                 | $V_{CC} = 5V$                                | 3.5                   |        |     | V     |
|                     |                                           | $V_{CC} = 10V$                               | 8.0                   |        |     | V     |
| V <sub>IN(0)</sub>  | Logical "0" Input Voltage                 | $V_{CC} = 5V$                                |                       |        | 1.5 | V     |
|                     |                                           | $V_{CC} = 10V$                               |                       |        | 2.0 | V     |
| OUT(1)              | Logical "1" Output Voltage                | $V_{CC} = 5V, I_{O} = -10 \ \mu A$           | 4.5                   |        |     | V     |
|                     |                                           | $V_{CC} = 10V, I_{O} = -10 \ \mu A$          | 9.0                   |        |     | V     |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage                | $V_{CC} = 5V, I_{O} = +10 \ \mu A$           |                       |        | 0.5 | V     |
|                     |                                           | $V_{CC} = 10V, I_{O} = +10 \ \mu A$          |                       |        | 1   | V     |
| IN(1)               | Logical "1" Input Current                 | V <sub>CC</sub> = 15V, V <sub>IN</sub> = 15V |                       | 0.005  | 1.0 | μΑ    |
| IN(0)               | Logical "0" Input Current                 | $V_{CC} = 15V, V_{IN} = 0V$                  | -1.0                  | -0.005 |     | μA    |
| сс                  | Supply Current (Standby)                  | $V_{CC} = 15V, R_{EXT} = \infty,$            |                       | 0.05   | 300 | μΑ    |
|                     |                                           | Q1, Q2 = Logic "0" (Note 2)                  |                       |        |     |       |
| сс                  | Supply Current                            | V <sub>CC</sub> = 15V, Q1 = Logic "1",       |                       | 15     |     | mA    |
|                     | (During Output Pulse)                     | Q2 = Logic "0" (Figure 4)                    |                       |        |     |       |
|                     |                                           | V <sub>CC</sub> = 5V, Q1 = Logic "1",        |                       | 2      |     | mA    |
|                     |                                           | Q2 = Logic "0" (Figure 4)                    |                       |        |     |       |
|                     | Leakage Current at R/C <sub>EXT</sub> Pin | $V_{CC} = 15V, V_{CEXT} = 5V$                |                       | 0.01   | 3.0 | μΑ    |
| CMOS/LPT            | TL Interface                              |                                              |                       |        |     |       |
| / <sub>IN(1)</sub>  | Logical "1" Input Voltage                 | V <sub>CC</sub> = 4.75V                      | V <sub>CC</sub> – 1.5 |        |     | V     |
| / <sub>IN(0)</sub>  | Logical "0" Input Voltage                 | $V_{CC} = 4.75V$                             |                       |        | 0.8 | V     |
| OUT(1)              | Logical "1" Output Voltage                | $V_{CC} = 4.75 V$ , $I_{O} = -360 \ \mu A$   | 2.4                   |        |     | V     |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage                | $V_{CC} = 4.75 V$ , $I_O = 360 \ \mu A$      |                       |        | 0.4 | V     |
| Dutput Driv         | ve (See Family Characteristics Data       | Sheet) (Short Circuit Current)               |                       |        |     |       |
| SOURCE              | Output Source Current                     | $V_{CC} = 5V$                                | -1.75                 |        |     | mA    |
|                     | (P-Channel)                               | $T_A = 25^{\circ}C, \ V_{OUT} = 0V$          |                       |        |     |       |
| SOURCE              | Output Source Current                     | V <sub>CC</sub> = 10V                        | -8                    |        |     | mA    |
|                     | (P-Channel)                               | $T_A = 25^{\circ}C, V_{OUT} = 0V$            |                       |        |     |       |
| SINK                | Output Sink Current                       | $V_{CC} = 5V$                                | 1.75                  |        |     | mA    |
|                     | (N-Channel)                               | $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$        |                       |        |     |       |
| SINK                | Output Sink Current                       | V <sub>CC</sub> = 10V                        | 8                     |        |     | mA    |
|                     | (N-Channel)                               | $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$        |                       |        |     |       |

Note 2: In Standby (Q = Logic "0") the power dissipated equals the leakage current plus  $V_{CC}/R_{EXT}$ .


| Symbol               | Parameter                               | Conditions                                     | Min | Тур  | Max  | Units |
|----------------------|-----------------------------------------|------------------------------------------------|-----|------|------|-------|
| t <sub>pd A, B</sub> | Propagation Delay from Trigger          | $V_{CC} = 5V$                                  |     | 250  | 500  | ns    |
|                      | Input (A, B) to Output Q, Q             | $V_{CC} = 10V$                                 |     | 120  | 250  | ns    |
| t <sub>pd CL</sub>   | Propagation Delay from Clear            | $V_{CC} = 5V$                                  |     | 250  | 500  | ns    |
|                      | Input (CL) to Output Q, Q               | $V_{CC} = 10V$                                 |     | 120  | 250  | ns    |
| t <sub>S</sub>       | Time Prior to Trigger Input (A, B)      | $V_{CC} = 5V$                                  | 150 | 50   |      | ns    |
|                      | that Clear must be Set                  | $V_{CC} = 10V$                                 | 60  | 20   |      | ns    |
| W(A, B)              | Trigger Input (A, B) Pulse Width        | $V_{CC} = 5V$                                  | 150 | 50   |      | ns    |
|                      |                                         | $V_{CC} = 10V$                                 | 70  | 30   |      | ns    |
| W(CL)                | Clear Input (CL) Pulse Width            | $V_{CC} = 5V$                                  | 150 | 50   |      | ns    |
|                      |                                         | $V_{CC} = 10V$                                 | 70  | 30   |      | ns    |
| W(OUT)               | Q or $\overline{Q}$ Output Pulse Width  | $V_{CC} = 5V, R_{EXT} = 10k,$                  |     | 900  |      | ns    |
|                      |                                         | C <sub>EXT</sub> = 0 pF                        |     |      |      |       |
|                      |                                         | V <sub>CC</sub> = 10V, R <sub>EXT</sub> = 10k, |     | 350  |      | ns    |
|                      |                                         | $C_{EXT} = 0 pF$                               |     |      |      |       |
|                      |                                         | V <sub>CC</sub> = 15V, R <sub>EXT</sub> = 10k, |     | 320  |      | ns    |
|                      |                                         | $C_{EXT} = 0 pF$                               |     |      |      |       |
|                      |                                         | $V_{CC} = 5V$ , $R_{EXT} = 10k$ ,              | 9.0 | 10.6 | 12.2 | μs    |
|                      |                                         | C <sub>EXT</sub> = 1000 pF (Figure 1)          |     |      |      |       |
|                      |                                         | $V_{CC} = 10V, R_{EXT} = 10k,$                 | 9.0 | 10   | 11   | μs    |
|                      |                                         | C <sub>EXT</sub> = 1000 pF (Figure 1)          |     |      |      |       |
|                      |                                         | $V_{CC} = 15V, R_{EXT} = 10k,$                 | 8.9 | 9.8  | 10.8 | μs    |
|                      |                                         | C <sub>EXT</sub> = 1000 pF (Figure 1)          |     |      |      |       |
|                      |                                         | $V_{CC} = 5V, R_{EXT} = 10k,$                  | 900 | 1020 | 1200 | μs    |
|                      |                                         | $C_{EXT} = 0.1 \ \mu F$ (Figure 3)             |     |      |      |       |
|                      |                                         | $V_{CC} = 10V, R_{EXT} = 10k,$                 | 900 | 1000 | 1100 | μs    |
|                      |                                         | $C_{EXT} = 0.1 \ \mu F$ (Figure 3)             |     |      |      |       |
|                      |                                         | $V_{CC} = 15V, R_{EXT} = 10k,$                 | 900 | 990  | 1100 | μs    |
|                      |                                         | $C_{EXT} = 0.1 \ \mu F$ (Figure 3)             |     |      |      |       |
| R <sub>ON</sub>      | ON Resistance of Transistor             | V <sub>CC</sub> = 5V (Note 4)                  |     | 50   | 150  | Ω     |
| R <sub>ON</sub>      | between R/C EXT to CEXT                 | V <sub>CC</sub> = 10V (Note 4)                 |     | 25   | 65   | Ω     |
|                      |                                         | $V_{CC} = 15V$ (Note 4)                        |     | 16.7 | 45   | Ω     |
|                      | Output Duty Cycle                       | R = 10k, C = 1000 pF                           |     |      | 90   | %     |
|                      |                                         | $R = 10k, C = 0.1 \ \mu F$                     |     |      | 90   | %     |
|                      |                                         | (Note 5)                                       |     |      |      |       |
| C <sub>IN</sub>      | Input Capacitance                       | R/C <sub>EXT</sub> Input (Note 6)              |     | 15   | 25   | pF    |
|                      | Parameters are guaranteed by DC correla | Any Other Input (Note 6)                       |     | 5    |      | pF    |


Note 3: AC Parameters are guaranteed by DC correlated testing. Note 4: See AN-138 for detailed explanation R<sub>ON</sub>.

Note 5: Maximum output duty cycle =  $R_{EXT}/R_{EXT}$  + 1000.


Note 6: Capacitance is guaranteed by periodic testing.

MM74C221





MM74C221



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.