

October 1987

Revised January 1999

FAIRCHILD

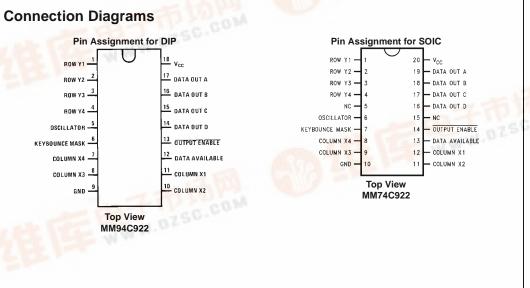
SEMICONDUCTOR

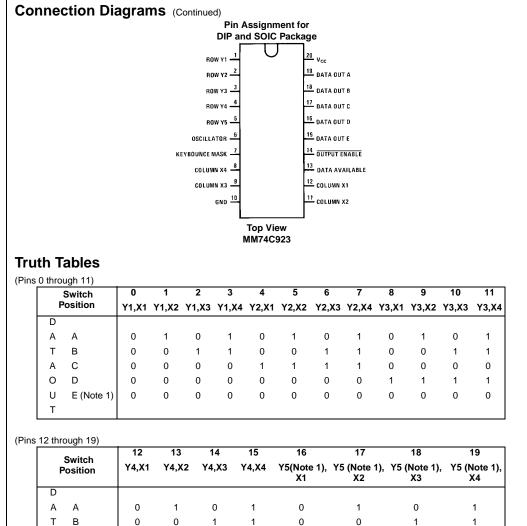
MM74C922 • MM74C923 16-Key Encoder • 20-Key Encoder

General Description

The MM74C922 and MM74C923 CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have on-chip pull-up devices which permit switches with up to 50 k Ω on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two-key roll-over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The 3-STATE outputs provide for easy expansion and bus operation and are LPTTL compatible. 1M74C922 • MM74C923 16-Key Encoder • 20-Key Encoder


Features

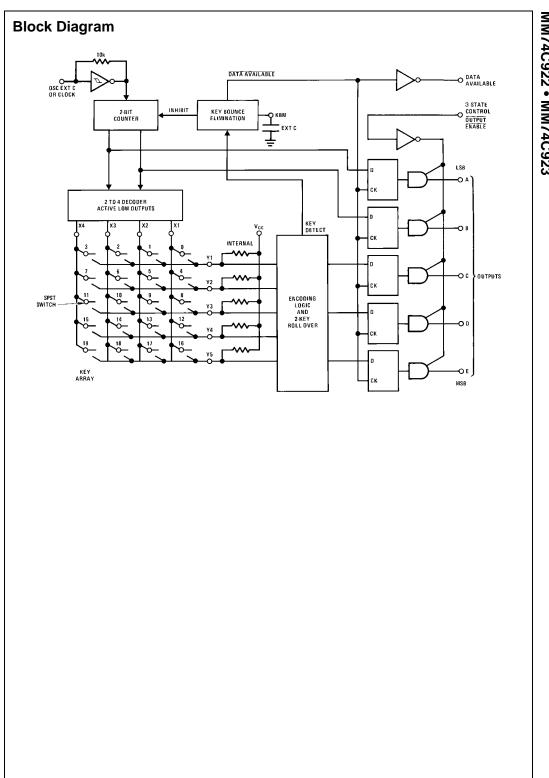

- 50 kΩ maximum switch on resistance
- On or off chip clock
- On-chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- 3-STATE output LPTTL compatible
- Wide supply range: 3V to 15V
- Low power consumption

Ordering Code:

Order Number	Package Number	Package Description
MM74C922N	N18A	18-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C922WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C923WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C923N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

U E (Note 1) Т


А

С

D

Note 1: Omit for MM74C922

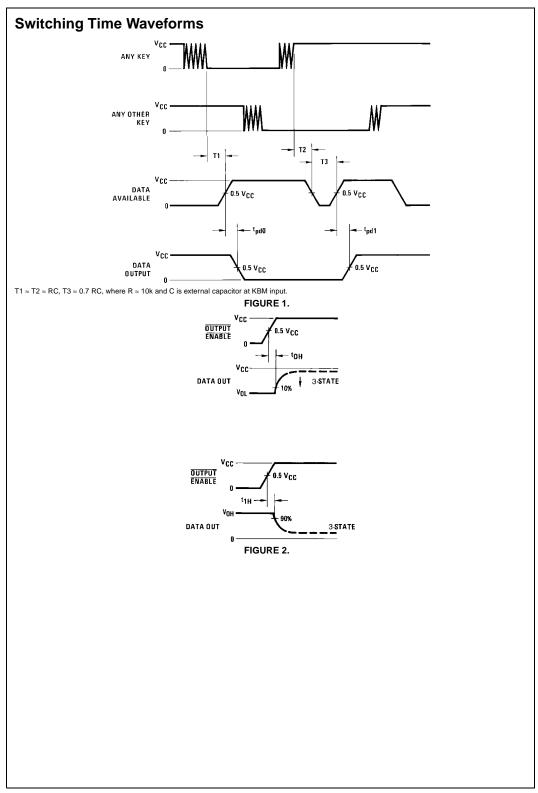
www.fairchildsemi.com

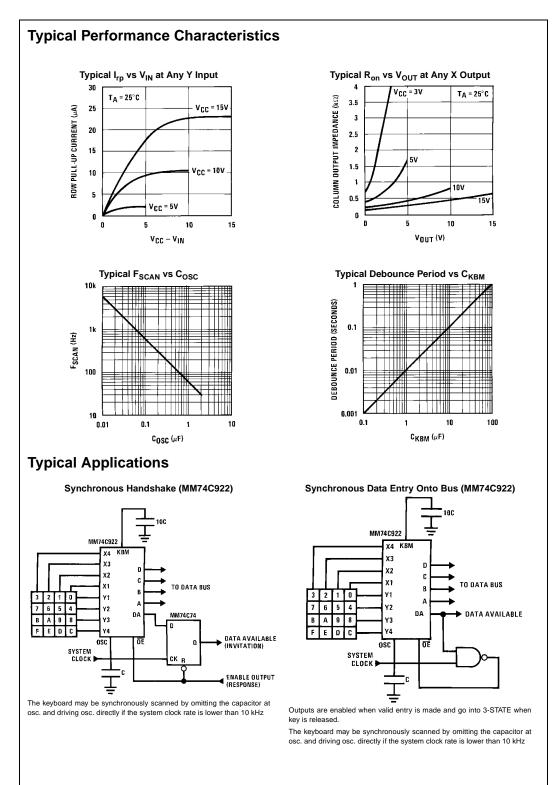
MM74C922 • MM74C923

Absolute Maximum Ratings(Note 2)

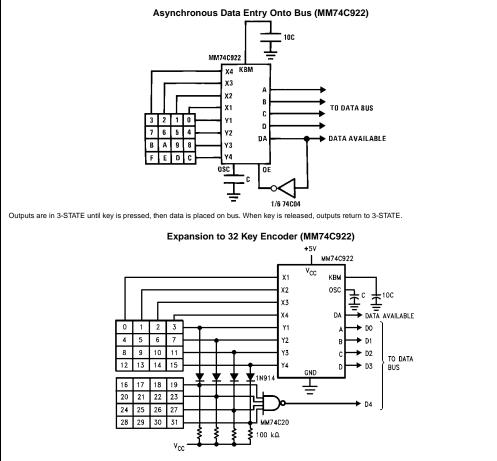
Voltage at Any Pin	V_{CC} – 0.3V to V $_{CC}$ + 0.3V
Operating Temperature Range	
MM74C922, MM74C923	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW

Operating V _{CC} Range	3V to 15V
V _{CC}	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C


Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
смоѕ то	CMOS					
V _{T+}	Positive-Going Threshold Voltage	$V_{CC} = 5V$, $I_{IN} \ge 0.7 \text{ mA}$	3.0	3.6	4.3	V
	at Osc and KBM Inputs	$V_{CC} = 10V$, $I_{IN} \ge 1.4$ mA	6.0	6.8	8.6	V
		$V_{CC} = 15V$, $I_{IN} \ge 2.1$ mA	9.0	10	12.9	V
V _{T-}	Negative-Going Threshold Voltage	$V_{CC} = 5V$, $I_{IN} \ge 0.7 \text{ mA}$	0.7	1.4	2.0	V
	at Osc and KBM Inputs	$V_{CC} = 10V$, $I_{IN} \ge 1.4$ mA	1.4	3.2	4.0	V
		$V_{CC} = 15V, I_{IN} \ge 2.1 \text{ mA}$	2.1	5	6.0	V
V _{IN(1)}	Logical "1" Input Voltage,	$V_{CC} = 5V$	3.5	4.5		V
()	Except Osc and KBM Inputs	$V_{CC} = 10V$	8.0	9		V
		V _{CC} = 15V	12.5	13.5		V
V _{IN(0)}	Logical "0" Input Voltage,	$V_{CC} = 5V$		0.5	1.5	V
	Except Osc and KBM Inputs	$V_{CC} = 10V$		1	2	V
		V _{CC} = 15V		1.5	2.5	v
I _{rp}	Row Pull-Up Current at Y1, Y2,	$V_{CC} = 5V, V_{IN} = 0.1 V_{CC}$		-2	-5	μA
с.	Y3, Y4 and Y5 Inputs	$V_{CC} = 10V$		-10	-20	μΑ
		V _{CC} = 15V		-22	-45	μA
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
001(1)		$V_{CC} = 10V, I_{O} = -10 \mu A$	9			v
		$V_{CC} = 15V, I_{O} = -10 \ \mu A$	13.5			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1	V
		$V_{CC} = 15V, I_{O} = 10 \ \mu A$			1.5	v
Ron	Column "ON" Resistance at	$V_{CC} = 5V, V_{C} = 0.5V$		500	1400	Ω
0.1	X1, X2, X3 and X4 Outputs	$V_{CC} = 10V, V_{O} = 1V$		300	700	Ω
		$V_{CC} = 15V, V_{O} = 1.5V$		200	500	Ω
Icc	Supply Current	$V_{CC} = 5V$		0.55	1.1	mA
	Osc at 0V, (one Y low)	$V_{CC} = 10V$		1.1	1.9	mA
		V _{CC} = 15V		1.7	2.6	mA
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μA
(•)	at Output Enable					
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
(0)	at Output Enable					
CMOS/LP1					1	1
V _{IN(1)}	Except Osc and KBM Inputs	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Except Osc and KBM Inputs	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	I _O = -360 μA				
(-)		V _{CC} = 4.75V	2.4			v
		I _O = -360 μA				
V _{OUT(0)}	Logical "0" Output Voltage	$I_{O} = -360 \mu\text{A}$				1
001(0)		$V_{CC} = 4.75V$			0.4	V
		$I_{O} = -360 \mu A$			-	


Symbol	Parameter	Conditions	Min	Тур	Max	Units
	RIVE (See Family Characteristics I	Data Sheet) (Short Circuit Current)				
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{OUT} = 0V,$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V,$	-8	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{OUT} = V_{CC},$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$,	8	16		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
	C, C _L = 50 pF, unless otherwise Parameter		Min	Тур	Max	Units
T _A = 25° Symbol	C, C _L = 50 pF, unless otherwise Parameter	noted Conditions	Min	Тур	Max	Units
$T_A = 25^\circ$	C, C _L = 50 pF, unless otherwise Parameter Propagation Delay Time to	noted	Min	Тур 60	Max 150	Units
T _A = 25° Symbol	C, C _L = 50 pF, unless otherwise Parameter	Conditions C _L = 50 pF (Figure 1)	Min			Units ns ns
T _A = 25° Symbol	C, C _L = 50 pF, unless otherwise Parameter Propagation Delay Time to Logical "0" or Logical "1"	noted Conditions C _L = 50 pF (Figure 1) V _{CC} = 5V	Min	60	150	ns
T _A = 25° Symbol	C, C _L = 50 pF, unless otherwise Parameter Propagation Delay Time to Logical "0" or Logical "1"	noted Conditions C _L = 50 pF (Figure 1) V _{CC} = 5V V _{CC} = 10V	Min	60 35	150 80	ns
$\frac{T_A = 25^{\circ}}{\text{Symbol}}$ $\frac{T_{pd0}, t_{pd1}}{T_{pd0}, t_{pd1}}$	C, C _L = 50 pF, unless otherwise Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A.	noted Conditions $C_L = 50 \text{ pF} (Figure 1)$ $V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	Min	60 35	150 80	ns
$\frac{T_A = 25^{\circ}}{\text{Symbol}}$ $\frac{T_{pd0}, t_{pd1}}{T_{pd0}, t_{pd1}}$	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from	$\begin{tabular}{ c c c c c } \hline C on d it is c conditions$ \\ \hline $C_L = 50 $ pF (Figure 1)$ \\ $V_{CC} = 5V$ \\ $V_{CC} = 10V$ \\ $V_{CC} = 10V$ \\ $V_{CC} = 15V$ \\ \hline $R_L = 10k, $C_L = 10 $ pF (Figure 2)$ \\ \hline \end{tabular}$	Min	60 35 25	150 80 60	ns ns ns
$\frac{T_A = 25^{\circ}}{\text{Symbol}}$ $\frac{T_{pd0}, t_{pd1}}{T_{pd0}, t_{pd1}}$	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline C or Conditions \\ \hline $C_L = 50 \ \mbox{pf} (Figure 1)$ \\ $V_{CC} = 5V$ \\ $V_{CC} = 10V$ \\ $V_{CC} = 15V$ \\ \hline $R_L = 10k, \ C_L = 10 \ \mbox{pf} (Figure 2)$ \\ $V_{CC} = 5V, \ R_L = 10k$ \\ \hline \end{tabular}$	Min	60 35 25 80	150 80 60 200	ns ns ns ns
$\frac{T_A = 25^{\circ}}{\text{Symbol}}$ $\frac{T_{pd0}, t_{pd1}}{T_{pd0}, t_{pd1}}$	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline C on ditions \\ \hline $C_L = 50 \ \mbox{PF}$ (Figure 1) \\ $V_{CC} = 5V$ \\ $V_{CC} = 10V$ \\ $V_{CC} = 15V$ \\ \hline $R_L = 10k, \ C_L = 10 \ \mbox{PF}$ (Figure 2) \\ $V_{CC} = 5V, \ R_L = 10k$ \\ $V_{CC} = 10V, \ C_L = 10 \ \mbox{PF}$ \\ \hline \end{tabular}$	Min	60 35 25 80 65	150 80 60 200 150	ns ns ns ns
T _A = 25° Symbol t _{pd0} , t _{pd1} t _{0H} , t _{1H}	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State	$\begin{tabular}{ c c c c } \hline C on ditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Min	60 35 25 80 65	150 80 60 200 150	ns ns ns ns
T _A = 25° Symbol t _{pd0} , t _{pd1} t _{0H} , t _{1H}	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from	$\begin{tabular}{ c c c c } \hline C on ditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Min	60 35 25 80 65 50	150 80 60 200 150 110	ns ns ns ns ns
T _A = 25° Symbol t _{pd0} , t _{pd1} t _{0H} , t _{1H}	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from High Impedance State to a	$\begin{tabular}{ c c c c } \hline C on ditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Min	60 35 25 80 65 50 100	150 80 60 200 150 110 250	ns ns ns ns ns ns ns
T _A = 25° Symbol t _{pd0} , t _{pd1} t _{0H} , t _{1H}	C, C _L = 50 pF, unless otherwise Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from High Impedance State to a	$\begin{tabular}{ c c c c } \hline C on ditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Min	60 35 25 80 65 50 100 55	150 80 60 200 150 110 250 125	ns ns ns ns ns ns ns ns ns

DC Electrical Characteristics

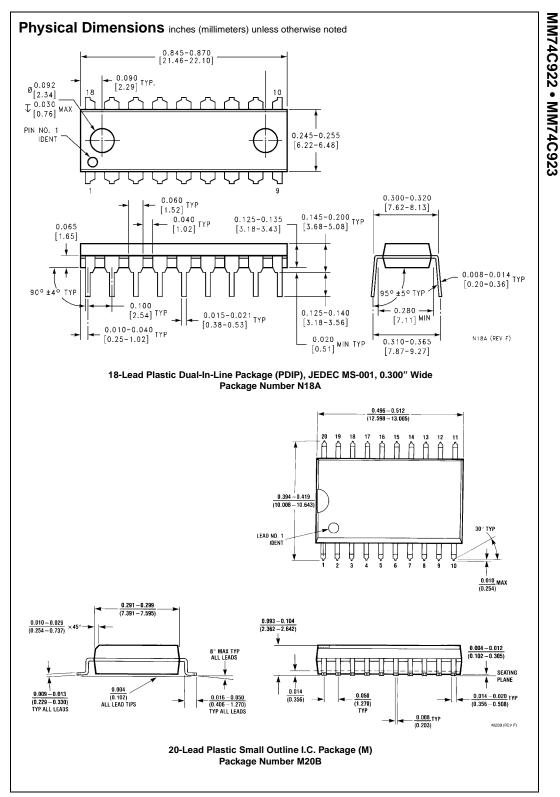
MM74C922 • MM74C923

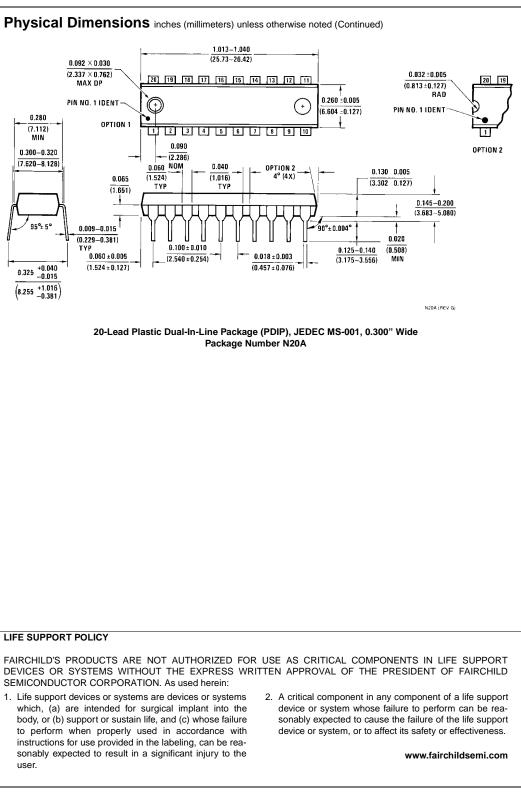
Theory of Operation

The MM74C922/MM74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(MM74C922) or 5(MM74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, C_{OSE} , and the key bounce mask capacitor, C_{MSK} . Thus, the MM74C922/MM74C923's performance can be optimized for many keyboards.

The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (MM74C922) or 5 rows by 4 columns (MM74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic "0". These outputs are open drain and are therefore low for 25% of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2-bit decoder.

When a key is depressed, key 0, for example, nothing will happen when the X1 input is off, since Y1 will remain high. When the X1 column is scanned, X1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1


going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded Y inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high.


If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.

The two-key roll-over feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other Y inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset.

The output latches feed 3-STATE, which is enabled when the Output Enable (\overline{OE}) input is taken low.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.