查询SN74LVC16374供应商

捷多邦,专业PCB打样工厂,24小时加急SAFF4LVC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS SCAS316B - NOVEMBER 1993 - REVISED JULY 1995

(TOP VIEW)

- DGG OR DL PACKAGE Member of the Texas Instruments Widebus[™] Family EPIC ™ (Enhanced-Performance Implanted) **CMOS) Submicron Process** • Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C • Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25° C Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit edge-triggered D-type flip-flop is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC16374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

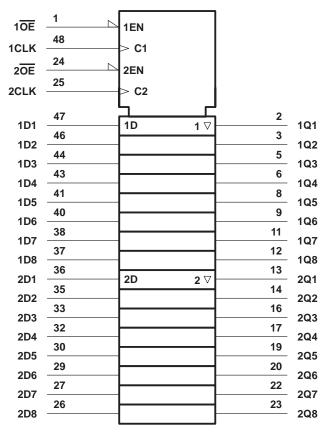
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74LVC16374 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

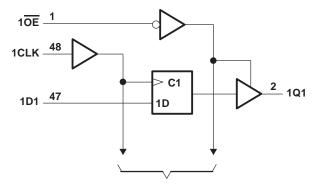
and Widebus are trademarks of Texas Instruments Incorporated

		7						
1 OE		48	1CLK					
1Q1		47						
1Q2	3		1D2					
GND	4		GND					
1Q3 [1D3					
1Q4 [6	43	1D4					
v _{cc} [7] ∨ _{CC}					
1Q5 🛛		41	1D5					
1Q6 [9] 1D6					
gnd [10	39	GND					
1Q7 [11] 1D7					
1Q8 [12		1D8					
2Q1 [13	36	2D1					
2Q2	14	35	2D2					
GND [15	34	GND					
2Q3 [16	33	2D3					
2Q4 [17	32	2D4					
v _{cc} [18	31	V _{CC}					
2Q5 [19	30	2D5					
2Q6 [20	29	2D6					
gnd [21	28	GND					
2Q7 [22		2D7					
2Q8 [23	26	2D8					
2OE	24	25	2CLK					
and the	-		-950.0					

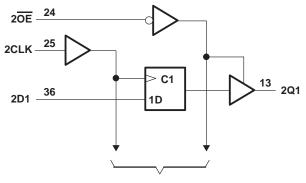

SN74LVC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS

SCAS316B - NOVEMBER 1993 - REVISED JULY 1995

FUNCTION	
FUNCTION	TABLE


(each flip-flop)								
	INPUTS	OUTPUT						
OE	CLK							
L	\uparrow	Н	Н					
L	\uparrow	L	L					
L	H or L	Х	Q ₀					
н	Х	Х	Z					

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

SN74LVC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS

SCAS316B - NOVEMBER 1993 - REVISED JULY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} $-0.5 \text{ V to } 4.6 \text{ V}$ Input voltage range, V_I (see Note 1) $-0.5 \text{ V to } 4.6 \text{ V}$ Output voltage range, V_O (see Notes 1 and 2) $-0.5 \text{ V to } 4.6 \text{ V}$ Input clamp current, I_{IK} ($V_I < 0$) $-0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$ Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) -50 mA Continuous output current, I_O ($V_O = 0$ to V_{CC}) $\pm 50 \text{ mA}$, ,
Continuous current through V _{CC} or GND ±100 mA	
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package 0.85 W	1
DL package 1.2 W	1
Storage temperature range, T _{stg} –65°C to 150°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		V
VIL	Low-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	V
VI	Input voltage		0	VCC	V
Vo	Output voltage		0	VCC	V
	High-level output current $\frac{V_{CC} = 2.7 V}{V_{CC} = 3 V}$	$V_{CC} = 2.7 V$		-12	mA
ЮН			-24	IIIA	
	Low-level output current	$V_{CC} = 2.7 V$		12	mA
IOL	V _{CC} = 3 V			24	ШA
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74LVC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCAS316B – NOVEMBER 1993 – REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	v _{cc} †	MIN TYP [‡]	MAX	UNIT	
		I _{OH} = -100 μA	MIN to MAX	V _{CC} -0.2			
Val		10	2.7 V	2.2		v	
∨он		$I_{OH} = -12 \text{ mA}$	3 V	2.4		v	
		$I_{OH} = -24 \text{ mA}$	3 V	2			
		I _{OL} = 100 μA	MIN to MAX		0.2		
VOL		I _{OL} = 12 mA	2.7 V		0.4	V	
		I _{OL} = 24 mA	3 V		0.55		
lj –		$V_I = V_{CC}$ or GND	3.6 V		±5	μA	
		V _I = 0.8 V	2.1/	75		μΑ	
II(hold)	Data inputs	$V_{I} = 2 V$	3 V	-75			
		V ₁ = 0 to 3.6 V 3.6 V	3.6 V		±500		
I _{OZ}		$V_{O} = V_{CC}$ or GND	3.6 V		±10	μA	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V		40	μA	
∆ICC		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V		500	μA	
Ci		$V_I = V_{CC}$ or GND	3.3 V	3.5		pF	
Co		$V_{O} = V_{CC}$ or GND	3.3 V	7		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

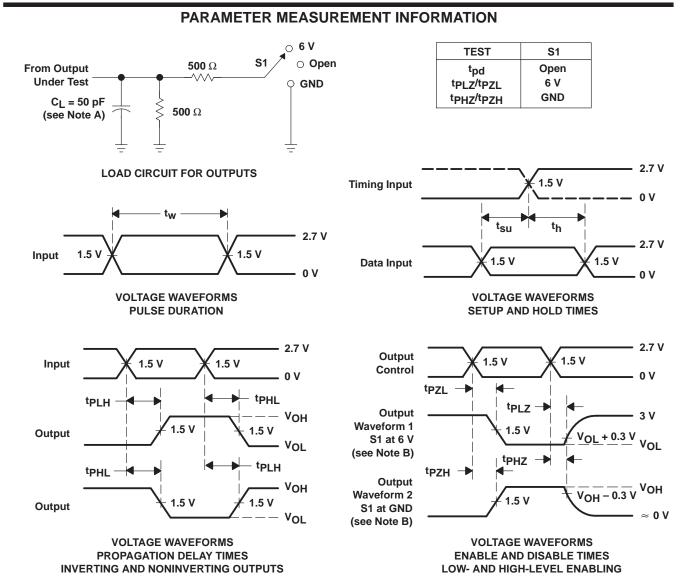
[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

					V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	
f _{clock} Clock frequency		0	100	0	80	MHz	
t _w Pulse duration, CLK high or low		4		4		ns	
t _{su}	Setup time, data before CLK↑	High or low	2		3		ns
t _h	Hold time, data after CLK [↑]	High or low	1.5		1.5		ns

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO	V _{CC} = ± 0.	= 3.3 V .3 V	V _{CC} =	2.7 V	UNIT
		PUT) (OUTPUT) M	MIN	MAX	MIN	MAX	
fmax			100		80		MHz
^t pd	CLK	Q	1.5	7.5	1.5	8.5	ns
ten	OE	Q	1.5	7.5	1.5	8.5	ns
^t dis	OE	Q	1.5	7	1.5	8	ns



SN74LVC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS316B - NOVEMBER 1993 - REVISED JULY 1995

operating characteristics, V_{CC} = 3.3 V, T_A = 25° C

PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance per flip-flop	Outputs enabled	$C_{\rm L} = 50 \text{ pc}$ f = 10 MHz	22	лE	
	Power dissipation capacitance per hip-hop	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	9	рF

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated