

December 1994

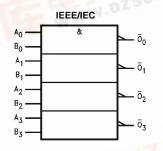
Revised July 1999

4F00 Quad 2-Input NAND Gate

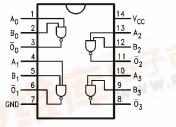
FAIRCHI

SEMICONDUCTOR

74F00 **Quad 2-Input NAND Gate** COM


General Description

This device contains four independent gates, each of which performs the logic NAND function.


Ordering Code:

Order Number	Package Number	Package Description				
74F00SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow				
74F00SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74F00PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Dia Mana	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
A _n , B _n	Inputs	1.0/1.0	20 µA/–0.6 mA	
Ōn	Outputs	50/33.3	–1 mA/20 mA	

Absolute Maximum Ratings(Note 1)

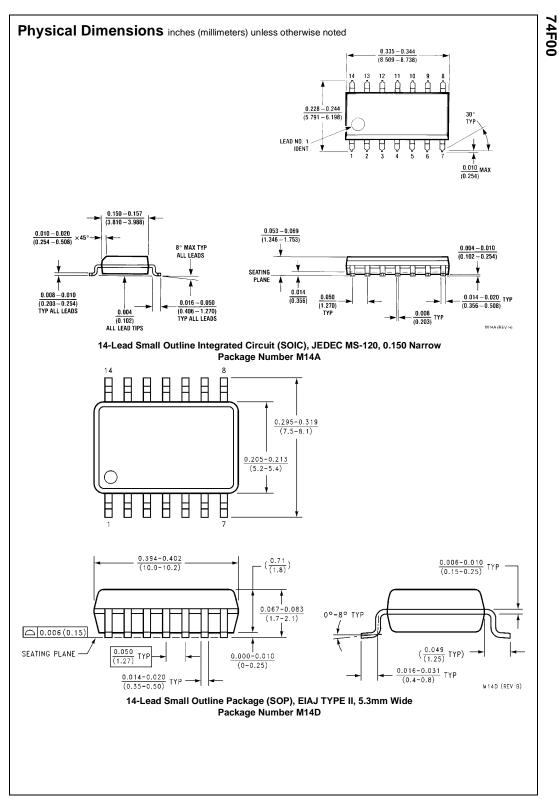
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
$V_{\mbox{\scriptsize CC}}$ Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\mbox{\scriptsize CC}}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

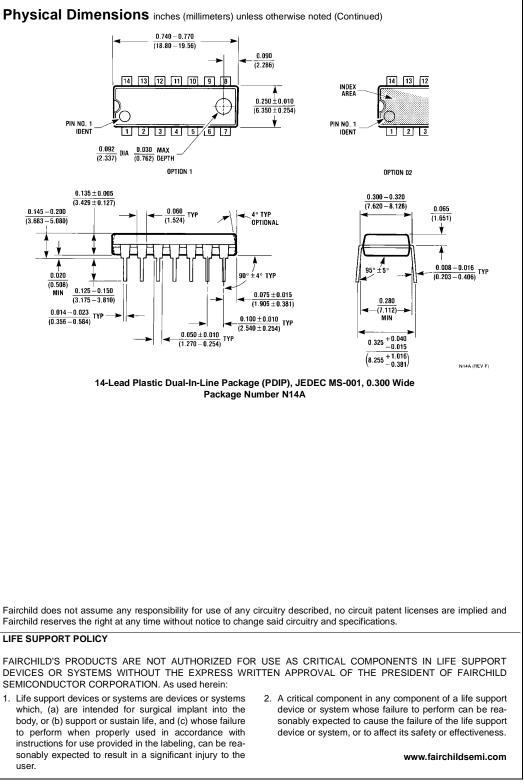
Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Vcc	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10%	V _{CC} 2.5			V	Min	I _{OH} = -1 mA	
	Voltage 5% V	CC 2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW 10% Voltage	V _{CC}		0.5	V	Min	I _{OL} = 20 mA	
IIH	Input HIGH Current			5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μA	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current			50	μA	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All other pins grounded	
I _{OD}	Output Leakage Circuit Current			3.75	μΑ	0.0	V _{IOD} = 150 mV All other pins grounded	
IIL	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current	l l	1.9	2.8	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current		6.8	10.2	mA	Max	$V_0 = LOW$	

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	
t _{PHL}	A_n , B_n to \overline{O}_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3	ns

