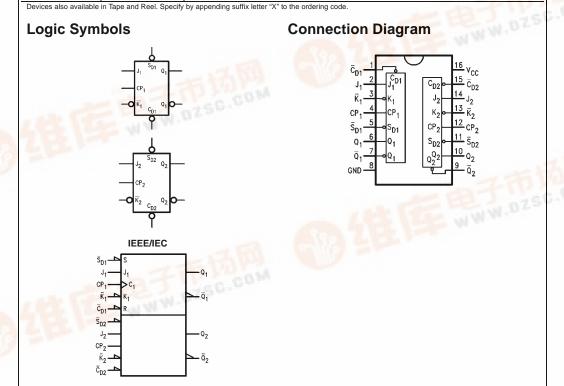


AIRCHIL


74F109 Dual JK Positive Edge-Triggered Flip-Flop

General Description

Asynchronous Inputs:

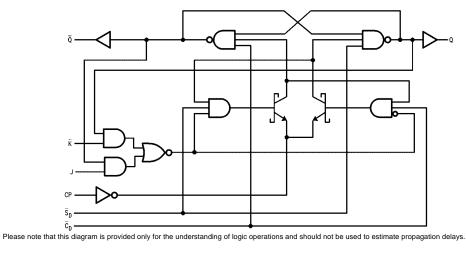
Ordering Code:

Ordering Code:	74F109SC M16A 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body	dent transition clocked JK flip-flops. The clocking op is independent of rise and fall times of the clock wa The JK design allows operation as a D-type flip-flo to F74 data sheet) by connecting the J and K inputs	c (refer Simultaneous LOW) on \overline{C}_{-} and \overline{S}_{-} makes
		Order Number Package Number	Package Description
	74F109SJ M16D 16-Lead Small Outline Package (SOP), EIAJ TYPE 11, 5.3mm Wide	74F109SJ M16D 16-Lead Sm	all Outline Package (SOP), EIAJ TYPE 11, 5.3mm Wide
	74F109SJ M16D 16-Lead Small Outline Package (SOP), EIAJ TYPE 11, 5.3mm Wide 74F109PC N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		e ()

© 1999 Fairchild Semiconductor Corporation DS009471

.dzsc.com

74F109


Truth Table

SD		inputs	Inputs					
U	CD	СР	J	ĸ	Q	Q		
L	Н	Х	Х	Х	Н	L		
н	L	Х	Х	Х	L	н		
L	L	Х	Х	Х	н	н		
н	н	~	I.	I	L	н		
н	н	~	h	I	Тод	gle		
н	н	~	I	h	Q	Q		
н	н	~	h	h	н	L		
н	н	L	Х	х	Q	Q		

Unit Loading/Fan Out

Din Namas	Description	U.L.	Input I _{IH} /I _{IL}
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}
$J_1, J_2, \overline{K}_1, \overline{K}_2$	Data Inputs	1.0/1.0	20 µA/–0.6 mA
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	20 µA/-1.8 mA
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/3.0	20 µA/–1.8 mA
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA

Block Diagram

Absolute Maximum Ratings(Note 1)

o. T	
Storage Temperature	−65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+175^{\circ}C$
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{cc} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

Recommended Operating Conditions

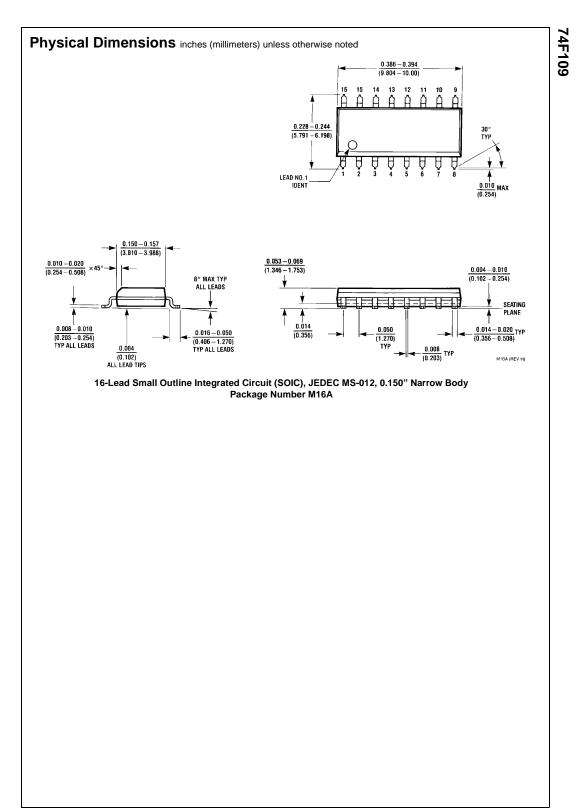
Free Air Ambient Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Supply Voltage	+4.5V to +5.5V

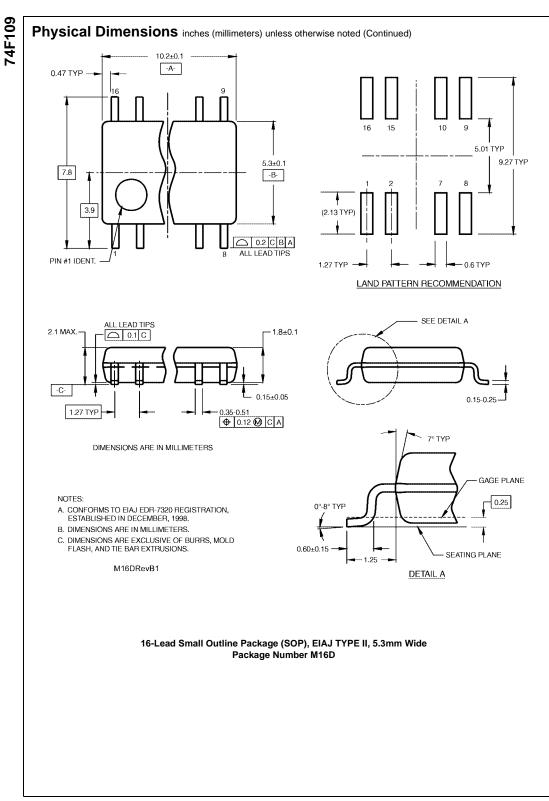
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

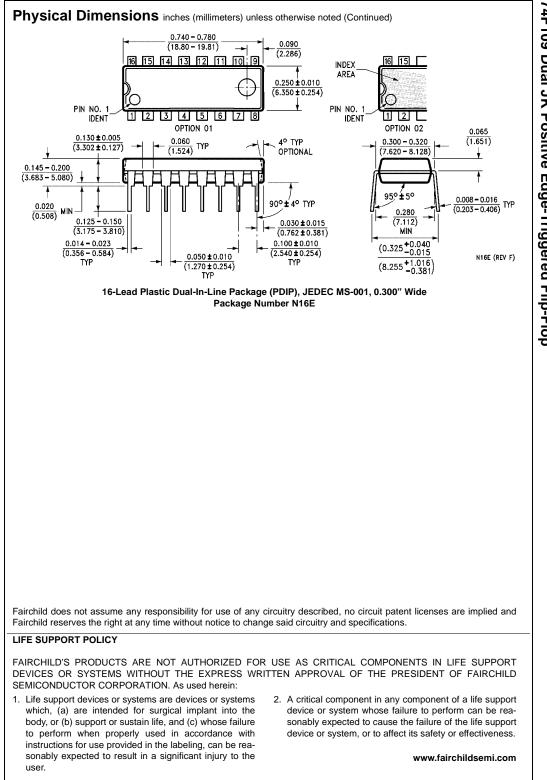
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage 10% V _{CC}	2.5			v	Min	$I_{OH} = -1 \text{ mA}$
	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
I _{IH}	Input HIGH Current			5.0	μA	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA
		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage			3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current			3.75	μΑ	0.0	All Other Pins Grounded
IIL	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V (J_n, \overline{K}_n)$
				-1.8	mA	Max	$V_{IN} = 0.5V \ (\overline{C}_{Dn}, \ \overline{S}_{Dn})$
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current		11.7	17.0	mA	Max	CP = 0V


ດ	
0	
~	
ш	
4	
~	


AC Electrical Characteristics


Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		V _{CC} =	to +70°C +5.0V 50 pF	Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	125		90		MHz
t _{PLH}	Propagation Delay	3.8	5.3	7.0	3.8	8.0	
t _{PHL}	CP_n to Q_n or \overline{Q}_n	4.4	6.2	8.0	4.4	9.2	ns
t _{PLH}	Propagation Delay	3.2	5.2	7.0	3.2	8.0	ns
t _{PHL}	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.5	7.0	9.0	3.5	10.5	ns

AC Operating Requirements

	Parameter	T _A =	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$	
Symbol		V _{CC} =				
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		
t _S (L)	$J_n \text{ or } \overline{K_n} \text{ to } CP_n$	3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		ns
t _H (L)	$J_n \text{ or } \overline{K_n} \text{ to } CP_n$	1.0		1.0		
t _W (H)	CP _n Pulse Width	4.0		4.0		
t _W (L)	HIGH or LOW	5.0		5.0		ns
t _W (L)	\overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width LOW	4.0		4.0		ns
t _{REC}	Recovery Time	2.0		2.0		ns
	\overline{C}_{Dn} or \overline{S}_{Dn} to CP	2.0		2.0		

