

AIRCHILD

SEMICONDUCTOR

April 1988 Revised August 1999 '4F114 Dual JK Negative Edge-Triggered Flip-Flop

74F114 Dual JK Negative Edge-Triggered Flip-Flop with Common Clocks and Clears

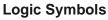
General Description

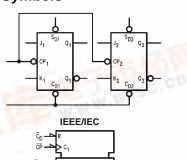
The 74F114 contains two high-speed JK flip-flops with common Clock and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \overline{S}_D or \overline{C}_D prevents clocking and forces Q or \overline{Q} HIGH, respectively.

Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

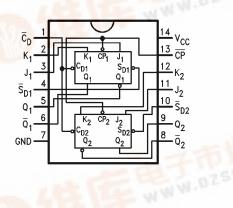
Asynchronous Inputs:

LOW input to \overline{S}_{D} sets Q to HIGH level


LOW input to \overline{C}_{D} sets Q to LOW level


Clear and Set are independent of Clock Simultaneous LOW on \overline{C}_D and \overline{S}_D

makes both Q and Q HIGH


Ordering Code:

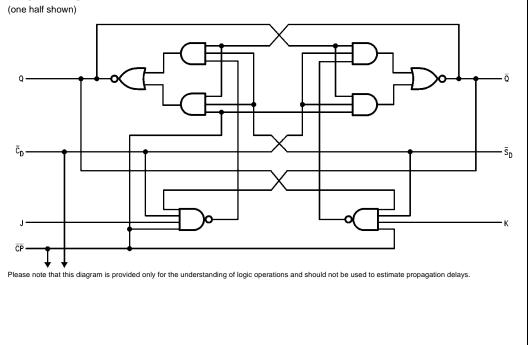
Order Number	Package Number	Package Description
74F114SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F114PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

74F114

Unit Loading/Fan Out

Pin Names	D	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 µA/-0.6 mA	
CP	Clock Pulse Input (Active Falling Edge)	1.0/8.0	20 µA/-4.8 mA	
C D	Direct Clear Input (Active LOW)	1.0/10.0	20 µA/-6.0 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/5.0	20 µA/–3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA	


Truth Table

		Inputs			Out	puts
SD	CD	СР	J	к	Q	Ø
L	Н	Х	Х	Х	Н	L
н	L	Х	Х	Х	L	н
L	L	Х	Х	Х	н	н
н	н	~	h	h	\overline{Q}_0	Q_0
н	н	~	Ι	h	L	н
н	н	~	h	Т	н	L
н	Н	~	Ι	Ι	Q ₀	\overline{Q}_0

H (h) = HIGH Voltage Level L (h) = LOW Voltage Level X = Immaterial

 $\begin{array}{l} A = \operatorname{initraterial} \\ \nabla_{-} = \operatorname{HIGH-to-LOW} \operatorname{Clock} \operatorname{Transition} \\ Q_0 \left(\overline{Q}_0 \right) = \operatorname{Before} \operatorname{HIGH-to-LOW} \operatorname{Transition} of \operatorname{Clock} \\ \operatorname{Lower} case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.$

Logic Diagram

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F114

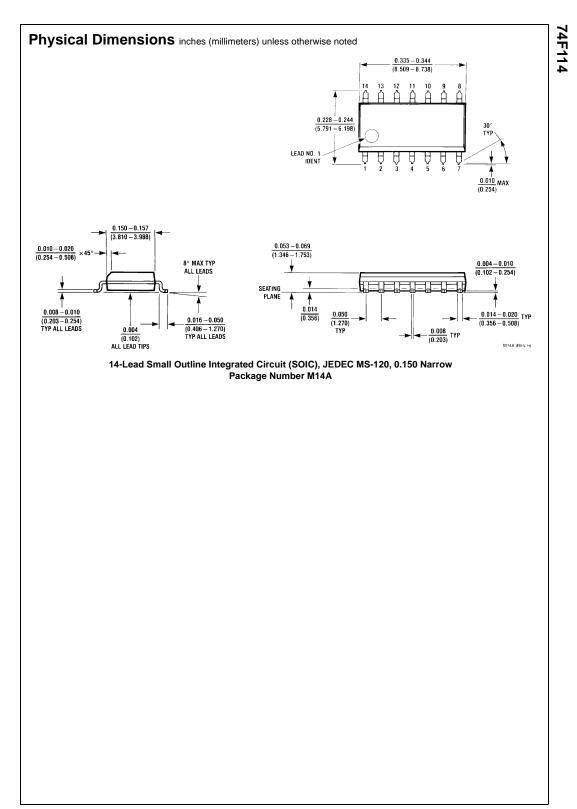
0°C to +70°C +4.5V to +5.5V

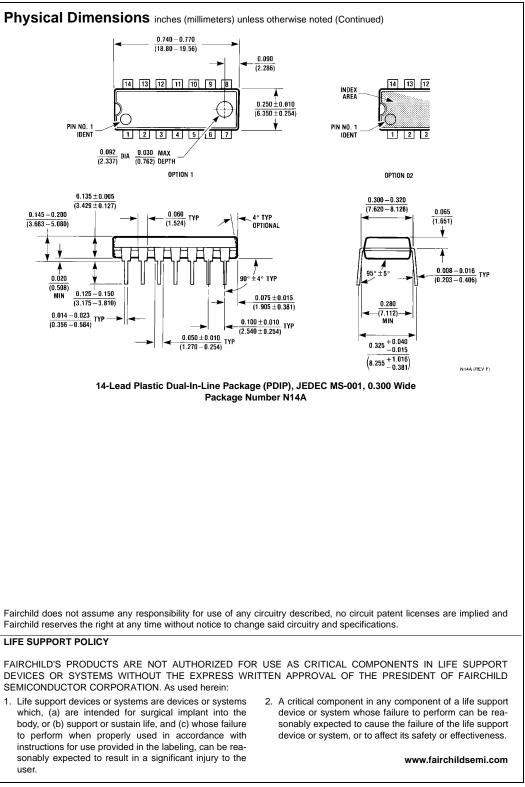
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage								
I _{IH}	Input HIGH				5.0	μA	Max	V _{IN} = 2.7V	
	Current				5.0	μΛ	IVIAA	v _{IN} = 2.7 v	
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V	
	Breakdown Test				7.0	μΛ	IVIAA	v _{IN} = 7.0 v	
ICEX	Output High				50	μA	Max	$V_{OUT} = V_{CC}$	
	Leakage Current				50	μΛ	IVICA	v001 - vCC	
V _{ID}	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA	
	Test		4.70				0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded	
Ι _{ΙL}	Input LOW Current				-0.6			V _{IN} = 0.5V (J _n , K _n)	
					-3.0			$V_{IN} = 0.5V \ (\overline{S}_{Dn})$	
					-4.8	mA	Max	$V_{IN} = 0.5V (C\overline{P})$	
					-6.0			$V_{IN} = 0.5V (\overline{C}_{Dn})$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current			12.0	19.0	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			12.0	19.0	mA	Max	$V_0 = LOW$	


74F114


AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	75	95		70		MHz
t _{PLH}	Propagation Delay	3.0	5.0	6.5	3.0	7.5	
t _{PHL}	\overline{CP} to Q_n or \overline{Q}_n	3.0	5.5	7.5	3.0	8.5	ns
t _{PLH}	Propagation Delay	3.0	4.5	6.5	3.0	7.5	
t _{PHL}	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.0	4.5	6.5	3.0	7.5	ns

AC Operating Requirements

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V		T _A = 0°C to +70°C V _{CC} = +5.0V	
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0		
t _S (L)	J _n or K _n to CP	3.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		ns
t _H (L)	J _n or K _n to CP	0		0		
t _W (H)	CP Pulse Width	4.5		5.0		ns
t _W (L)	HIGH or LOW	4.5		5.0		
t _W (L)	\overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width,	4.5		5.0		ns
	LOW					
t _{REC}	Recovery Time	4.0		5.0		ns
	$\overline{S}_{Dn}, \overline{C}_{Dn}, \text{ to } \overline{CP}$					

