SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

- Members of the Texas Instruments
 Widebus™ Family
- UBT[™] (Universal Bus Transceiver)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched. or Clocked Mode
- Translate Between GTL/GTL+ Signal Level and LVTTL Logic Levels
- High-Drive (100 mA),
 Low-Output-Impedance (12 Ω) Bus
 Transceiver (B Port)
- Edge-Rate-Control Input Configures the B-Port Output Rise and Fall Times
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port
- Distributed V_{CC} and GND-Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Thin Shrink
 Small-Outline (DGG) and Ceramic Quad
 Flat (HV) Packages

description

The 'GTL1655 devices are high-drive (100 mA), low-output-impedance (12 Ω) 16-bit universal bus transceivers (UBT) that provide LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. They are partitioned as two 8-bit transceivers and combine D-type flip-flops and D-type latches to allow for transparent, latched, and clocked modes of data transfer similar to the '16501 function. These devices provide an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels and output edge control (OEC™). The high drive is suitable for driving double-terminated low-impedance backplanes WWW.BZSG.COM using incident-wave switching.

SN74GTL1655...DGG PACKAGE (TOP VIEW)

1OEAB	1 U	64	CLK
1OEBA	2	63	1LEAB
V _{CC} [3	62	1LEBA
1A1 [4	61	V _{ERC}
GND [5	60	
1A2 [6	59] 1B1
1A3 [7	58] 1B2
GND [8	57] GND
1A4 [9	56] 1B3
GND [10	55] 1B4
1A5 [11	54] 1B5
GND [12	53	GND
1A6 [13	52] 1B6
1A7 [14	51] 1B7
V _{CC} [15	50] v _{cc}
1A8 [16	49] 1B8
2A1 [17	48] 2B1
GND [18	47] GND
2A2 [19	46] 2B2
2A3 [20	45] 2B3
GND [21	44] GND
2A4 [22	43] 2B4
2A5 [23	42] 2B5
GND [24	41	V _{REF}
2A6 [25	40] 2B6
GND [26	39	
2A7 [27	38] 2B7
V _{CC} [28	37] 2B8
2A8 [29	36	BIAS V _{CC}
GND [35] 2LEAB
2OEAB	31	34] 2LEBA
2OEBA	32	33] OE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

tebus, UBT, and OEC are trademarks of Texas Instruments Incorporated.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

description (continued)

The user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels. GTL+ is the Texas Instruments derivative of the Gunning transceiver logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels but are not 5-V tolerant. V_{REF} is the reference input voltage for the B port.

These devices are uniquely partitioned as two 8-bit transceivers with individual latch timing and output signals, but with a common clock and output enable inputs for both transceiver words.

Data flow for each word is determined by the respective latch enables (xLEAB and xLEBA), output enables (xOEAB and xOEBA), and clock (CLK). The output enables (1OEAB, 1OEBA, 2OEAB, and 2OEBA) control byte 1 and byte 2 data for the A-to-B and B-to-A directions, respectively.

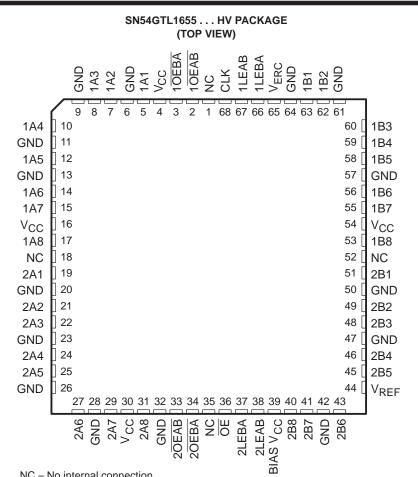
For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB transitions low, the A data is latched independent of CLK high or low. If LEAB is low, the A data is registered on the CLK low-to-high transition. When \overline{OEAB} is low, the outputs are active. With \overline{OEAB} high, the outputs are in the high-impedance state.

Data flow for the B-to-A direction is identical, but uses $\overline{\text{OEBA}}$, LEBA, and CLK. Note that CLK is common to both directions and both 8-bit words. $\overline{\text{OE}}$ is also common and is used to disable all I/O ports simultaneously.

The 'GTL1655 is featured with adjustable edge-rate control (V_{ERC}). Changing V_{ERC} input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize for various loading conditions.

These devices are fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

The SN54GTL1655 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74GTL1655 is characterized for operation from –40°C to 85°C.

SN54GTL1655, SN74GTL1655 16-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

NC - No internal connection

SCBS696E – JULY 1997 – REVISED NOVEMBER 1999

Function Tables

FUNCTION[†]

	INPU ⁻	TS		OUTPUT	MODE
OEAB	LEAB	CLK	Α	В	WODE
Н	Χ	Х	Χ	Z	Isolation
L	Н	X	L	L	Transparent
L	Н	X	Н	Н	Transparent
L	L	\uparrow	L	L	Registered
L	L	\uparrow	Н	Н	Registered
L	L	Н	Χ	в ₀ ‡	Previous State
L	L	L	Χ	В ₀ §	Previous State

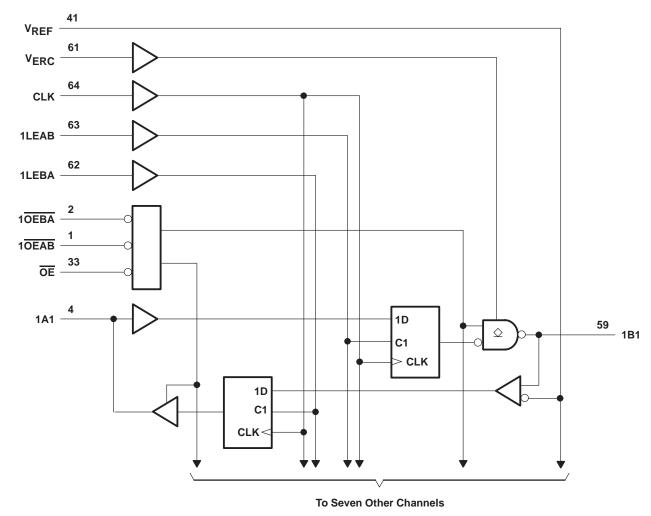
[†] A-to-B data flow is shown. B-to-A flow is similar, but uses OEBA, LEBA, and CLK.

OUTPUT ENABLE

	INPUTS		OUTPUTS			
OE	OEAB	OEBA	A PORT B POR			
L	L	L	Active	Active		
L	L	Н	Z	Active		
L	Н	L	Active	Z		
L	Н	Н	Z	Z		
Н	Χ	Χ	Z	Z		

B-PORT EDGE-RATE CONTROL (VERC)

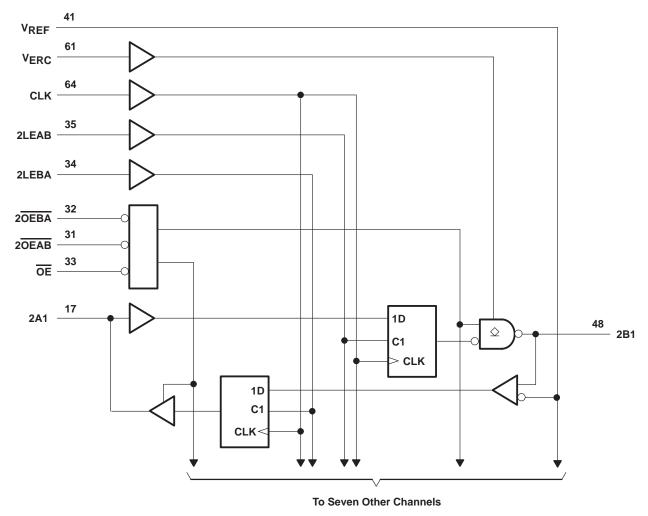
INPU	T V _{ERC}	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B PORT EDGE RATE
Н	Vcc	Slow
L	GND	Fast



[‡] Output level before the indicated steady-state input conditions were established, provided that CLK was high before LEAB went low

[§] Output level before the indicated steady-state input conditions were established

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999


logic diagram (positive logic)

Pin numbers shown are for the DGG package.

SCBS696E – JULY 1997 – REVISED NOVEMBER 1999

logic diagram (positive logic) (continued)

Pin numbers shown are for the DGG package.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC} , BIAS V_{CC}	–0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state, V _O	
(see Note 1): A port	
B port	0.5 V to 4.6 V
Current into any output in the low state, I _O : A port	48 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	±100 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 3)	55°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - This current flows only when the output is in the high state and V_O > V_{CC}.
 The package thermal impedance is calculated in accordance with JESD 51.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

recommended operating conditions (see Notes 4 through 6)

			SN	54GTL1655	j	SN7	4GTL165	i5	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
BIAS V _{CC}	Supply voltage		3	3.3	3.6	3	3.3	3.6	V
\/	Termination	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
VTT	voltage	GTL+	1.35	1.5	1.65	1.35	1.5	1.65	V
\/p==	Supply voltage	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V
VREF	Supply voltage	GTL+	0.87	1	1.1	0.87	1	1.1	V
VI	Input voltage	B port	0		V_{TT}	0		V_{TT}	V
٧١		Except B port	0		VCC	0		VCC	V
	High-level input voltage	B port	V _{REF} +50 mV	TY.		V _{REF} +50 mV			
V _{IH}		VERC	VCC-0.6	VÇC		VCC-0.6	Vcc		V
		Except B port and ERC	2	2		2			
		B port	4	3 v	REF-50 mV			V _{REF} -50 mV	
V _{IL}	Low-level	VERC	W.	GND	0.6		GND	0.6	V
VIL.	input voltage	Except B port and ERC			0.8			0.8	v
ΙΙΚ	Input clamp curr	ent			-18			-18	mA
ЮН	High-level output current	A port						-24	mA
lou	Low-level	A port						24	mA
lOL	output current	B port						100	IIIA
Δt/ΔVCC	Power-up ramp	rate	200			200			μs/V
T _A	Operating free-a	ir temperature	- 55		125	-40		85	°C

- NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
 - 5. Normal connection sequence is GND first, BIAS $V_{CC} = 3.3 \text{ V}$ second, and $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} and V_{REF} (any order) last. However, if the B-port I/O precharge is not required, the acceptable connection sequence is GND first and $V_{CC} = 3.3 \text{ V}$, BIAS $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} and V_{REF} (any order) last. When V_{CC} is connected, the BIAS V_{CC} circuitry is disabled.
 - V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances as long as they do not exceed the DC absolute I_{OL} ratings.
 Similarly, V_{REF} can be adjusted to optimize noise margins, but normally is 2/3 V_{TT}.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

electrical characteristics over recommended operating free-air temperature range, $V_{REF} = 1 \text{ V}$ and $V_{TT} = 1.5 \text{ V}$ (unless otherwise noted)

DADAMETED		TEST CONDITIONS		SN54	4GTL165	5	SN7	4GTL165	5		
PAF	RAMETER	I IEST CC	ONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK		$V_{CC} = 3 V$,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2				
Vон	A port	V 2.V	I _{OH} = -12 mA	2.4			2.4			V	
		VCC = 3 V	I _{OH} = -24 mA	2.2			2.2				
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OL} = 100 μA			0.2			0.2		
	A port	V 2.V	I _{OL} = 12 mA			0.4			0.4		
\/ - ·		VCC = 3 V	I _{OL} = 24 mA			0.55			0.55	V	
VOL			I _{OL} = 40 mA			0.2			0.2	V	
	B port	VCC = 3 V	I _{OL} = 80 mA			0.4			0.4		
			I _{OL} = 100 mA			0.5			0.5		
	Control inputs	V 00V	$V_I = V_{CC}$ or GND		-	±10			±10		
t _I	B port	V _{CC} = 3.6 V	V _I = V _{TT} or GND			±10			±10	μΑ	
l _{off}	•	$V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 3.6 V		i,				±100	μΑ	
		V 2V	V _I = 0.8 V	75	15.		75				
I _{I(hold)} A port	A port	VCC = 3 V	V _I = 2 V	-75	Q ²		-75			μΑ	
, ,		$V_{CC} = 3.6 V^{\ddagger}$	V _I = 0 to V _C C	Ċ	5	±500			±500		
lozh	B port	V _{CC} = 3.6 V,	V _O = 1.5 V	20)	10			10	μА	
lozL	B port	V _{CC} = 3.6 V,	V _O = 0.4 V	80		-10			-10	μΑ	
IOZ§	A port	$V_{CC} = 3.6 \text{ V},$	$V_O = V_{CC}$ or GND	4		±10			±10	μА	
I _{OZPU}	A port	$\frac{\text{VCC}}{\text{OE}} = 0 \text{ to } 3.6 \text{ V, V}_{\text{O}}$) = 0.5 V to 3 V,			±50*			±50	μΑ	
I _{OZPD}	A port	$\frac{\text{VCC}}{\text{OE}} = 3.6 \text{ V to } 0, \text{ V}_{\text{O}}$	o = 0.5 V to 3 V,			±50*			±50	μΑ	
		V _{CC} = 3.6 V,	Outputs high			80			80		
Icc	A or B port	$I_{O} = 0$,	Outputs low			80			80	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled			80			80		
ΔI _{CC} ¶	Except B port	V _{CC} = 3.6 V, A-port or control inpu One input at V _{CC} –				1			1	mA	
Ci	Control inputs	$V_I = V_{CC}$ or 0			3	5		3	5	pF	
C.	A port	Va Va a a c C			5	6		5	6	~F	
C _{io}	B port	AO = ACC or 0			6	8		6	8	pF	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS696E – JULY 1997 – REVISED NOVEMBER 1999

live-insertion specifications over recommended operating free-air temperature range

PARAMETER			TEST CONDITIONS			SN74GT	L1655	UNIT
PARA	WEIER		MIN	MAX	MIN			
loo (PI)	16 (/00)	V _{CC} = 0 to 3 V	V (B port) = 0 to 1.2 V,		4 /5		5	mA
ICC (BIAS VCC)		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	V_{I} (BIAS V_{CC}) = 3 V to 3.6 V		4 10		10	μΑ
VO	B port	$V_{CC} = 0$,	V_{I} (BIAS V_{CC}) = 3.3 V	15	1.2	1	1.2	V
		$V_{CC} = 0$,	V (B port) = 0.4 V, V_I (BIAS V_{CC}) = 3 V to 3.6 V	5		-1		
I _O	B port	$V_{CC} = 0 \text{ to } 3.6 \text{ V},$	OE = 3.3 V	90	100		100	μΑ
		$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	OE = 0 to 3.3 V	Q.	100		100	

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V, V_{REF} = 0.8 V and V_{ERC} = V_{CC} or GND for GTL (unless otherwise noted)

					SN54GTL1655		SN74GTL1655		
				MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency				160		160	MHz	
	Pulse duration	LE high		3	EN	3		ns	
t _W Pulse duration		CLK high or low		3	E.	3		115	
		Data before CLK↑		2.7		2.7			
t _{su}	Setup time	Data before LE↓	CLK high	2.8		2.8	ns		
		Data before LEV	CLK low	2.6		2.6			
4.	Hold time	Data after CLK↑		0.4		0.4		no	
th	Hold time	Data after LE↓	CLK high or low	0.9		0.9		ns	

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

A-to-B switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V, V_{REF} = 0.8 V and V_{ERC} = V_{CC} or GND for GTL (see Figure 1)

PARAMETER	FROM	то	SN54GT	L1655	SN74GT	L1655	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			160		160		MHz
t _{PLH}	А	В	3.1	5.2	3.1	5.2	ns
^t PHL	VERC = VCC	VERC = VCC	2.6	6.2	2.6	6.2	113
^t PLH	CLK	В	3.4	5.5	3.4	5.5	ns
^t PHL	VERC = VCC	Ь	2.4	5.8	2.4	5.8	113
^t PLH	LEAB	В	3.5	5.8	3.5	5.8	ns
^t PHL	V _{ERC} = V _{CC}	Ь	2.6	6.4	2.6	6.4	113
^t en	OEAB or OE	В	3.3	5.4	3.3	5.4	ns
^t dis	VERC = VCC	Ь	2.7	5.9	2.7	5.9	113
t _{PLH}	А	В	2.3	4.3	2.3	4.3	ns
t _{PHL}	V _{ERC} = GND	Ь	1.9	4.3	1.9	4.3	115
t _{PLH}	CLK	В	2.7	4.8	2.7	4.8	ns
^t PHL	V _{ERC} = GND	Ь	9.8	4.3	1.8	4.3	115
^t PLH	LEAB	В	2.8	4.9	2.8	4.9	ns
^t PHL	V _{ERC} = GND	Ь	2	4.8	2	4.8	113
t _{en}	OEAB or OE	В	2.5	4.5	2.5	4.5	ns
^t dis	V _{ERC} = GND	Ь	2	4.2	2	4.2	113
Slew rate (V _{ERC} = V _{CC})	Both transitions, B ou	itputs (0.6 V to 1.3 V)		1		1	ns/V
Slew rate (V _{ERC} = GND)	Both transitions, B outputs (0.6 V to 1.3 V)			1		1	ns/V
t _{sk(o)} †	Skew between drivers (switching in the		1		1	ns	
tsk(o) [‡]	Skew betw switching in any direction	een drivers on in the same package		1		1	ns

[†] Skew values are applicable for through mode only.

[‡] Skew values are applicable for CLK mode only, with all outputs switching simultaneously.

SCBS696E – JULY 1997 – REVISED NOVEMBER 1999

B-to-A switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.2 V and V_{REF} = 0.8 V for GTL (see Figure 1)

PARAMETER	FROM	то	SN54GT	L1655	SN74GTL1655		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	ONIT
f _{max}				160		160	MHz
^t PLH	В	А	1.8	4.7	1.8	4.7	ns
^t PHL	Ь	A	2.3	4.6	2.3	4.6	115
^t PLH	CLK	A	1.6	\$4	1.6	4	ns
^t PHL	OLK	Α	1.5	3.4	1.5	3.4	115
^t PLH	LEBA	А	1.7	4	1.7	4	ns
^t PHL	LEDA		1,4	3.5	1.4	3.5	115
t _{en}	OEBA or OE	А	1.3	4.2	1.3	4.2	ns
^t dis	OEBA OF OE	Α	2	6.1	2	6.1	115
tsk(o)†		etween drivers in the same package witching in the same direction)		1	ns		
tsk(o) [‡]	Skew between switching in any direction			1		1	ns

[†] Skew values are applicable for through mode only.

[‡] Skew values are applicable for CLK mode only, with all outputs switching simultaneously.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$, $V_{REF} = 1 \text{ V}$ and $V_{ERC} = V_{CC}$ or GND for GTL+ (unless otherwise noted)

					SN54GTL1655		SN74GTL1655	
				MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency				160		160	MHz
t., Pulse duration		LE high		3	EN	3		ns
t _W	ruise duration	CLK high or low		3	N. P.	3		115
		Data before CLK↑		2.7	5	2.7		
t _{su}	Setup time	Data before LE↓	CLK high	2.8		2.8		ns
		Data before LEV	CLK low	2.6		2.6		
.	Hold time	Data after CLK↑		0.4		0.4		no
t _h		Data after LE↓	CLK high or low	0.9		0.9		ns

A-to-B switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V, V_{REF} = 1 V and V_{ERC} = V_{CC} or GND for GTL+ (see Figure 1)

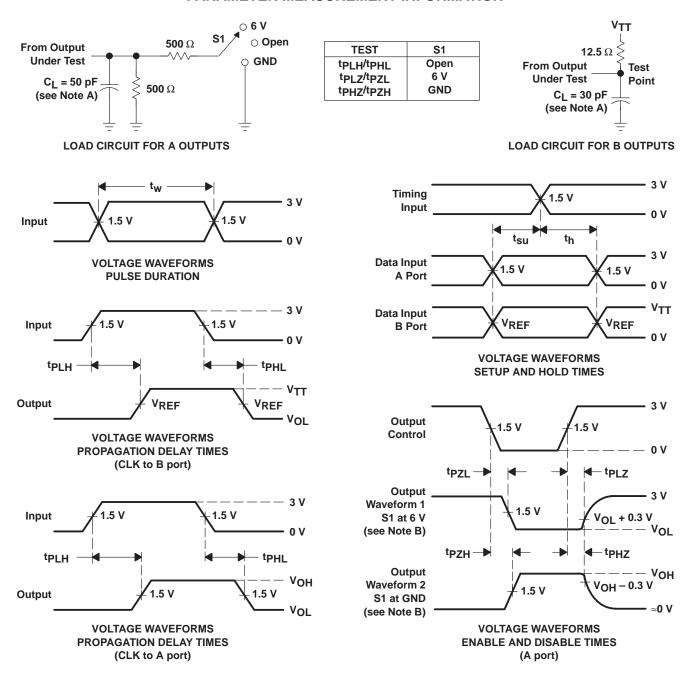
PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54GT	SN54GTL1655		SN74GTL1655	
			MIN	MAX	MIN	MAX	UNIT
f _{max}			160		160		MHz
^t PLH	A V _{ERC} = V _{CC}	В	3	5.1	3	5.1	ns
^t PHL			2.9	6.5	2.9	6.5	
^t PLH	CLK VERC = VCC	В	3.4	5.4	3.4	5.4	ns
t _{PHL}			2.7	6.2	2.7	6.2	
t _{PLH}	LEAB	В	3.5	5.7	3.5	5.7	ns
t _{PHL}	VERC = VCC		2.8	6.7	2.8	6.7	
t _{en}	OEAB	В	3.3	5.4	3.3	5.4	ns
^t dis	V _{ERC} = V _{CC}		3	6.3	3	6.3	
t _{en}	ŌĒ	В	3	5.5	3	5.5	ns
^t dis	V _{ERC} = V _{CC}		3.6	5.8	3.6	5.8	
^t PLH	A V _{ERC} = GND	В	2.3	4.3	2.3	4.3	ns
^t PHL			2	4.4	2	4.4	
t _{PLH}	CLK V _{ERC} = GND	В	2.7	4.8	2.7	4.8	ns
^t PHL			71.9	4.5	1.9	4.5	
t _{PLH}	LEAB V _{ERC} = GND	В	2.8	4.9	2.8	4.9	ns
^t PHL			2.1	4.9	2.1	4.9	
t _{en}	OEAB VERC = GND	В	2.5	4.5	2.5	4.5	ns
^t dis			2.1	4.4	2.1	4.4	113
t _{en}	ŌĒ	В	2.5	4.6	2.5	4.6	ns
^t dis	V _{ERC} = GND		2.9	4.9	2.9	4.9	115
Slew rate (V _{ERC} = V _{CC})	Both transitions, B outputs (0.6 V to 1.3 V)			1		1	ns/V
Slew rate (V _{ERC} = GND)	Both transitions, B outputs (0.6 V to 1.3 V)			1		1	ns/V
t _{sk(o)} †	Skew between drivers in the same package (switching in the same direction)			1		1	ns
t _{sk(o)} ‡	Skew between drivers switching in any direction in the same package			1		1	ns

[†]Skew values are applicable for through mode only.

[‡] Skew values are applicable for CLK mode only, with all outputs switching simultaneously.

SCBS696E – JULY 1997 – REVISED NOVEMBER 1999

B-to-A switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54GTL1655		SN74GTL1655		UNIT
			MIN	MAX	MIN	MAX	UNII
f _{max}			160		160		MHz
t _{PLH}	В	А	2	4.8	2	4.8	ns
^t PHL			2.4	4.7	2.4	4.7	
tPLH	CLK	А	1.6	4.4	1.6	4.4	ns
^t PHL			1.5	3.4	1.5	3.4	
t _{PLH}	LEBA	А	1.7	4	1.7	4	ns
t _{PHL}			1.4	3.5	1.4	3.5	
t _{en}	OEBA	А	1.3	4.2	1.3	4.2	ns
^t dis			2	6.1	2	6.1	115
t _{en}	ŌĒ	А	2.2	4.7	2.2	4.7	ns
^t dis			4.1	6.3	4.1	6.3	115
tsk(o)†	Skew between drivers in the same package (switching in the same direction)			1		1	ns
tsk(o) [‡]	Skew between drivers switching in any direction in the same package			1		1	ns

[†] Skew values are applicable for through mode only.

[‡] Skew values are applicable for CLK mode only, with all outputs switching simultaneously.

SCBS696E - JULY 1997 - REVISED NOVEMBER 1999

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzi and tpzH are the same as ten.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated