INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT126 Quad buffer/line driver; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Quad buffer/line driver; 3-state

74HC/HCT126

FEATURES

· Output capability: bus driver

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT126 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The HC/HCT126 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input (nOE). A LOW at nOE causes the outputs to assume a HIGH impedance OFF-state.

The "126" is identical to the "125" but has active HIGH enable inputs.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
	PARAMETER	CONDITIONS	нс	нст	ONII
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	11	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	23	24	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

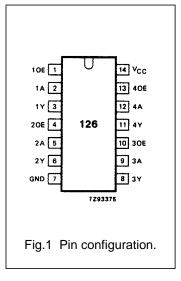
C_L = output load capacitance in pF

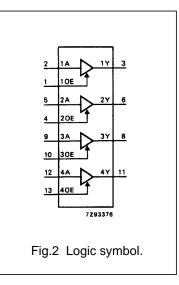
V_{CC} = supply voltage in V

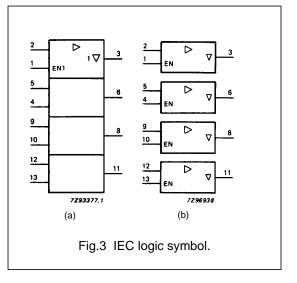
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


Quad buffer/line driver; 3-state


74HC/HCT126

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	10E to 40E	output enable inputs (active HIGH)
2, 5, 9, 12	1A to 4A	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

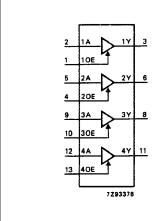


Fig.4 Functional diagram.

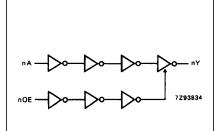


Fig.5 Logic diagram (one buffer).

FUNCTION TABLE

INP	OUTPUT			
nOE	nY			
Н	L	L		
Н	Н	Н		
L	Х	Z		

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

December 1000

2

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state

74HC/HCT126

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $\mathsf{GND} = 0 \; \mathsf{V}; \; \mathsf{t_f} = \mathsf{t_f} = \mathsf{6} \; \mathsf{ns}; \; \mathsf{C_L} = \mathsf{50} \; \mathsf{pF}$

SYMBOL	PARAMETER	T _{amb} (°C)							LINUT	TEST CONDITIONS	
		74HC									WAVEFORMS
		+25			-40 to +85		o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay		30	100		125		150	ns	2.0	Fig.6
	nA to nY		11	20		25		30		4.5	
			9	17		21		26		6.0	
1 1	3-state output enable time nOE to nY		41	125		155		190	ns	2.0	Fig.7
			15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		41	125		155		190	ns	2.0	Fig.7
			15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition		14	60		75		90	ns	2.0	Fig.6
	time		5	12		15		18		4.5	
			4	10		13		15		6.0	

December 1000

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state

74HC/HCT126

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

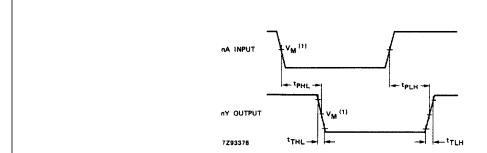
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per unit, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nOE	1.00

AC CHARACTERISTICS FOR 74HCT

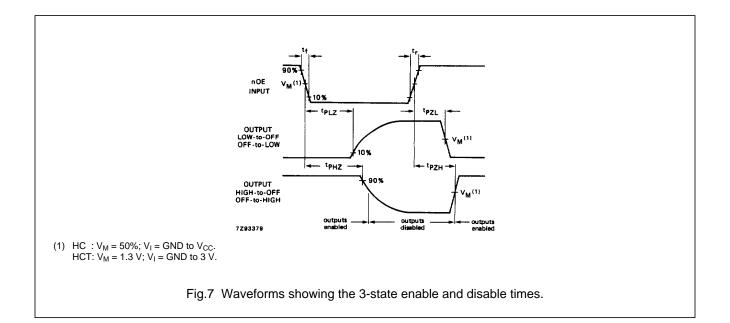
 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									WAVEFORMS
		+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay nA to nY		14	24		30		36	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		13	25		31		38	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		18	28		35		42	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6


a a a m h a r 1000

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state


74HC/HCT126

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the input (nA) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Dagambar 1000