INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet，please also download：
－The IC06 74HC／HCT／HCU／HCMOS Logic Family Specifications
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Information
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Outlines

74HC／HCT181 4－bit arithmetic logic unit

Product specification
Supersedes data of September 1993
File under Integrated Circuits，IC06

FEATURES

- Full carry look-ahead for high-speed arithmetic operation on long words
- Provides 16 arithmetic operations: add, subtract, compare, double, plus 12 others
- Provides all 16 logic operations of two variables: EXCLUSIVE-OR, compare, AND, NAND, NOR, OR plus 10 other logic operations
- Output capability: standard,

A=B open drain

- ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT181 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 181$ are 4 -bit high-speed parallel Arithmetic Logic Units (ALU). Controlled by the four function select inputs (S_{0} to S_{3}) and the mode control input (M), they can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands (see function table).

When the mode control input (M) is HIGH, all internal carries are inhibited and the device3 performs logic operations on the individual bits as listed. When M is LOW, the carries are enabled and the " 181 " performs arithmetic operations on the two 4-bit words. The "181" incorporates full internal carry look-ahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry look-ahead between packages using the carry propagation $(\overline{\mathrm{P}})$ and carry generate $(\overline{\mathrm{G}})$ signals. $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ are not affected by carry in.

When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the carry output $\left(\mathrm{C}_{n+4}\right)$ signal to the carry input $\left(\mathrm{C}_{n}\right)$ of the next unit.

For high-speed operation the device is used in conjunction with the "182" carry look-ahead circuit. One carry look-ahead package is required for each group of four "181" devices. Carry look-ahead can be provided at various levels and offers high-speed capability over extremely long word lengths.

The comparator output ($\mathrm{A}=\mathrm{B}$) of the device goes HIGH when all four function outputs ($\overline{\mathrm{F}}_{0}$ to $\overline{\mathrm{F}}_{3}$) are HIGH and can be used to indicate logic equivalence over 4 bits when the unit is in the subtract mode. $A=B$ is an open collector output and can be wired-AND with other $A=B$ outputs to give a comparison for more than 4 bits. The open drain output $A=B$ should be used with an external pull-up resistor in order to establish a logic HIGH level. The $A=B$ signal can also be used with the $\mathrm{C}_{\mathrm{n}+4}$ signal to indicate $A>B$ and $A<B$.

The function table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied.
Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus, a carry is generated when there is no under-flow and no carry is generated when there is underflow.

As indicated, the " 181 " can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs.
For either case the table lists the operations that are performed to the operands.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
74HC181N3; 74HCT181N3	DIP24	plastic dual in-line package; 24 leads (300 mil)	SOT222-1
74HC181N; 74HCT181N	DIP24	plastic dual in-line package; 24 leads (600 mil)	SOT101-1
74HC181D; 74HCT181D	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} or \bar{B}_{n} to $A=B$ C_{n} to $\mathrm{C}_{\mathrm{n}+} 4$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 28 \\ & 17 \end{aligned}$	$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per L package	notes 1 and 2	90	92	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right.$ in $\left.\mu \mathrm{W}\right)$:

$$
P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right) \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{1}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,22,20,18$	$\overline{\mathrm{~B}}_{0}$ to $\overline{\mathrm{B}}_{3}$	operand inputs (active LOW)
$2,23,21,19$	$\overline{\mathrm{~A}}_{0}$ to $\overline{\mathrm{A}}_{3}$	operand inputs (active LOW)
$6,5,4,3$	$\mathrm{~S}_{0}$ to S_{3}	select inputs
7	C_{n}	carry input
8	M	mode control input
$9,10,11,13$	$\overline{\mathrm{~F}}_{0}$ to $\overline{\mathrm{F}}_{3}$	function outputs (active LOW)
12	GND	ground (0 V)
14	$\mathrm{~A}=\mathrm{B}$	comparator output
15	$\overline{\mathrm{P}}$	carry propagate output (active LOW)
16	C_{n+4}	carry output
17	$\overline{\mathrm{G}}$	carry generate output (active LOW)
24	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 4 Functional diagram.

Active HIGH operands

Active LOW operands

Fig. 5 Active HIGH operands - active LOW operands.

FUNCTION TABLES

MODE SELECT INPUTS				ACTIVE HIGH INPUTS AND OUTPUTS	
S_{3}	S_{2}	S_{1}	S_{0}	$\begin{aligned} & \text { LOGIC } \\ & \text { (M=H) } \end{aligned}$	ARITHMETIC ${ }^{(2)}$ $\left(M=L ; C_{n}=H\right)$
L	L	L	L	$\overline{\mathrm{A}}$	A
L	L	L	H	$\overline{A+B}$	$A+B$
L	L	H	L	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	logical 0	minus 1
L	H	L	L	$\overline{\mathrm{AB}}$	A plus $\bar{A} \bar{B}$
L	H	L	H	\bar{B}	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$A \oplus B$	A minus B minus 1
L	H	H	H	$A \bar{B}$	$A \bar{B}$ minus 1
H	L	L	L	$\overline{\mathrm{A}}+\mathrm{B}$	A plus $A B$
H	L	L	H	$\bar{A} \bar{\oplus} \bar{B}$	A plus B
H	L	H	L	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	AB	$A B$ minus 1
H	H	L	L	logical 1	A plus $\mathrm{A}^{(1)}$
H	H	L	H	$A+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A+B$	$(A+\bar{B})$ plus A
H	H	H	H	A	A minus 1

Notes to the function tables

1. Each bit is shifted to the next more significant position.
2. Arithmetic operations expressed in 2 s complement notation.

H = HIGH voltage level
L = LOW voltage level

MODE SELECT INPUTS				ACTIVE LOW INPUTS AND OUTPUTS	
S_{3}	S_{2}	S_{1}	S_{0}	$\begin{aligned} & \text { LOGIC } \\ & (\mathrm{M}=\mathrm{H}) \end{aligned}$	ARITHMETIC ${ }^{(2)}$ $\left(M=L ; C_{n}=L\right)$
L	L	L	L	$\overline{\mathrm{A}}$	A minus 1
L	L	L	H	$\overline{\mathrm{AB}}$	AB minus 1
L	L	H	L	$\bar{A}+B$	$A \bar{B}$ minus 1
L	L	H	H	logical 1	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($\mathrm{A}+\overline{\mathrm{B}})$
L	H	L	H	$\overline{\mathrm{B}}$	AB plus ($A+\bar{B}$)
L	H	H	L	$\overline{\mathrm{A}} \bar{\oplus} \overline{\mathrm{B}}$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$A+\bar{B}$
H	L	L	L	$\overline{\mathrm{A}} \mathrm{B}$	A plus ($\mathrm{A}+\mathrm{B}$)
H	L	L	H	$A \oplus B$	A plus B
H	L	H	L	B	$A \bar{B}$ plus ($\mathrm{A}+\mathrm{B}$)
H	L	H	H	$A+B$	$A+B$
H	H	L	L	logical 0	A plus ${ }^{(1)}$
H	H	L	H	$A \bar{B}$	$A B$ plus A
H	H	H	L	AB	$A \bar{B}$ plus A
H	H	H	H	A	A

Notes to the function tables

1. Each bit is shifted to the next more significant position.
2. Arithmetic operations expressed in 2 s complement notation.
$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level

Fig. 6 Logic diagram.

Table 1 SUM MODE TEST
Function inputs $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5 V	Apply GND	Apply 4.5 V	Apply GND	
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	none	remaining \bar{A} and \bar{B}	C_{n}	\bar{F}_{i}
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{i}$	$\overline{\mathrm{A}}_{i}$	none	remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	C_{n}	\bar{F}_{i}
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	$\overline{\mathrm{B}}_{i}$	none	none	remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{P}
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	$\overline{\mathrm{A}}_{i}$	none	none	remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{P}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	none	$\overline{\mathrm{B}}_{i}$	remaining $\overline{\mathrm{B}}$	remaining \bar{A}, C_{n}	$\overline{\mathrm{G}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{i}$	none	$\overline{\mathrm{A}}_{i}$	remaining \bar{B}	remaining \bar{A}, C_{n}	$\overline{\mathrm{G}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	none	$\overline{\mathrm{B}}_{i}$	remaining \bar{B}	remaining \bar{A}, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{tPLH} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	none	$\overline{\mathrm{A}}_{i}$	remaining \bar{B}	remaining \bar{A}, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	C_{n}	none	none	all $\overline{\mathrm{A}}$	all \bar{B}	any $\overline{\mathrm{F}}$ or $\mathrm{C}_{\mathrm{n}+4}$

Table 2 DIFFERENTIAL MODE TEST
Function inputs $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

PARAMETER	UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5 V	Apply GND	Apply 4.5 V	Apply GND	
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	none	$\overline{\mathrm{B}}_{\mathrm{i}}$	remaining $\overline{\mathrm{A}}$	remaining $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{i}
$\mathrm{tPLH} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	$\overline{\mathrm{A}}_{i}$	none	remaining $\overline{\mathrm{A}}$	remaining \bar{B}, C_{n}	\bar{F}_{i}
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	none	$\overline{\mathrm{B}}_{\mathrm{i}}$	none	remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{P}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	$\overline{\mathrm{A}}_{i}$	none	none	remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{P}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	\bar{B}_{i}	none	none	remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	none	$\overline{\mathrm{A}}_{i}$	none	remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathrm{G}}$
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$\overline{\mathrm{A}}_{i}$	none	$\overline{\mathrm{B}}_{\mathrm{i}}$	remaining $\overline{\mathrm{A}}$	remaining \bar{B}, C_{n}	$A=B$
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	$\overline{\mathrm{A}}_{i}$	none	remaining $\overline{\mathrm{A}}$	remaining \bar{B}, C_{n}	$\mathrm{A}=\mathrm{B}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{A}}_{i}$	$\overline{\mathrm{B}}_{i}$	none	none	remaining \bar{A} and \bar{B}, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{B}}_{\mathrm{i}}$	none	$\overline{\mathrm{A}}_{i}$	none	remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{tPLH} / \mathrm{t}_{\text {PHL }}$	C_{n}	none	none	all $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	none	any $\overline{\mathrm{F}}$ or $\mathrm{C}_{\mathrm{n}+4}$

Table 3 LOGIC MODE TEST
Function inputs $\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5 V	Apply GND	Apply 4.5 V	Apply GND	
$\mathrm{t}_{\text {PLH } / \mathrm{t}_{\text {PHL }}}$	$\overline{\bar{A}}_{i}$	$\overline{\mathrm{B}}_{i}$	none	none	remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{F_{i}}$
tPLH/ TPHL	$\overline{\mathrm{B}}_{i}$	\bar{A}_{i}	none	none	remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{F}}$

RATINGS (for $A=B$ output only)
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V_{O}	DC output voltage	-0.5	+7.0	V	
$-\mathrm{l}_{\mathrm{OK}}$	DC output diode current		20	mA	for $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$
$-\mathrm{l}_{\mathrm{O}}$	DC output source or sink current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}$

DC CHARACTERISTICS FOR 74HC
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: MSI
Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								V_{Cc} (V)	VIL	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
l Oz	HIGH level output leakage current			0.5		5.0		10.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline 2.0 \\ & \text { to } \\ & 6.0 \end{aligned}$	$\mathrm{V}_{\text {IL }}$	note 1 $\mathrm{V}_{\mathrm{O}}=0 \text { or } 6 \mathrm{~V}$

Note to the DC characteristics

1. The maximum operating output voltage $\left(\mathrm{V}_{\mathrm{O}(\max)}\right)$ is 6.0 V .

4-bit arithmetic logic unit

AC CHARACTERISTICS FOR 74HC

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								V_{Cc} (V)	MODE	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{tPHL} / \mathrm{t}_{\text {PLH }}$	propagation delay C_{n} to $\mathrm{C}_{\mathrm{n}+4}$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 165 \\ & 33 \\ & 28 \end{aligned}$		$\begin{aligned} & 205 \\ & 41 \\ & 35 \end{aligned}$		$\begin{array}{\|l} \hline 250 \\ 50 \\ 43 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum diff	$\begin{array}{\|l\|} \hline \mathrm{M}=0 \mathrm{~V} ; \\ \text { Fig.9; } \\ \text { Tables } 1 \text { and } 2 \end{array}$
$\mathrm{tPHL} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{C}_{\mathrm{n}} \text { to } \overline{\mathrm{F}}_{\mathrm{n}}$		$\begin{aligned} & 69 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 40 \\ & 34 \end{aligned}$		$\begin{aligned} & 250 \\ & 50 \\ & 43 \end{aligned}$		$\begin{array}{\|l} \hline 300 \\ 60 \\ 51 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum diff	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V} ; \\ & \text { Fig.9; } \\ & \text { Tables } 1 \text { and } 2 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 72 \\ & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & 210 \\ & 42 \\ & 36 \end{aligned}$		$\begin{aligned} & 265 \\ & 53 \\ & 45 \end{aligned}$		$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.7; Table } 1 \\ & \hline \end{aligned}$
$\mathrm{tPHL} / \mathrm{tPLH}$	propagation delay \bar{B}_{n} to \bar{G}		$\begin{aligned} & \hline 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 230 \\ & 46 \\ & 39 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 290 \\ 58 \\ 49 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 345 \\ 69 \\ 59 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{tPHL} / \mathrm{tPLH}$	propagation delay \bar{A}_{n} to \bar{G}		$\begin{aligned} & 76 \\ & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & 215 \\ & 43 \\ & 37 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 270 \\ 54 \\ 46 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 320 \\ 65 \\ 55 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table 2 } \end{aligned}$
$\mathrm{tPHL} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to $\overline{\mathrm{G}}$		$\begin{aligned} & \hline 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{array}{\|l} \hline 240 \\ 48 \\ 41 \end{array}$		$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \end{aligned}$		$\begin{aligned} & 360 \\ & 72 \\ & 61 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \end{aligned}$
$\mathrm{tPHL} / \mathrm{tPLH}$	propagation delay \bar{A}_{n} to \bar{P}		$\begin{aligned} & 61 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 185 \\ & 37 \\ & 31 \end{aligned}$		$\begin{aligned} & \hline 230 \\ & 46 \\ & 39 \end{aligned}$		$\begin{array}{\|l} \hline 280 \\ 56 \\ 48 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.7; Table } 1 \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{P}		$\begin{aligned} & 63 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 195 \\ & 39 \\ & 33 \end{aligned}$		$\begin{array}{\|l\|} \hline 245 \\ 49 \\ 42 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 295 \\ 59 \\ 50 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{P}		$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 170 \\ 34 \\ 29 \\ \hline \end{array}$		$\begin{aligned} & 215 \\ & 43 \\ & 37 \end{aligned}$		$\begin{aligned} & 255 \\ & 51 \\ & 43 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2
$\mathrm{tPHL} / \mathrm{tPLH}$	propagation delay \bar{B}_{n} to \bar{P}		$\begin{aligned} & 63 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 195 \\ & 39 \\ & 33 \end{aligned}$		$\begin{array}{\|l\|} \hline 245 \\ 49 \\ 42 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 295 \\ 59 \\ 50 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \\ & \hline \end{aligned}$
$\mathrm{tPHL} / \mathrm{tPLH}$	propagation delay \bar{A}_{i} to \bar{F}_{i}		$\begin{aligned} & \hline 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 230 \\ & 46 \\ & 39 \end{aligned}$		$\begin{array}{\|l} \hline 290 \\ 58 \\ 49 \end{array}$		$\begin{array}{\|l} \hline 345 \\ 69 \\ 59 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{i} to \bar{F}_{i}		$\begin{aligned} & 85 \\ & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 255 \\ & 51 \\ & 43 \end{aligned}$		$\begin{array}{\|l} \hline 320 \\ 64 \\ 54 \end{array}$		$\begin{array}{\|l} \hline 385 \\ 77 \\ 65 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.7; Table 1 } \\ & \hline \end{aligned}$
tPHL/ ${ }_{\text {PLH }}$	propagation delay \bar{A}_{i} to \bar{F}_{i}		$\begin{aligned} & 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 235 \\ & 47 \\ & 40 \end{aligned}$		$\begin{array}{\|l} \hline 295 \\ 59 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & \hline 355 \\ & 71 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \end{aligned}$
$\mathrm{tPHL} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{i} to \bar{F}_{i}		$\begin{array}{\|l\|} \hline 83 \\ 31 \\ 24 \end{array}$	$\begin{aligned} & \hline 255 \\ & 51 \\ & 43 \end{aligned}$		$\begin{array}{\|l} \hline 320 \\ 64 \\ 54 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 385 \\ 77 \\ 65 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2

4-bit arithmetic logic unit
74HC/HCT181

SYMBOL	PARAMETER	Tamb $\left(^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS		
		74HC								$V_{c c}$ (V)	MODE	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$		$\begin{aligned} & 74 \\ & 27 \\ & 22 \end{aligned}$	$\begin{array}{\|l} \hline 230 \\ 46 \\ 39 \end{array}$		$\begin{array}{\|l} \hline 290 \\ 58 \\ 49 \end{array}$		$\begin{aligned} & 345 \\ & 69 \\ & 59 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	logic	$\mathrm{M}=4.5 \mathrm{~V} ;$ Fig.8; Table 3
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{i} to \bar{F}_{i}		$\begin{aligned} & 83 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 255 \\ & 51 \\ & 43 \end{aligned}$		$\begin{array}{\|l\|} \hline 320 \\ 64 \\ 54 \end{array}$		$\begin{aligned} & 385 \\ & 77 \\ & 65 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	logic	$\mathrm{M}=4.5 \mathrm{~V} ;$ Fig.8; Table 3
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\mathrm{C}_{\mathrm{n}+4}$		$\begin{aligned} & 80 \\ & 29 \\ & 23 \end{aligned}$	$\begin{aligned} & 235 \\ & 47 \\ & 40 \end{aligned}$		$\begin{aligned} & 295 \\ & 59 \\ & 50 \end{aligned}$		$\begin{aligned} & 355 \\ & 71 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to $\mathrm{C}_{\mathrm{n}+4}$		$\begin{aligned} & 80 \\ & 29 \\ & 23 \end{aligned}$	$\begin{array}{\|l} \hline 235 \\ 47 \\ 40 \end{array}$		$\begin{array}{\|l} \hline 295 \\ 59 \\ 50 \end{array}$		$\begin{aligned} & 355 \\ & 71 \\ & 60 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} \\ & \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} \end{aligned}$ Fig.8; Table 1
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to C_{n+4}		$\begin{aligned} & \hline 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 235 \\ 47 \\ 40 \\ \hline \end{array}$		295 59 50		355 71 60	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	diff	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.10; Table 2 } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to C_{n+4}		$\begin{aligned} & 85 \\ & 31 \\ & 25 \end{aligned}$	$\begin{aligned} & 255 \\ & 51 \\ & 43 \end{aligned}$		$\begin{array}{\|l} \hline 320 \\ 64 \\ 54 \end{array}$		$\begin{aligned} & 385 \\ & 77 \\ & 65 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.10; Table 2
$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PLZ }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}} \text { to } \mathrm{A}=\mathrm{B}$		$\begin{aligned} & 80 \\ & 29 \\ & 23 \end{aligned}$	$\begin{aligned} & 245 \\ & 49 \\ & 42 \end{aligned}$		$\begin{aligned} & \hline 305 \\ & 61 \\ & 52 \end{aligned}$		$\begin{aligned} & 370 \\ & 74 \\ & 63 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.11; Table 2
tpzL $/ t_{\text {PLZ }}$	propagation delay \bar{B}_{n} to $A=B$		$\begin{aligned} & 88 \\ & 32 \\ & 26 \end{aligned}$	$\begin{array}{\|l} \hline 270 \\ 54 \\ 46 \end{array}$		$\begin{array}{\|l} \hline 340 \\ 68 \\ 58 \\ \hline \end{array}$		$\begin{aligned} & 405 \\ & 81 \\ & 69 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.11; Table } 2 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{F}_{n}		$\begin{aligned} & 83 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 255 \\ & 51 \\ & 43 \end{aligned}$		$\begin{array}{\|l\|} \hline 320 \\ 64 \\ 54 \end{array}$		$\begin{aligned} & 385 \\ & 77 \\ & 65 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{F}_{n}		$\begin{aligned} & 85 \\ & 31 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 330 \\ 66 \\ 56 \end{array}$		$\begin{array}{\|l\|} \hline 400 \\ 80 \\ 68 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{F}_{n}		$\begin{aligned} & \hline 77 \\ & 28 \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 240 \\ 48 \\ 41 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 360 \\ 72 \\ 61 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{F}_{n}		$\begin{aligned} & 88 \\ & 32 \\ & 26 \end{aligned}$	$\begin{aligned} & 275 \\ & 55 \\ & 47 \end{aligned}$		$\begin{array}{\|l} \hline 345 \\ 69 \\ 59 \end{array}$		$\begin{aligned} & 415 \\ & 83 \\ & 71 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & 110 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$		note ; Figs 7 and 11

Note to the AC characteristics

1. For the open drain output $(A=B)$ only $t_{T H L}$ is valid.

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
Icc category: MSI
Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								V_{Cc} (V)	V_{IL}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
l_{Oz}	HIGH level output leakage current			0.5		5.0		10.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline 2.0 \\ & \text { to } \\ & 6.0 \end{aligned}$	V_{IL}	note 1 $\mathrm{V}_{\mathrm{O}}=0 \text { or } 6 \mathrm{~V}$

Note to the DC characteristics

1. The maximum operating output voltage $\left(\mathrm{V}_{\mathrm{O}(\text { max })}\right)$ is 6.0 V .

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\mathrm{C}_{n}, \mathrm{M}$	0.50
$\overline{\mathrm{~A}}_{n}, \overline{\mathrm{~B}}_{\mathrm{n}}$	0.75
$\mathrm{~S}_{\mathrm{n}}$	1.00

AC CHARACTERISTICS FOR 74HCT

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS		
		74HCT								$V_{\text {cc }}$ (V)	MODE	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay C_{n} to $\mathrm{C}_{\mathrm{n}+4}$		25	42		53		63	ns	4.5	sum diff	$\begin{array}{\|l\|} \hline \mathrm{M}=0 \mathrm{~V} ; \\ \text { Fig.9; } \\ \text { Tables } 1 \text { and } 2 \end{array}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay C_{n} to $\overline{\mathrm{F}}_{\mathrm{n}}$		28	48		60		72	ns	4.5	sum diff	$\mathrm{M}=0 \mathrm{~V} ;$ Fig.9; Tables 1 and 2
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$		31	54		68		81	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{G}		32	54		68		81	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$		31	54		68		81	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to $\overline{\mathrm{G}}$		31	54		68		81	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\overline{\mathrm{P}}$		23	41		51		62	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{B}}_{\mathrm{n}} \text { to } \overline{\mathrm{P}}$		24	41		51		62	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{P}		23	40		50		60	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table 2 } \end{aligned}$
trHL $/ t_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{P}		23	40		50		60	ns	4.5	diff	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table 2 } \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$		33	58		73		87	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{i} to \bar{F}_{i}		34	58		73		87	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.7; Table } 1 \end{aligned}$

4-bit arithmetic logic unit
74HC/HCT181

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								V_{Cc} (V)	MODE	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$		33	57		71		86	ns	4.5	diff	$\begin{aligned} & \hline \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \\ & \hline \end{aligned}$
trHL/ tpLH	propagation delay \bar{B}_{i} to \bar{F}_{i}		33	57		71		86	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table } 2 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$		29	54		68		81	ns	4.5	logic	$\mathrm{M}=4.5 \mathrm{~V} ;$ Fig.8; Table 3
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{i} to \bar{F}_{i}		33	54		68		81	ns	4.5	logic	$\mathrm{M}=4.5 \mathrm{~V} ;$ Fig.8; Table 3
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to C_{n+4}		30	53		66		80	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 1
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to C_{n+4}		31	53		66		80	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table 1 } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to $\mathrm{C}_{\mathrm{n}+4}$		30	55		69		83	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.10; Table } 2 \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{B}_{n} to C_{n+4}		34	55		69		83	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.10; Table } 2 \end{aligned}$
$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PLZ }}$	propagation delay \bar{A}_{n} to $A=B$		34	60		75		90	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.11; Table 2 } \end{aligned}$
$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PLZ }}$	propagation delay $\overline{\mathrm{B}}_{\mathrm{n}} \text { to } \mathrm{A}=\mathrm{B}$		35	60		75		90	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.11; Table 2 } \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{A}}_{\mathrm{n}}$ to $\overline{\mathrm{F}}_{\mathrm{n}}$		33	56		70		84	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$
trHL $/ t_{\text {PLH }}$	propagation delay \bar{B}_{n} to \bar{F}_{n}		33	56		70		84	ns	4.5	sum	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} ; \\ & \mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} ; \\ & \text { Fig. } 7 ; \text { Table } 1 \end{aligned}$

4-bit arithmetic logic unit

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								$V_{\text {Cc }}$ (V)	MODE	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{F}_{n}		32	56		70		84	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \\ & \text { Fig.8; Table 2 } \end{aligned}$
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay \bar{A}_{n} to \bar{F}_{n}		33	56		70		84	ns	4.5	diff	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} ; \\ & \mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} ; \end{aligned}$ Fig.8; Table 2
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5		Figs 7 and 11; note 1

Note to the AC characteristics

1. For the open drain output $(A=B)$ only $t_{T H L}$ is valid.

AC WAVEFORMS

Fig. 7 Propagation delays for carry input to carry output, carry input to function outputs, operands to carry generate operands, propagation outputs and output transition lines.

Fig. 9 Propagation delays for operands to carry output and function outputs.

Fig. 11 Waveforms showing the input $\left(\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}\right)$ to output ($\mathrm{A}=\mathrm{B}$) propagation delays and output transition time of the open drain output $(A=B)$.

Fig. 8 Propagation delays for operands to carry generate, propagate outputs and function outputs.

Fig. 10 Propagation delays for operands to carry output.

Note to AC waveforms

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

APPLICATION INFORMATION

A and B inputs and F outputs
of " 181 " are not shown
Fig. 12 Application example showing 16-bit ALU ripple-carry configuration.

PACKAGE OUTLINES

DIP24: plastic dual in-line package; 24 leads ($\mathbf{3 0 0} \mathbf{~ m i l)}$
SOT222-1
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\underset{\max .}{\mathrm{Z}^{(1)}}$
mm	4.70	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.48 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & \hline 8.13 \\ & 7.62 \end{aligned}$	$\begin{aligned} & 10.03 \\ & 7.62 \end{aligned}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.255 \end{aligned}$	0.100	0.300	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		$95-03-11$	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	\mathbf{A}_{2} max.	b	b_{1}	c	$D^{(1)}$	$E{ }^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\mathrm{Zax}^{(1)}$
mm	5.1	0.51	4.0	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 31.4 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$	0.25	2.2
inches	0.20	0.020	0.16	$\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT101-1	$051 \mathrm{G02}$	MO-015AD			-	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			-	

4-bit arithmetic logic unit

74HC/HCT181

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\mathrm{stg} \max }$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

