

October 1986 Revised March 2000 DM74AS874 Dual 4-Bit D-Type Edge-Triggered Flip-Flop

DM74AS874 Dual 4-Bit D-Type Edge-Triggered Flip-Flop

General Description

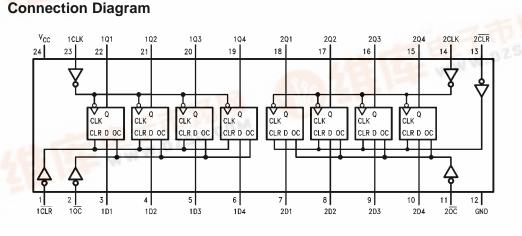
These dual 4-bit inverting registers feature totem-pole 3-STATE outputs designed specifically for driving highlycapacitive or relatively low-impedance loads. The highimpedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74AS874 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

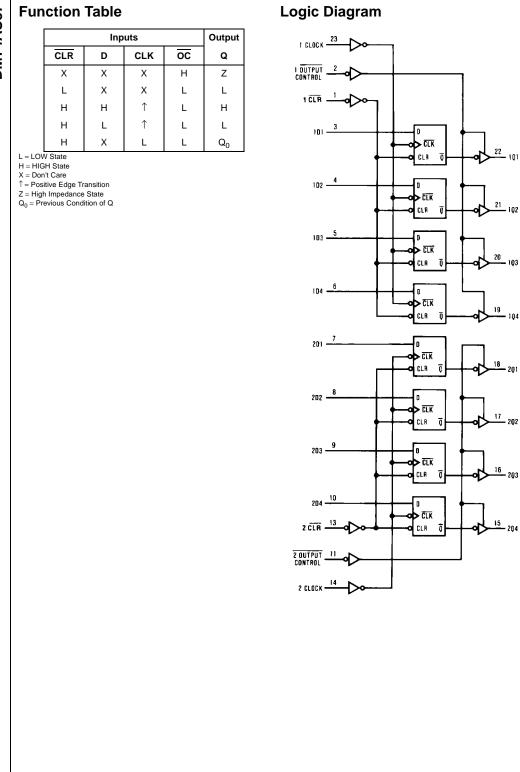
A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

The pinout is arranged to ease printed circuit board layout. All data inputs are on one side of the package, while all outputs are on the other side.


Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Space saving 300 mil wide package
- Bus structured pinout



Order Number	Package Number	Package Description					
DM74AS874WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
DM74AS874NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide					
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

DM74AS874

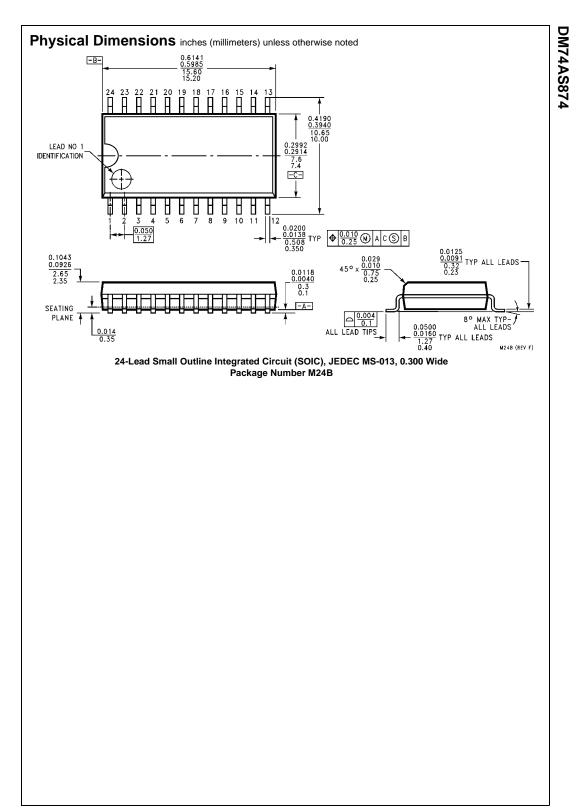
Absolute Maximum Ratings(Note 1)

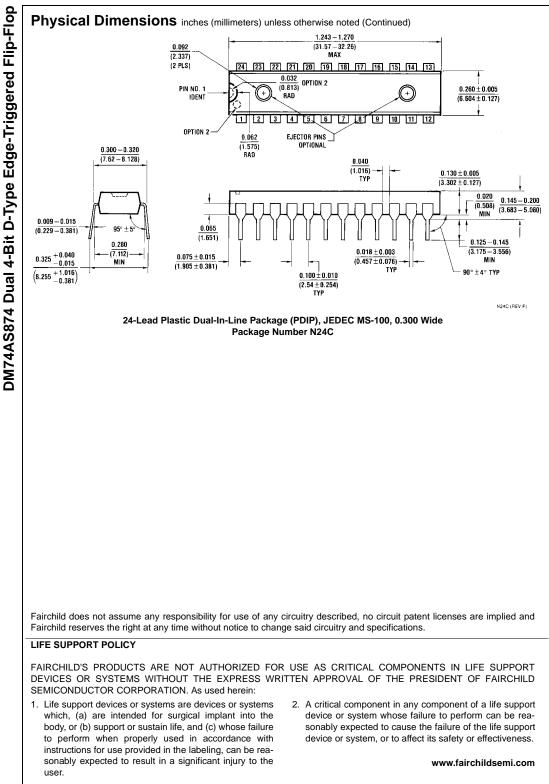
Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^\circ C$ to $+150^\circ C$
Typical θ _{JA}	
N Package	47.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current				-15	mA
I _{OL}	LOW Level Output Current				48	mA
f _{CLK}	Clock Frequency		0		80	MHz
t _{WCLK}	Width of Clock Pulse HIG	ЭH	3			20
	LO	W	6			ns
t _{WCLR}	Width of Clear Pulse LOV	W	2			ns
t _{SU}	Setup Time Dat	a	4↑			
	(Note 2) Cle	ar Inactive	5↑			ns
t _H	Data Hold Time (Note 2)		1↑			ns
T _A	Free Air Operating Temperature		0		70	°C


Note 2: The (\uparrow) arrow indicates the positive edge of the Clock is used for reference.


Electrical Characteristics

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = 4.5 V$, $V_{IL} = V_{IL} Max$, I_{C}	_{DH} = Max	2.4	3.3		V
	Output Voltage	$I_{OH} = -2$ mA, $V_{CC} = 4.5$ V to ξ	5.5V	V _{CC} – 2			v
V _{OL}	LOW Level	$V_{CC} = 4.5V, V_{IH} = 2V,$			0.35	0.5	v
	Output Voltage	I _{OL} = Max			0.35	0.5	v
l _l	Input Current at Max Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$				0.1	mA
IIH	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
IIL	LOW Level Input Current	$V_{CC} = 5.5 V, V_{IL} = 0.4 V$				-0.5	mA
I _O (Note 3)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{OZH}	OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V,$ $V_{O} = 2.7V,$				50	
	HIGH Level Voltage Applied						μA
I _{OZL}	OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V,$ $V_O = 0.4V$				-50	μA
	LOW Level Voltage Applied					-50	μΑ
I _{CC} Supply Current	Supply Current	$V_{CC} = 5.5V$	Outputs HIGH		82	133	
		Outputs OPEN	Outputs LOW		92	149	mA
			Outputs Disabled		100	160	

Note 3: The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit current, IOS.

Symbol	Parameter	Conditions	From	То	Min	Max	Units	
f _{MAX}	Maximum Clock Frequency	V _{CC} = 4.5V to 5.5V			80		MHz	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_L = 500\Omega$ $C_L = 50 \text{ pF}$	Clock	Any Q	3	8.5	ns	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		_	Clock	Any Q	4	10.5	ns
t _{PZH}	Output Enable Time to HIGH Level Output		Output Control	Any Q	2	7	ns	
t _{PZL}	Output Enable Time to LOW Level Output		Output Control	Any Q	3	10.5	ns	
t _{PHZ}	Output Disable Time from HIGH Level Output		Output Control	Any Q	2	6	ns	
t _{PLZ}	Output Disable Time from LOW Level Output		Output Control	Any Q	2	7.5	ns	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clear	Any Q	4	11.5	ns	

