## DATA SHEET

For a complete data sheet，please also download：
－The IC06 74HC／HCT／HCU／HCMOS Logic Family Specifications
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Information
－The IC06 74HC／HCT／HCU／HCMOS Logic Package Outlines

# 74HC／HCT4075 Triple 3－input OR gate 

Product specification
File under Integrated Circuits，IC06

## FEATURES

- Output capability: standard
- ICC category: SSI


## GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4075$ are high-speed Si-gate CMOS devices and are pin compatible with the "4075" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.
The $74 \mathrm{HC} / \mathrm{HCT} 4075$ provide the 3 -input OR function.

## QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

| SYMBOL | PARAMETER | CONDITIONS | TYPICAL |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | HC | HCT |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | propagation delay $\mathrm{nA}, \mathrm{nB}, \mathrm{nC}$ to nY | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | 8 | 10 | ns |
| $\mathrm{C}_{1}$ | input capacitance |  | 3.5 | 3.5 | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance per gate | notes 1 and 2 | 28 | 32 | pF |

## Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$ :
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{o}\right)$ where:
$f_{i}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

## ORDERING INFORMATION

## PIN DESCRIPTION

| PIN NO. | SYMBOL | NAME AND FUNCTION |
| :--- | :--- | :--- |
| $3,1,11$ | 1A to 3A | data inputs |
| $4,2,12$ | 1B to 3B | data inputs |
| $5,8,13$ | 1C to 3C | data inputs |
| $6,9,10$ | 1Y to 3Y | data outputs |
| 7 | GND | ground (0 V) |
| 14 | V $_{\text {CC }}$ | positive supply voltage |



Fig. 1 Pin configuration.


Fig. 2 Logic symbol.


Fig. 3 IEC logic symbol.


Fig. 4 Functional diagram.


FUNCTION TABLE

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| nA | nB | nC | $\mathbf{n Y}$ |
| L | L | L | L |
| H | X | X | H |
| X | H | X | H |
| X | X | H | H |

## Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
$X=$ don't care

Fig. 5 Logic diagram (one gate).

Triple 3-input OR gate

## DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: SSI

## AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HC |  |  |  |  |  |  |  | $\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$ | WAVEFORMS |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |
| tPHL/ tpLH | propagation delay $\mathrm{nA}, \mathrm{nB}, \mathrm{nC}$ to nY |  | $\begin{array}{\|l\|} \hline 28 \\ 10 \\ 8 \end{array}$ | $\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$ |  | $\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$ |  | $\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$ | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 6 |
| $\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$ | output transition time |  | 19 7 6 | $\begin{array}{\|l\|} \hline 75 \\ 15 \\ 13 \end{array}$ |  | $\begin{array}{\|l\|} \hline 95 \\ 19 \\ 16 \end{array}$ |  | $\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \\ \hline \end{array}$ | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 6 |

## Triple 3-input OR gate

## DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: SSI

## Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT | UNIT LOAD COEFFICIENT |
| :--- | :--- |
| $\mathrm{nA}, \mathrm{nB}, \mathrm{nC}$ | 1.50 |

AC CHARACTERISTICS FOR 74HCT
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | Tamb ${ }^{\circ}{ }^{\text {C }}$ ) |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HCT |  |  |  |  |  |  |  | $V_{\text {Cc }}$ <br> (V) | WAVEFORMS |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | propagation delay $\mathrm{nA}, \mathrm{nB}, \mathrm{nC}$ to nY |  | 12 | 24 |  | 30 |  | 36 | ns | 4.5 | Fig. 6 |
| $\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$ | output transition time |  | 7 | 15 |  | 19 |  | 22 | ns | 4.5 | Fig. 6 |

## AC WAVEFORMS

$\square$

## PACKAGE OUTLINES

