LOW-POWER LINBICMOS™ MULTIPLE DRIVERS AND RECEIVERS

SLLS137E - MAY 1992 - REVISED JANUARY 1999

- Operates With Single 5-V Power Supply
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU Recommendation V.28
- Improved Performance Replacement for MAX241
- Operates at Data Rates up to 100 kbit/s
 Over a 3-m Cable
- Low-Power Shutdown Mode . . . ≤1 μA Typ
- LinBiCMOS™ Process Technology
- Four Drivers and Five Receivers
- ±30-V Input Levels
- 3-State TTL/CMOS Receiver Outputs
- ±9-V Output Swing With a 5-V Supply
- Applications
 - TIA/EIA-232-F Interface
 - Battery-Powered Systems
 - Terminals
 - Modems
 - Computers
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages

DB OR DW PACKAGE (TOP VIEW)

тоитз [1	28	TOUT4
TOUT1	2	27	RIN3
TOUT2	3	26	ROUT3
RIN2	4	25	SHUTDOWN
ROUT2 [5	24	<u> </u>
TIN2 [6	23] RIN4
TIN1 [7	22	ROUT4
ROUT1 [8	21] TIN4
RIN1 [9	20] TIN3
GND [10	19	ROUT5
v _{cc} [11	18	RIN5
C1+ [12	17	V _{SS}
V_{DD}	13	16	C2-
C1-	14	15	C2+

description

The SN75LBC241[†] is a low-power LinBiCMOS™ line-interface device containing four independent drivers and five receivers. It is designed as a plug-in replacement for the Maxim MAX241. The SN75LBC241 provides a capacitive-charge-pump voltage generator to produce RS-232 voltage levels from a 5-V supply. The charge-pump oscillator frequency is 20 kHz. Each receiver converts RS-232 inputs to 5-V TTL/CMOS levels. The receivers have a typical threshold of 1.2 V and a typical hysteresis of 0.5 V and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into RS-232 levels.

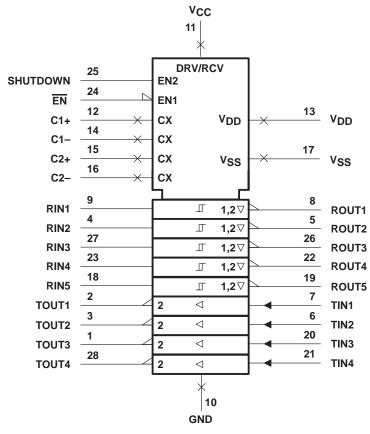
The SN75LBC241 includes a receiver, a 3-state control line, and a low-power shutdown control line. When the EN line is high, receiver outputs are placed in the high-impedance state. When EN is low, normal operation is enabled.

The shutdown mode reduces power dissipation to less than 5 μ W typically. In this mode, receiver outputs have high impedance, driver outputs are turned off, and the charge-pump circuit is turned off. When SHUTDOWN is high, the shutdown mode is enabled. When SHUTDOWN is low, normal operation is enabled.

This device has been designed to conform to TIA/EIA-232-F and ITU Recommendation V.28.

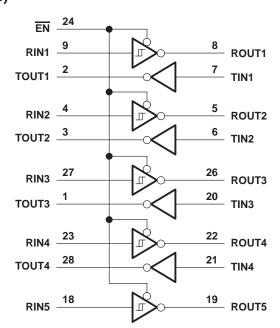
The SN75LBC241 has been designed using LinBiCMOS technology and cells contained in the Texas Instruments LinASIC™ library. Use of LinBiCMOS circuitry increases latch-up immunity in this device over an all-CMOS design.

The SN75LBC241 is characterized for operation from 0°C to 70°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

†Patent pending

TIPEICMOS and LinASIC are trademarks of Texas Instruments Incorporated.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SN75LBC241 LOW-POWER LinBiCMOS™ MULTIPLE DRIVERS AND RECEIVERS

SLLS137E - MAY 1992 - REVISED JANUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Input supply voltage range, V _{CC} (see Note 1)	0.3 V to 6 V
Positive output supply voltage range, V _{DD}	V _{CC} – 0.3 V to 15 V
Negative output supply voltage range, V _{SS}	0.3 V to –15 V
Input voltage range, V _I : Driver	0.3 V to V _{CC} + 0.3 V
Receiver	±30 V
Output voltage range, VO: TOUT	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
ROUT	0.3 V to V _{CC} + 0.3 V
Short-circuit duration: TOUT	
Continuous total dissipation	See Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{$A$}} \leq 25^{\circ}\mbox{$C$}$ POWER RATING	OPERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DB	1348 mW	10.8 mW/°C	862 mW
DW	1603 mW	12.8 mW/°C	1026 mW

recommended operating conditions

			NOM	MAX	UNIT	
Supply voltage, V _{CC}			5	5.5	V	
High-level input voltage, VIH	TIN	2			V	
nigii-levei iriput voitage, VIH	EN, SHUTDOWN	2.4			V	
Low-level input voltage, V _{IL}	TIN, EN, SHUTDOWN			0.8	V	
External charge-pump capacitor	C1–C4 (see Figure 1)	1			μF	
External charge numb connector valtage rating	C1, C3 (see Figure 1)	6.3			V	
External charge-pump capacitor voltage rating	C2, C4 (see Figure 1)	16			V	
Receiver input voltage, V _I				±30	V	
Operating free-air temperature, T _A				70	°C	

SN75LBC241 LOW-POWER LinBiCMOS™ MULTIPLE DRIVERS AND RECEIVERS

SLLS137E - MAY 1992 - REVISED JANUARY 1999

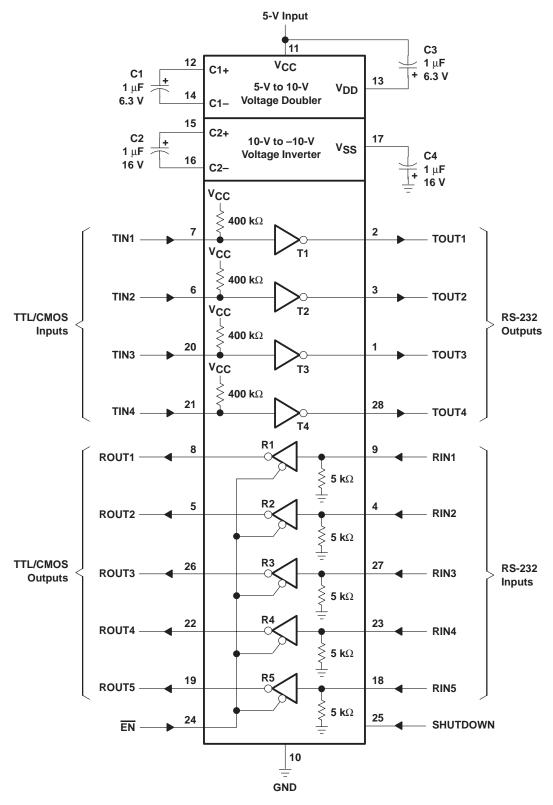
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST COM	NDITIONS	MIN	TYP†	MAX	UNIT	
Va	Lligh level output voltage	TOUT	$R_L = 3 \text{ k}\Omega \text{ to GN}$	D, See Note 2	5	9		V	
VOH	High-level output voltage	ROUT	I _{OH} = -1 mA		3.5			٧	
.,	Low-level output voltage	TOUT	$R_L = 3 \text{ k}\Omega \text{ to GN}$	D, See Note 3		_9 [‡]	- 5	V	
VOL		ROUT	$I_{OL} = 3.2 \text{ mA}$				0.4	V	
V _{IT+}	Receiver positive-going input threshold voltage	RIN	$V_{CC} = 5 V$,	T _A = 25°C		1.7	2.4	V	
VIT-	Receiver negative-going input threshold voltage	RIN	V _C C = 5 V,	T _A = 25°C	0.8	1.2		V	
V _{hys}	Input hysteresis voltage (V _{IT+} - V _{IT-})	RIN	V _{CC} = 5 V			0.5	1	V	
rį	Receiver input resistance	RIN	V _{CC} = 5 V,	T _A = 25°C	3	5	7	kΩ	
r _O	Output resistance	TOUT	$V_{DD} = V_{SS} = V_{O}$ $V_{O} = \pm 2 V$	CC = 0,	300			Ω	
los	Short circuit output current§	TOUT	V _{CC} = 5.5 V,	VO = 0		±10		mA	
IIS	Short circuit input current	TIN	V _I = 0				200	μΑ	
laa	Supply current		VCC = 5.5 V, T _A All outputs open	= 25°C,		4	8	mA	
lcc			All outputs open, SHUTDOWN hig			1	10	mA	

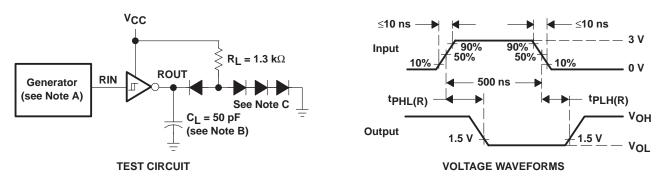
[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

- NOTES: 2. Total I_{OH} drawn from TOUT1, TOUT2, TOUT3, TOUT4, and V_{DD} terminals should not exceed 12 mA.
 - 3. Total I_{OL} drawn from TOUT1, TOUT2, TOUT3, TOUT4, and V_{SS} terminals should not exceed –12 mA.

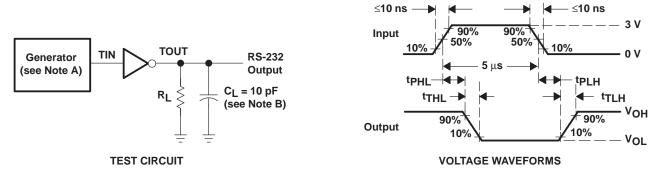
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$


PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH(R)	Receiver propagation-delay time, low- to high-level output	See Figure 2		500		ns
tPHL(R)	Receiver propagation-delay time, high- to low-level output	See Figure 2	500		ns	
^t PZH	Receiver output-enable time to high level	See Figure 5		100		ns
tPZL	Receiver output-enable time to low level	See Figure 5		100		ns
tPHZ	Receiver output-disable time from high level	See Figure 5		50		ns
tPLZ	Receiver output-disable time from low level	See Figure 5		50		ns
SR	Driver slew rate	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 2500 \text{ pF}$, See Figure 4			30	V/μs
SR _(tr)	Driver transition region slew rate	$R_L=3~k\Omega$ to 7 $k\Omega$, $C_L=2500~pF$, See Figure 4	4	6		V/μs

[‡] The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.


[§] Not more than one output should be shorted at one time.

APPLICATION INFORMATION


Figure 1. Typical Operating Circuit

PARAMETER MEASUREMENT INFORMATION

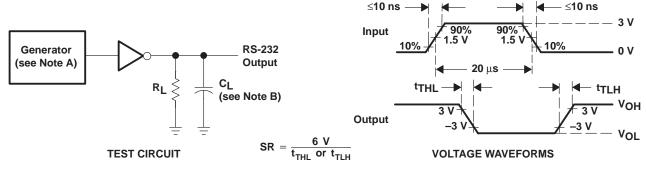

- NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

Figure 2. Receiver Test Circuit and Waveforms for tpHL and tpLH Measurement

- NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \ \Omega$, duty cycle $\leq 50\%$.
 - B. C_L includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurement (5-μs Input)

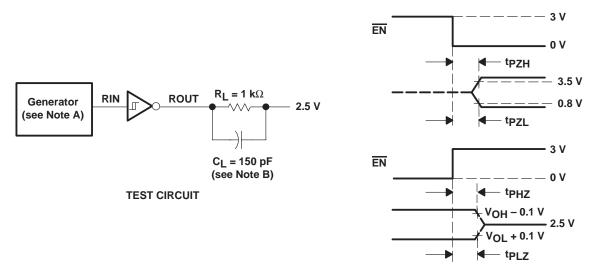

- NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
 - B. C_L includes probe and jig capacitance.

Figure 4. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurement (20-μs Input)

SLLS137E - MAY 1992 - REVISED JANUARY 1999

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \ \Omega$, duty cycle $\leq 50\%$.

B. C_L includes probe and jig capacitance.

Figure 5. Receiver Output Enable and Disable Timing

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated