SN5490A, SN549<mark>2A, \$\frac{\fra</mark>

SDLS940A - MARCH 1974 - REVISED MARCH 1988

90A, LS90 . . . Decade Counters

'92A, 'LS92 . . . Divide By-Twelve Counters

'93A, 'LS93 . . . 4-Bit Binary Counters

71/050	TYPICAL
TYPES	POWER DISSIPATION
'90A	145 mW
'92A, '93A	130 mW
'LS90, 'LS92, 'LS93	45 mW

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.

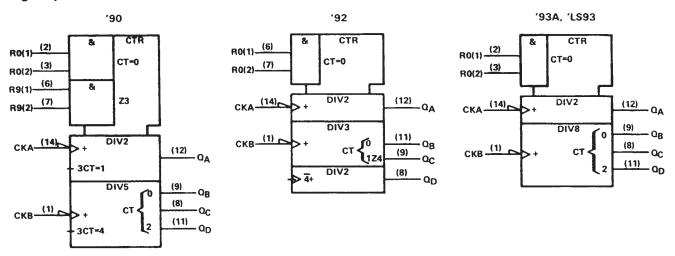
All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the Ω_A output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'LS90 counters by connecting the Ω_D output to the CKA input and applying the input count to the CKB input which gives a divide-by-ten square wave at output Ω_A .

SN5490A, SN54LS90 . . . J OR W PACKAGE SN7490A . . . N PACKAGE SN74LS90 . . . D OR N PACKAGE (TOP VIEW)

_	
СКВ 🗆	U14 CKA
RO(1) 2	13 NC
R0(2) 43	12 QA
NC □4	11D QD
VCC □5	10 GND
R9(1) ☐ 6	a∏ G B
R9(2) 7	8 🕽 QC

SN5492A, SN54LS92...J OR W PACKAGE SN7492A...N PACKAGE SN74LS92...D OR N PACKAGE (TOP VIEW)


скв 🗐	U 14 CKA
NC 2	13 NC
NC □3	12 QA
NC □4	11 QB
VCC ☐5	10 GND
R0(1) ☐6	9 ∑ 0€
R0(2) 7	8 🖸 OD

SN5493A, SN54LS93...J OR W PACKAGE
SN7493...N PACKAGE
SN74LS93...D OR N PACKAGE
(TOP VIEW)

СКВ	d1	U 14		CKA
RO(1)		13	Þ	NC
R0(2)	\square 3	12	Þ	Q_{A}
NC		11	_	Q_D
VCC	d ₅	10	Þ	GNE
NC	Ŭ€	9		QB
NC	d7	8	D	QC

SDLS940A - MARCH 1974 - REVISED MARCH 1988

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SDLS940A - MARCH 1974 - REVISED MARCH 1988

'90A, 'LS90 BCD COUNT SEQUENCE (See Note A)

COUNT		OUTPUT					
COOM	ap	α_{C}	QB	QA			
0	L	L	L	L			
1	L	L	L	H			
2	L	L	н	L			
3	L	L	Н	н			
4	L	Н	L	L			
5	L	Н	L	н			
6	L	Н	Н	L			
7	L	Н	Н	н			
8	н	L	L	L			
9	н	L	L	н			

'92A, 'L\$92 COUNT SEQUENCE

(See Note C)

COUNT		OUTPUT					
COON	a _D a _C		α_{B}	QA			
0	L	L	L	L			
1	L	L	L	н			
2	L	L	Н	L			
3	L	L	Н	н			
4	L	Н	L	L			
5	L	Н	L	н			
6	н	Ł	L	L			
7	н	L	L	н			
8	н	Ł	Н	L			
9	н	L	Н	н			
10	н	Н	L	L			
11	Н	Н	L	н			

'92A, 'LS92, '93A, 'LS93 RESET/COUNT FUNCTION TABLE

RESET						
R ₀₍₁₎	R ₀₍₂₎	aD ac aB a				
Н	Н	L	L	L	L	
L	Х	COUNT				
X	L		COL	TNL		

NOTES: A. Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input CKB for BCD count.

- B. Output $\mathbf{Q}_{\mathbf{D}}$ is connected to input CKA for bi-quinary count
- C. Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input CKB.
- D. H = high level, L = low level, X = irrelevant

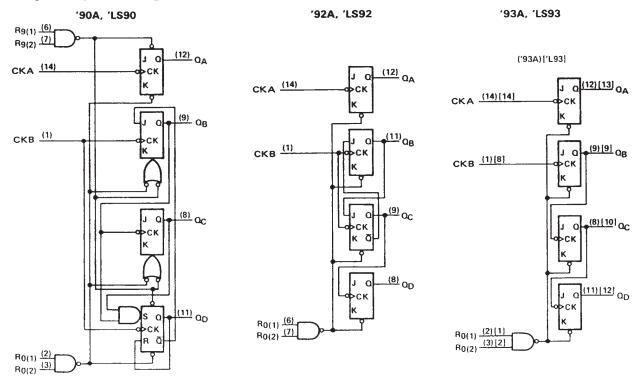
'90A, 'LS90 BI-QUINARY (5-2) (See Note B)

COUNT		ОИТРИТ					
COOM	QA	Qρ	ac	αB			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	н			
4	L	Н	L	L			
5	н	L	L	L			
6	н	L	L	Н			
7	н	L	Н	L			
8	н	L	Н	Н			
9	Н	Н	L	L			

'90A, 'LS90 RESET/COUNT FUNCTION TABLE

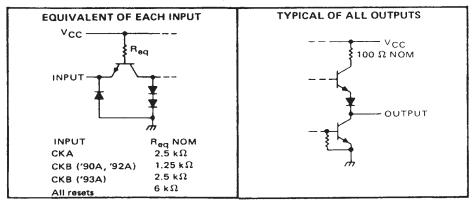
RESET INPUTS			OUTPUT						
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R9(2)	aD ac aB a					
Н	Н	L	×	L	L	L	L		
Н	Н	×	L	L	L	L	L		
Х	×	H	н	н	L	L	Н		
Х	L	×	L	COUNT					
L	×	L	Х	COUNT					
L	×	X	L	COUNT					
Х	L	L	Х		COUNT				

'93A, 'LS93 COUNT SEQUENCE


(See Note C)

	300 11	OUTPUT					
COUNT							
	QD	a_{c}	QΒ	QA			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	H			
6	L	Н	Н	L			
7	L	H	Н	Н			
8	н	L	L	L			
9	н	L	L	Н			
10	н	L	Н	L			
11	н	L	Н	Н			
12	н	Н	L	L			
13	н	Н	L	Н			
14	н	Н	Н	L			
15	Н	Н	Н	Н			

SDLS940A - MARCH 1974 - REVISED MARCH 1988


logic diagrams (positive logic)

The J and K inputs shown without connection are for reference only and are functionally at a high level. Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in () are for the 54L93.

schematics of inputs and outputs

'90A, '92A, '93A

SDLS940A - MARCH 1974 - REVISED MARCH 1988

schematics of inputs and outputs (continued)

'LS90, 'LS92, 'LS93

SDLS940A - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	/
Input voltage	/
Interemitter voltage (see Note 2)	/
Operating free-air temperature range: SN5490A, SN5492A, SN5493A	С
SN7490A, SN7492A, SN7493A 0°C to 70°C	3
Storage temperature range	0

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R₀ inputs, and for the '90A circuit, it also applies between the two R₉ inputs.

recommended operating conditions

		SN5490A, SN5492A SN5493A			SN7490A, SN7492A SN7493A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μΑ
Low-level output current, IQL				16			16	mA
	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	B input	0		16	0		16	
	A input	15			15			ns
Pulse width, tw	8 input	30			30			
	Reset inputs	15			15			
Reset inactive-state setup time, t _{su}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						'90A			'92A			'93A		UNIT
	PARAMETER ¶		TEST CONDI	TEST CONDITIONS [†]		TYP#	MAX	MIN	MIN TYP! MAX		MIN	TYP [‡]	MAX	OIVII
VIH	H High-level input voltage				2			2			2			V
VIL							0.8			0.8			8.0	V
VIK			VCC = MIN, II =	-12 mA	1		-1.5			-1.5			-1.5	V
	High-level out		V _{CC} = MIN, V _{IH}	_I = 2 V,	2.4	3.4		2.4	3.4		2.4	3.4		V
VOL	Low-level outp	put voltage	V _{CC} = MIN, V _{1H}	= 2 V,		0.2	0.4		0.2	0.4		0.2	0.4	V
1,	Input current maximum inp		VCC = MAX, VI =	= 5.5 V			1			1			1	mA
		Any reset					40			40			40	
ίн	High-level	CKA	V _{CC} = MAX, V _I =	= 2.4 V			80			80			80	μА
• • • • • • • • • • • • • • • • • • • •	input current	СКВ					120			120			80	1
		Any reset					-1.6			-1.6			-1.6]
li L	Low-level	CKA	V _{CC} = MAX, V _I	= 0.4 V			-3.2			-3.2			-3.2	mA
110	input current	СКВ	1 00			,	-4.8			-4.8			-3.2	
	Short-circuit		SN54'		-20		-57	-20		-57	-20		-57	mA
os	output current §		Vac = MAX	SN74'	-18		-57	-18		-57	-18		-57	1
¹cc	Supply current V _{CC} = MAX, See Note 3		Note 3		29	42		26	39		26	39	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25 °C.

Not more than one output should be shorted at a time.

 $[\]P_{Q_A}$ outputs are tested at I_{Q_L} = 16 mA plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining full (an out capability.

SN5490A, SN5492A, SN5493A, SN54LS90, SN54LS92, SN54LS93 SN7490A, SN7492A, SN7493A, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS SDLS940A – MARCH 1974 – REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	FROM	TO			'90A			'92A			'93A		UNIT
PARAMETER [†]	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	OIVII
	CKA	QA		32	42		32	42		32	42		MHz
f _{max}	СКВ	QB		16			16			16			141112
tPLH	CKA	0			10	16		10	16		10	16	ns
tPHL .		QA			12	18		12	18		12	18	
tPLH		0			32	48		32	48		46	70	ns
tPHL	CKA	σ_{D}	34 5	50		34	50		46	70	,,,,		
tPLH			CL = 15 pF,		10	16		10	16		10	16	ns
tPHL	СКВ	α _B	RL = 400 Ω,		14	21		14	21		14	21	
tPLH			See Figure 1		21	32		10	16_		21	32	ns
tPHL	СКВ	αc			23	35		14	21		23	35	""
tPLH			1		21	32		21	32		34	51	ns
tPHL	СКВ	σD			23	35		23	35		34	51	113
tPHL	Set-to-0	Any	1		26	40		26	40	I	26	40	ns
tPLH	Qa, Qn		1		20	30							ns
tPHL	Set-to-9	Q _B , Q _C	1		26	40							."3

 $^{^{\}dagger}f_{max} = maximum count frequency$

tpLH ≡ propagation delay time, low-to-high-level output

tpHL ≡ propagation delay time, high-to-low-level output

SDLS940A - MARCH 1974 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 	 	 	 	7	V
Input voltage: R inputs			 	 	 	 	7	٧
A and B inputs			 	 	 	 	5.5	٧
Operating free-air temperature range:	SN54LS' Cir	cuits	 	 	 		-55°C to 125°	С
	SN74LS' Cir	cuits	 	 	 	 	0°C to 70°	С
Storage temperature range							-65°C to 150°	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS90 SN54LS92 SN54LS93			SN74LS90 SN74LS92 SN74LS93			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	1
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-400			-400	μА
Low-level output current, IQL				4			8	mA
Count fraguency f Jose Figure 11	A input	0		32	0		32	MHz
Count frequency, f _{count} (see Figure 1)	B input	0		16	0		16	MHZ
	A input	15			15			
Pulse width, t _w	B input	30			30			ns
	Reset inputs	30			30			1
Reset inactive-state setup time, t _{SU}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						S	N54LS	0	S			
	PARAMET	ΓER	TE	ST CONDITION	S [†]	S	N54LS	92	S	N74LS)2	UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH High-level input voltage		t voltage				2			2			V
VIL	Low-level inpu	t voltage						0.7			0.8	V
VIK	Input clamp vo	Itage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
VOH	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA	4	2.5	3.4		2.7	3.4		٧
	1 1		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	.,
VOL	Low-level outp	ut voltage	VIL = VIL max,		10L = 8 mA¶					0.35	0.5	V
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	
II.	at maximum	CKA	V 144.V	V . F. F. V				0.2			0,2	mA
	input voltage	CKB	V _{CC} = MAX,	V _I = 5.5 V				0.4			0.4	1
	High-level	Any reset						20			20	
Ιн	-	CKA	VCC = MAX,	$V_{1} = 2.7 V$				40			40	μА
	input current	СКВ						80			80	
	1 1 1	Any reset						-0.4			-0.4	
HL	Low-level	CKA	V _{CC} = MAX,	$V_1 = 0.4 \ V$				-2.4			-2.4	mA
	input current	CKB	1					-3.2			-3.2	<u> </u>
los	Short-circuit ou	tput current§	VCC = MAX			-20		-100	-20		-100	mA
		V = 144 V	Can Nata 2	'LS90		9	15		9	15		
Icc		V _{CC} = MAX,	See Note 3	'LS92	9 15 9			15	mA			

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R_O inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. ¶QA outputs are tested at specified IOL plus the limit value of I_{IL} for the CKB input. This permits driving the CKB input while maintaining

SDLS940A - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			TOT CONDITIONS!			S	N54LS9	33	S			
	PARAMET	ER	TE:	ST CONDITIONS	5'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input	t voltage				2			2			٧
VIL	Low-level input	voltage						0.7			0.8	٧
VIK	Input clamp vo	Itage	VCC = MIN,	l ₁ = -18 mA				-1.5			-1.5	٧
VOH	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, 1 _{OH} = -400 μA	λ.	2.5	3.4		2.7	3.4		٧
			VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	V
VOL	Low-level outp	ut voltage	VIL = VIL max IOL = 8 mA¶						0.35	0.5		
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Ц	at maximum input voltage	CKA or CKB	V _{CC} = MAX,	V ₁ = 5.5 V				0.2			0.2	
	High-level	Any reset		V - 27V				20			20	μА
чн	input current	CKA or CKB	V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$				40			80	μΑ
		Any reset						-0.4			-0.4	
IL	Low-level	CKA	V _{CC} = MAX,	$V_{1} = 0.4 V$				-2.4			-2.4	mA
	input current	СКВ	1					-1.6			-1.6	
los	Short-circuit or	tput current §	V _{CC} = MAX			-20		100	-20		-100	mA
Icc	Supply current		V _{CC} = MAX,	See Note 3			9	15		9	15	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

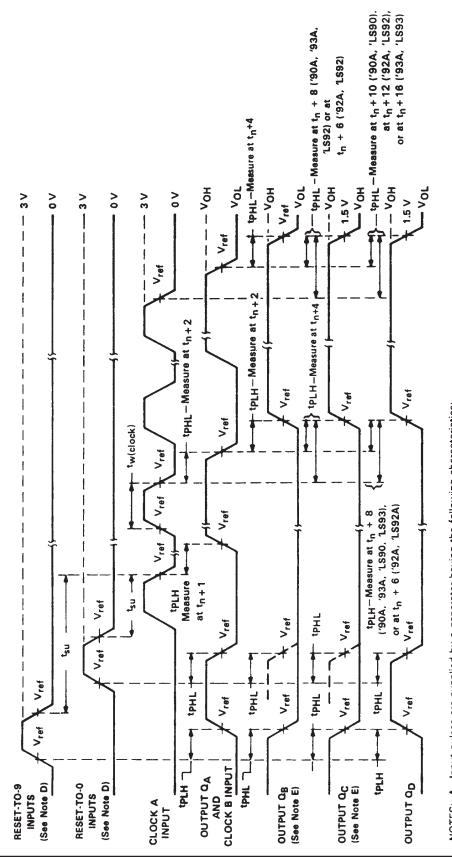
NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

<i>u</i>	FROM	TO			'LS90			'LS92			'LS93		UNIT	
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	Olviii	
	CKA	QA		32	42		32	42		32	42		MHz	
f _{max}	CKB	QB	1	16			16			16			141112	
^t PLH	014.6		1		10	16		10	16		10	16	ns	
tPHL	CKA	QA			12	18		12	18		12	18		
tPLH	CKA				32	48		32	48		46	70	ns	
^t PHL	CNA	a_{D}			34	50		34	50		46	70		
tPLH			CL = 15 pF,		10	16		10	16		10	16	ns	
tPHL	CKB	ΩB	R _L = 2 kΩ		14	21		14	21		14	21	1.5	
[†] PLH		_	See Figure 1		21	32		10	16		21	32	ns	
[†] PHL	CKB	α _C			23	35		14	21		23	35	113	
tPLH			1		21	32		21	32		34	51	ns	
¹PHL	CKB	QD				23	35		23	35		34	51	
tPHL	Set-to-0	Any	1		26	40		26	40		26	40	ns	
tPLH	Q_A, Q_D		1		20	30							ns	
tPHL	Set-to-9	QB, QC	1		26	40								

[#]fmax = maximum count frequency

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶] Q_A outputs are tested at specified I_{OL} plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

 $t_{PLH} = propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

Input pulses are supplied by a generator having the following characteristics: NOTES: A.

for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms; for 'LS90, 'LS92, 'LS93, $t_f \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms.

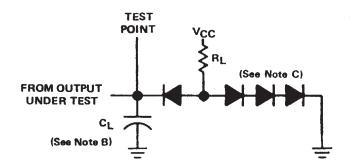

- CL includes probe and jig capacitance.
 - All diodes are 1N3064 or equivalent.
- Each reset input is tested separately with the other reset at 4.5 V. ىن ئى ئى سى س
 - Reference waveforms are shown with dashed lines.
- For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V}$, For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3 \text{ V}$.

FIGURE 1A

SDLS940A - MARCH 1974 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms; for 'LS90, 'LS92, 'LS93, $t_r \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. Each reset input is tested separately with the other reset at 4.5 V.
 - E. Reference waveforms are shown with dashed lines.
 - F. For '90A, '92A, and '93A; V_{ref} = 1.5 V. For 'LS90, 'LS92, and 'LS93; V_{ref} = 1.3 V.

FIGURE 1B

28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
7603201CA	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
7603201DA	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC
7700101CA	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
7700101DA	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC
JM38510/31501BCA	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
JM38510/31501BDA	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC
JM38510/31502BCA	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
JM38510/31502BDA	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC
SN5490AJ	LIFEBUY	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SN5492AJ	OBSOLETE	CDIP	J	14		None	Call TI	Call TI
SN54LS90J	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SN54LS93J	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SN7490AN	OBSOLETE	PDIP	N	14		None	Call TI	Call TI
SN7492AN	OBSOLETE	PDIP	N	14		None	Call TI	Call TI
SN7493AN	OBSOLETE	PDIP	N	14		None	Call TI	Call TI
SN74LS90D	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS90DR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS90N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS92D	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS92DR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS92N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS92N3	OBSOLETE	PDIP	N	14		None	Call TI	Call TI
SN74LS92NSR	ACTIVE	SO	NS	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS93D	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS93DR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SN74LS93N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS93N3	OBSOLETE	PDIP	N	14		None	Call TI	Call TI
SN74LS93NSR	ACTIVE	SO	NS	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SNJ5490AJ	LIFEBUY	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SNJ5490AW	LIFEBUY	CFP	W	14	1	None	Call TI	Level-NC-NC-NC
SNJ5492AJ	OBSOLETE	CDIP	J	14		None	Call TI	Call TI
SNJ5492AW	OBSOLETE	CFP	W	14		None	Call TI	Call TI
SNJ54LS90J	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SNJ54LS90W	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC

PACKAGE OPTION ADDENDUM

28-Feb-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
SNJ54LS93J	ACTIVE	CDIP	J	14	1	None	Call TI	Level-NC-NC-NC
SNJ54LS93W	ACTIVE	CFP	W	14	1	None	Call TI	Level-NC-NC-NC

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265