64K x 18 Bit Asynchronous／ Latched Address Fast Static RAM

The MCM67A618 is a $1,179,648$ bit latched address static random access memory organized as 65,536 words of 18 bits，fabricated with Motorola＇s high－ performance silicon－gate BiCMOS technology．The device integrates a $64 \mathrm{~K} \times 18$ SRAM core with advanced peripheral circuitry consisting of address and data in－ put latches，active low chip enable，separate upper and lower byte write strobes， and a fast output enable．This device has increased output drive capability sup－ ported by multiple power pins．

Address，data in，and chip enable latches are provided．When latch enables （AL for address and chip enables and DL for data in）are high，the address，data in，and chip enable latches are in the transparent state．If latch enables are tied high the device can be used as an asynchronous SRAM．When latch enables are low the address，data in，and chip enable latches are in the latched state．This input latch simplifies read and write cycles by guaranteeing address and data－in hold time in a simple fashion．

Dual write enables（ $\overline{\mathrm{LW}}$ and $\overline{\mathrm{UW}}$ ）are provided to allow individually writeable bytes．$\overline{\text { LW }}$ controls DQ0－DQ8（the lower bits）while UW controls DQ9－DQ17 （the upper bits）．

Six pair of power and ground pins have been utilized and placed on the pack－ age for maximum performance．

The MCM67A618 will be available in a 52 －pin plastic leaded chip carrier （PLCC）．

This device is ideally suited for systems that require wide data bus widths， cache memory，and tag RAMs．
－Single $5 \mathrm{~V} \pm 5 \%$ Power Supply
－Fast Access Times：10／12／15 ns Max
－Byte Writeable via Dual Write Enables
－Separate Data Input Latch for Simplified Write Cycles
－Address and Chip Enable Input Latches
－Common Data Inputs and Data Outputs
－Output Enable Controlled Three－State Outputs
－ 3.3 V I／O Compatible
－High Board Density 52－Lead PLCC Package

MCM67A618

PIN ASSIGNMENT

All power supply and ground pins must be con－ nected for proper operation of the device．

BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\text { LW }}$	$\overline{\text { UW }}$	$\mathbf{A L}^{*}$	DL**	$\overline{\mathbf{G}}$	Mode	Supply Current	I/O Status
H	X	X	X	X	X	Deselected Cycle	ISB	High-Z
L	X	X	L	X	X	Read or Write Using Latched Addresses	ICC	-
L	X	X	H	X	X	Read or Write Using Unlatched Addresses	ICC	-
L	H	H	X	X	L	Read Cycle	ICC	Data Out
L	H	H	X	X	H	Read Cycle	ICC	High-Z
L	L	L	X	L	X	Write Both Bytes Using Latched Data In	ICC	High-Z
L	L	L	X	H	X	Write Both Bytes Using Unlatched Data In	ICC	High-Z
L	L	H	X	X	X	Write Cycle, Lower Byte	ICC	High-Z
L	H	L	X	X	X	Write Cycle, Lower Byte	ICC	High-Z

* \bar{E} and Addresses satisfy the specified setup and hold times for the falling edge of AL. Data-in satisfies the specified setup and hold times for falling edge of DL.
NOTE: This truth table shows the application of each function. Combinations of these functions are valid.
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{S S}=0$)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Voltage Relative to $\mathrm{V}_{\text {SS }}$ for Any Pin Except V_{CC}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current (per I/O)	$\mathrm{I}_{\text {out }}$	± 30	mA
Power Dissipation	P_{D}	1.6	W
Temperature Under Bias	$\mathrm{T}_{\text {bias }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.
This device contains circuitry that will ensure the output devices are in High-Z at power up.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)
RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $\mathrm{V}_{S S}=0 \mathrm{~V}$)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	V_{CC}	4.75	5.25	V
Input High Voltage	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3^{* *}$	V
Input Low Voltage	V_{IL}	-0.5^{*}	0.8	V

${ }^{*} \mathrm{~V}_{\mathrm{IL}}(\mathrm{min})=-0.5 \mathrm{~V}$ dc; $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ ac (pulse width $\left.\leq 20 \mathrm{~ns}\right)$ for $\mathrm{I} \leq 20.0 \mathrm{~mA}$.
${ }^{* *} \mathrm{~V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \mathrm{dc} ; \mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+2.0 \mathrm{~V}$ ac (pulse width $\leq 20 \mathrm{~ns}$) for $\mathrm{I} \leq 20.0 \mathrm{~mA}$.
DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, $\mathrm{V}_{\text {in }}=0$ to V_{CC})	likg(1)	-	± 1.0	$\mu \mathrm{A}$
Output Leakage Current ($\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}$)	IIkg(0)	-	± 1.0	$\mu \mathrm{A}$
AC Standby Current $\left(\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}\right.$, All Inputs $=\mathrm{V}_{\mathrm{IL}}$ and V_{IH}, $\mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}$, Cycle Time $\geq \mathrm{t}_{\mathrm{AV}} \mathrm{AV}$ min)	ICCA10 ICCA12 ICCA15	-	$\begin{aligned} & 290 \\ & 280 \\ & 265 \end{aligned}$	mA
$\begin{aligned} & \text { AC Standby Current }\left(\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}, \text { Iout }=0 \mathrm{~mA}, \text { All Inputs }=\mathrm{V}_{\mathrm{IL}} \text { and } \mathrm{V}_{\mathrm{IH}},\right. \\ & \left.\mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V} \text {, Cycle Time } \geq \mathrm{t}_{\text {AVAV min }}\right) \end{aligned}$	ISB1	-	95	mA
$\begin{aligned} & \text { CMOS Standby Current (} \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \text {, All Inputs } \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \leq 0.2 \mathrm{~V}, \mathrm{f}=\mathrm{f}_{\mathrm{max}} \text {) } \end{aligned}$	ISB2	-	20	mA
Output Low Voltage ($\mathrm{lOL}=+8.0 \mathrm{~mA}$)	VOL	-	0.4	V
Output High Voltage ($\mathrm{l} \mathrm{OH}=-4.0 \mathrm{~mA}$)	V_{OH}	2.4	3.3	V

CAPACITANCE ($\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{dV}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance (All Pins Except DQ0 - DQ17)	C_{in}	4	5	pF
Input/Output Capacitance (DQ0 - DQ17)	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)
Input Timing Measurement Reference Level
Input Pulse Levels
0 to 3.0 V
Input Rise/Fall Time

3 ns
Output Timing Reference Level

ASYNCHRONOUS READ CYCLE TIMING (See Notes 1 and 2)

Parameter	Symbol	MCM67A618-10		MCM67A618-12		MCM67A618-15		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Read Cycle Times	tavaV	10	-	12	-	15	-	ns	3
Access Times: Address Valid to Output Valid E Low to Output Valid Output Enable Low to Output Valid	tAVQV tELQV tGLQV	-	$\begin{gathered} 10 \\ 10 \\ 5 \end{gathered}$	-	$\begin{gathered} 12 \\ 12 \\ 6 \end{gathered}$	-	$\begin{gathered} 15 \\ 15 \\ 7 \end{gathered}$	ns	4
Output Hold from Address Change	${ }^{\text {t }}$ AXQX	4	-	4	-	4	-	ns	
Output Buffer Control: E Low to Output Active $\overline{\mathrm{G}}$ Low to Output Active \bar{E} High to Output High-Z \bar{G} High to Output High-Z	tELQX tGLQX tEHQZ tGHQZ	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} - \\ \hline 5 \\ 5 \end{gathered}$	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	- 6 6	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & \hline 7 \\ & 7 \end{aligned}$	ns	5
Power Up Time	telicca	0	-	0	-	0	-	ns	

NOTES:

1. AL and DL are equal to V_{IH} for all asynchronous cycles.
2. Both Write Enable signals ($\overline{\mathrm{LW},} \overline{\mathrm{UW}}$) are equal to V_{IH} for all read cycles.
3. All read cycle timing is referenced from the last valid address to the first transitioning address.
4. Addresses valid prior to or coincident with \bar{E} going low.
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1 B . This parameter is sampled and not 100% tested. At any given voltage and temperature, $\mathrm{t}_{\mathrm{E} H Q Z}$ is less than $\mathrm{t}_{\mathrm{ELQX}}$ and t_{GH} (

AC TEST LOADS

Figure 1A

Figure 1B

ASYNCHRONOUS WRITE CYCLE TIMING (See Notes 1, 2, and 3)

Parameter	Symbol	MCM67A618-10		MCM67A618-12		MCM67A618-15		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Write Cycle Times	taVAV	10	-	12	-	15	-	ns	4
Setup Times: Address Valid to End of Write Address Valid to E High Address Valid to W Low Address Valid to \bar{E} Low DataValid to \bar{W} High Data Valid E High	taVWH taver ${ }^{t}$ AVWL ${ }^{\mathrm{t}} \mathrm{AVEL}$ tDVWH tDVEH	$\begin{aligned} & 9 \\ & 9 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \hline 10 \\ 10 \\ 0 \\ 0 \\ 6 \\ 6 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \hline 13 \\ 13 \\ 0 \\ 0 \\ 7 \\ 7 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	ns	
 Hold Times: \bar{W} High to Address Invalid \bar{E} High to Address Invalid \bar{W} High to Data Invalid \bar{E} High to Data Invalid	tWHAX tEHAX twHDX tEHDX	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	0 0 0 0	-	ns	
Write Pulse Width: Write Pulse Width ($\overline{\mathrm{G}}$ Low) Write Pulse Width (G High) Write Pulse Width Enable to End of Write Enable to End of Write	tWLWH tWLWH tWLEH tELWH tELEH	$\begin{aligned} & 9 \\ & 8 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	-	$\begin{gathered} \hline 10 \\ 9 \\ 10 \\ 10 \\ 10 \end{gathered}$	-	$\begin{aligned} & 13 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	-	ns	$\begin{gathered} 5 \\ 6 \\ 5,6 \end{gathered}$
Output Buffer Control: \bar{W} High to Output Active W Low to Output High-Z	tWHQX tWLQZ	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\overline{5}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\overline{6}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	9	ns	$\begin{gathered} \hline 7 \\ 7,8 \end{gathered}$

NOTES:

1. W (write) refers to either one or both byte write enables $\overline{L W}$ and $\overline{U W}$.
2. AL and DL are equal to V_{IH} for all asynchronous cycles.
3. Both Write Enables must be equal to V_{IH} for all address transitions.
4. All write cycle timing is referenced from the last valid address to the first transitioning address.
5. If \bar{E} goes high coincident with or before \bar{W} goes high the output will remain in a high impedance state.
6. If \bar{E} goes low coincident with or after \bar{W} goes low the output will remain in a high impedance state.
7. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLQZ is less than tWHQX for a given device.
8. If $\overline{\mathrm{G}}$ goees low coincident with or after $\overline{\mathrm{W}}$ goes low the output will remain in a high impedance state.

LATCHED READ CYCLE TIMING (See Notes 1 and 2)

Parameter	Symbol	MCM67A618-10		MCM67A618-12		MCM67A618-15		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Read Cycle Times	${ }^{\text {taVAV }}$	10	-	12	-	15	-	ns	3
Access Times: Address Valid to Output Valid E Low to Output Valid AL High to Output Valid Output Enable Low to Output Valid	t^{t} AVQV tELQV taLHQV tGLQV	-	$\begin{gathered} 10 \\ 10 \\ 10 \\ 5 \end{gathered}$	- - -	$\begin{gathered} 12 \\ 12 \\ 12 \\ 6 \end{gathered}$	-	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 7 \end{aligned}$	ns	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
Setup Times: Address Valid to AL Low E Valid to AL Low Address Valid to AL High E Valid to AL High	tavaLL tevall ${ }^{t}$ AVALH tevalh	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	-	ns	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
Hold Times: AL Low to Address Invalid AL Low to E Invalid	${ }^{\mathrm{t}} \mathrm{ALLAX}$ taLLEX	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	2 2	-	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	-	ns	4
Output Hold: Address Invalid to Output Invalid AL High to Output Invalid	$\begin{gathered} \mathrm{t}_{\mathrm{AXQXX}} \\ \mathrm{t}_{\mathrm{ALHQX}} \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-	ns	
Address Latch Pulse Width	${ }^{\text {t ALHALL }}$	5	-	5	-	5	-	ns	
Output Buffer Control: \bar{E} Low to Output Active \bar{G} Low to Output Active AL High to Output Active E High to Output High-Z AL High to Output High-Z $\overline{\mathrm{G}}$ High to Output High-Z	tELQX tGLQX t^{t} GLHQX2 tEHQZ taLHQZ tGHQZ	$\begin{aligned} & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & \overline{-} \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	- - 6 6 6	$\begin{aligned} & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & - \\ & \hline- \\ & \hline 9 \\ & 9 \\ & 7 \end{aligned}$	ns	5

NOTES:

1. Both Write Enable Signals ($\overline{\mathrm{LW}}, \overline{\mathrm{UW}}$) are equal to V_{IH} for all read cycles.
2. All read cycle timing is referenced from the last valid address to the first transitioning address.
3. Addresses valid prior to or coincident with \bar{E} going low.
4. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).
5. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested.
 a given device.

LATCHED WRITE CYCLE TIMING (See Notes 1, 2, and 3)

Parameter	Symbol	MCM67A618-10		MCM67A618-12		MCM67A618-15		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Write Cycle Times: Address Valid to Address Valid	${ }^{\text {t }}$ AVAV	10	-	12	-	15	-	ns	4
Setup Times: Address Valid to End of Write Address Valid to End of Write \bar{E} Valid to AL Low Address Valid to AL Low E Valid to AL High Address Valid to AL High AL High to \bar{W} Low Address Valid to \bar{W} Low Address Valid to E Low Data Valid to DL Low Data Valid to \bar{W} High Data Valid to \bar{E} High DL High to \bar{W} High DL High to E High	${ }^{t}$ AVWH taver tevall tavaLL tevalh taVALH ${ }^{t}$ ALHWL taVWL ${ }^{\text {taVEL }}$ tDVDLL tDVWH tDVEH tDLHWH tDLHEH	$\begin{aligned} & 9 \\ & 9 \\ & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	- - - - - - - - - - - -	$\begin{aligned} & 10 \\ & 10 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	- - - - - - - - - - - -	$\begin{aligned} & 13 \\ & 13 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	ns	
Hold Times: AL Low to E High AL Low to Address Invalid DL Low to Data Invalid \bar{W} High to Address Invalid E High to Address Invalid W High to Data Invalid \bar{E} High to Data Invalid W High to DL High \bar{E} High to DL High W High to AL High	taLLEH taLLAX tDLLDX twhax tEHAX tWHDX tEHDX twHDLH tehDLH twhal H	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	ns	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
Write Pulse Width: AL High to \bar{W} High Write Pulse Width (\bar{G} Low) Write Pulse Width (G High) Write Pulse Width Enable to End of Write Enable to End of Write	${ }^{\text {taLHWH }}$ tWLWH tWLWH tWLEH tELWH teleh	$\begin{aligned} & 9 \\ & 9 \\ & 8 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 9 \\ 10 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	ns	$\begin{gathered} 5 \\ \\ 6 \\ 7 \\ 6,7 \end{gathered}$
Address Latch Pulse Width	${ }^{\text {t }}$ ALHALL	5	-	5	-	5	-	ns	4
Output Buffer Control: \bar{W} High to Output Active W Low to Output High-Z	twHQX tWLQZ	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\overline{5}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\overline{6}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\overline{9}$	ns	$\begin{gathered} 8 \\ 8,9 \end{gathered}$

NOTES:

1. \bar{W} refers to either one or both byte write enables $\overline{\mathrm{LW}}$ and $\overline{\mathrm{UW}}$.
2. A write occurs during the overlap of \bar{E} low and \bar{W} low.
3. Both Write Enables must be equal to V_{IH} for all address transitions.
4. All write cycle timing is referenced from the last valid address to the first transitioning address.
5. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of address latch (AL) and data latch (DL).
6. If E goes high coincident with or before $\overline{\mathrm{W}}$ goes high the output will remain in a high impedance state.
7. If \bar{E} goes low coincident with or after \bar{W} goes low the output will remain in a high impedance state.
8. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLQZ is less than tWHQX for a given device.
9. If \bar{G} goes low coincident with or after \bar{W} goes low the output will remain in a high impedance state.

LATCHED WRITE CYCLES

ORDERING INFORMATION
 (Order by Full Part Number)

Full Part Numbers — MCM67A618FN10 MCM67A618FN12 MCM67A618FN15

[^0]
PACKAGE DIMENSIONS

FN PACKAGE
52-LEAD PLCC
CASE 778-02

NOTES:

1. DUE TO SPACE LIMITATION, CASE 778-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CAS OUTLINE DRAWING RATHER THAN SHOWING ALL 52 LEADS.
2. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
3. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
4. DIM R AND U DO NOT INCLUDE MOLD FLASH.

ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
6. CONTROLLING DIMENSION: INCH.
7. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
8. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.785	0.795	19.94	20.19
B	0.785	0.795	19.94	20.19
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	
	BSC			
H	0.0026	0.032	0.66	0.81
J	0.020	-	0.51	-
K	0.025	-	0.64	-
R	0.750	0.756	19.05	19.20
U	0.750	0.756	19.05	19.20
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	-	0.020	-	0.50
Z	2°	10°	2°	100°
G1	0.710	0.730	18.04	18.54
K1	0.040	-	1.02	-

Literature Distribution Centers:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

[^0]: Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\boldsymbol{4}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

