

FAIRCHILD

SEMICONDUCTOR

October 1987 Revised May 1999 D4047BC Low Power Monostable/Astable Multivibrator

a Can R

CD4047BC Low Power Monostable/Astable Multivibrator

General Description

The CD4047B is capable of operating in either the monostable or astable mode. It requires an external capacitor (between pins 1 and 3) and an external resistor (between pins 2 and 3) to determine the output pulse width in the monostable mode, and the output frequency in the astable mode.

Astable operation is enabled by a high level on the astable input or low level on the astable input. The output frequency (at 50% duty cycle) at Q and \overline{Q} outputs is determined by the timing components. A frequency twice that of Q is available at the Oscillator Output; a 50% duty cycle is not guaranteed.

Monostable operation is obtained when the device is triggered by LOW-to-HIGH transition at + trigger input or HIGH-to-LOW transition at - trigger input. The device can be retriggered by applying a simultaneous LOW-to-HIGH transition to both the + trigger and retrigger inputs.

A high level on Reset input resets the outputs Q to LOW, $\overline{\mathsf{Q}}$ to HIGH.

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS

SPECIAL FEATURES

- Low power consumption: special CMOS oscillator configuration
- Monostable (one-shot) or astable (free-running) operation

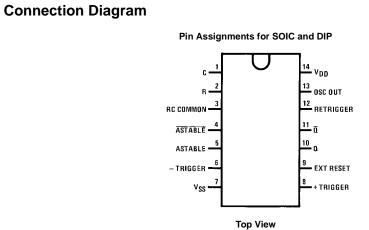
- True and complemented buffered outputs
- Only one external R and C required

MONOSTABLE MULTIVIBRATOR FEATURES

- Positive- or negative-edge trigger
- Output pulse width independent of trigger pulse duration
- Retriggerable option for pulse width expansion
- Long pulse widths possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
- Pulse-width accuracy maintained at duty cycles approaching 100%

ASTABLE MULTIVIBRATOR FEATURES

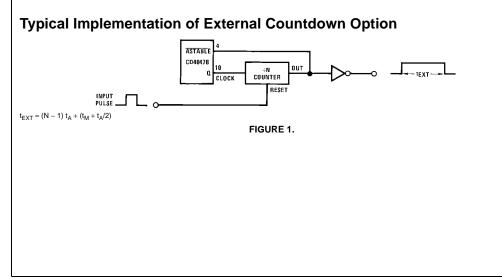
- Free-running or gatable operating modes
- 50% duty cycle
- Oscillator output available
- Good astable frequency stability typical= $\pm 2\% + 0.03\%$ °C @ 100 kHz frequency= $\pm 0.5\% + 0.015\%$ °C @ 10 kHz deviation (circuits trimmed to frequency V_{DD} = 10V $\pm 10\%$)

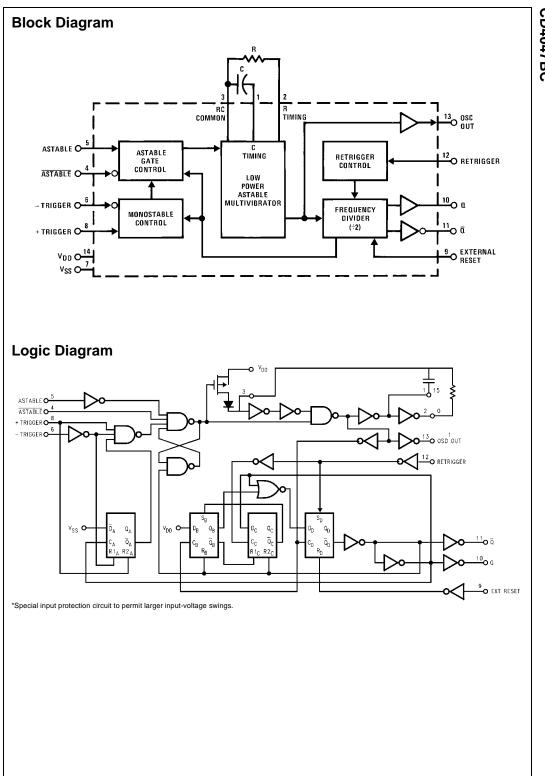

Applications

- Frequency discriminators
- Timing circuits
- Time-delay applications
- Envelope detection
- Frequency multiplication
- Frequency division

Ordering Code:

Order Number	Package Number	Package Description
CD4047BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4047BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.





Function Table

	Terminal Connections			Output Pulse	Typical Output	
Function	To V _{DD} To V _{SS}		Input Pulse	From	Period or	
			То		Pulse Width	
Astable Multivibrator						
Free-Running	4, 5, 6, 14	7, 8, 9, 12		10, 11, 13	t _A (10, 11) = 4.40 RC	
True Gating	4, 6, 14	7, 8, 9, 12	5	10, 11, 13	t _A (13) = 2.20 RC	
Complement Gating	6, 14	5, 7, 8, 9, 12	4	10, 11, 13		
Monostable Multivibrator						
Positive-Edge Trigger	4, 14	5, 6, 7, 9, 12	8	10, 11		
Negative-Edge Trigger	4, 8, 14	5, 7, 9, 12	6	10, 11	t _M (10, 11) = 2.48 RC	
Retriggerable	4, 14	5, 6, 7, 9	8, 12	10, 11		
External Countdown (Note 1)	14	5, 6, 7, 8, 9, 12	Figure 1	Figure 1	Figure 1	

Note 1: External resistor between terminals 2 and 3. External capacitor between terminals 1 and 3.

Absolute Maximum Ratings(Note 2) (Note 3)

DC Supply Voltage (V _{DD}) Input Voltage (V _{IN}) Storage Temperature Range (T _S)	$\begin{array}{c} -0.5V \text{ to } +18V_{DC} \\ -0.5V \text{ to } V_{DD} + 0.5V_{DC} \\ -65^{\circ}\text{C} \text{ to } +150^{\circ}\text{C} \end{array}$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

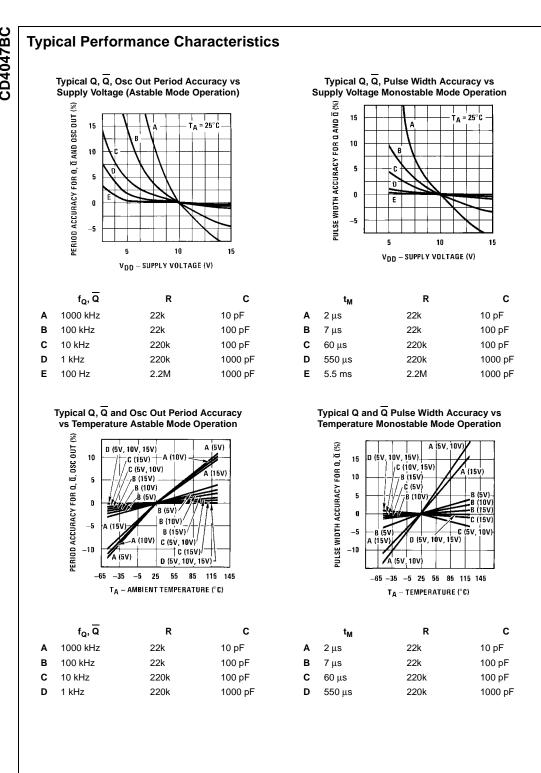
Recommended Operating Conditions (Note 3)

DC Supply Voltage (V _{DD})	$3V$ to $15V_{DC}$
Input Voltage (V _{IN})	0 to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

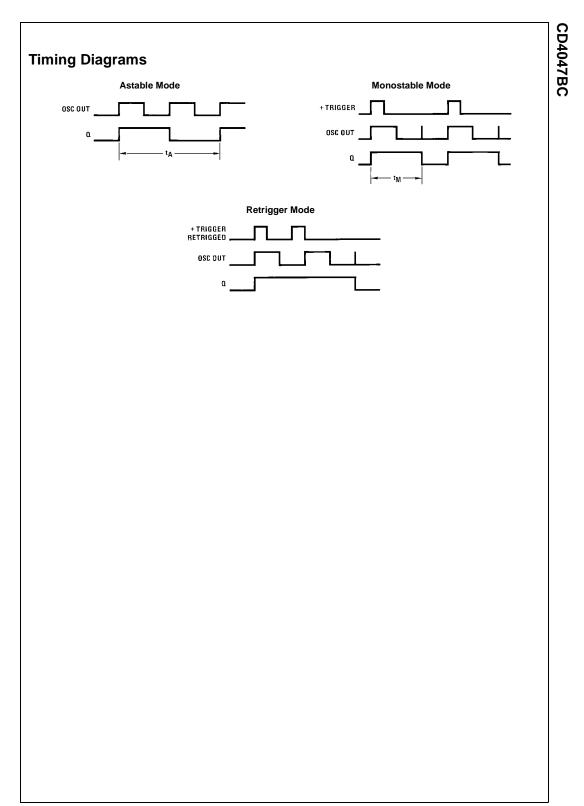
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

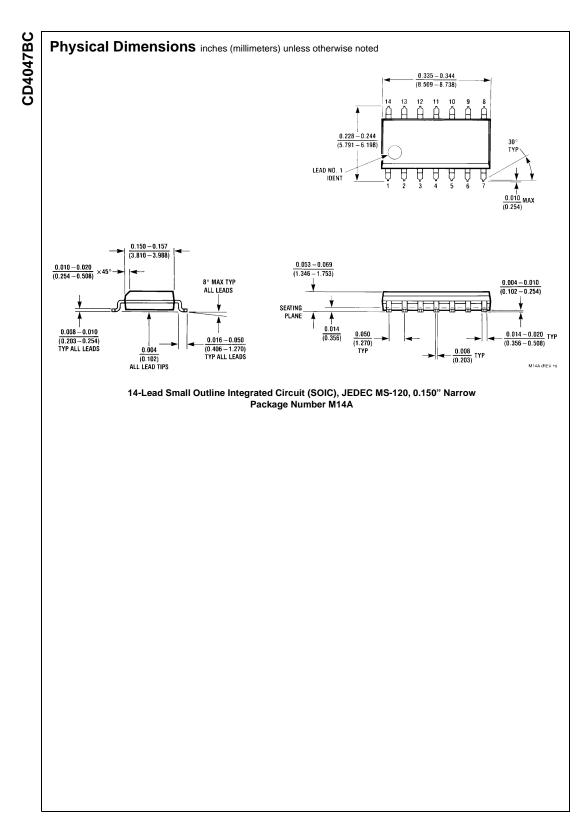
Note 3: $V_{SS} = 0V$ unless otherwise specified.

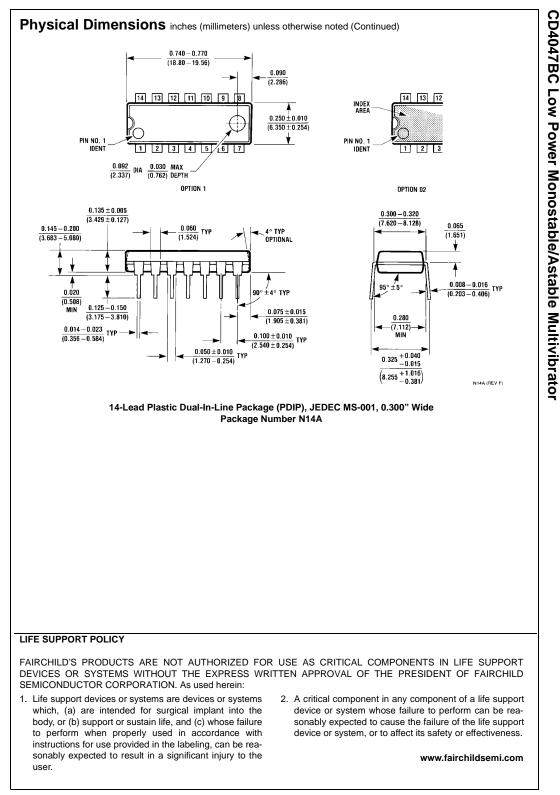
DC Electrical Characteristics (Note 3)


yp Max 20 40 80 0 0 0.05 0 0.05	Min	Max 150 300 600 0.05 0.05 0.05	Units μΑ μΑ μΑ V V
40 80 0 0.05 0 0.05		300 600 0.05 0.05	μΑ μΑ ν ν
80 0 0.05 0 0.05		600 0.05 0.05	μΑ ν ν
0 0.05		0.05	v v
0 0.05		0.05	v
0 0.05		0.05	v
0 0.05		0.05	
		0.05	V
5	4.95		V
0	9.95		V
5	14.95		V
25 1.5		1.5	V
.5 3.0		3.0	V
75 4.0		4.0	V
75	3.5		V
.5	7.0		V
25	11.0		V
88	0.36		mA
25	0.9		mA
.8	2.4		mA
.88	-0.36		mA
.25	-0.9		mA
3.8	-2.4		mA
0 ⁻⁵ -0.3		-1.0	μΑ
		1.0	μΑ
	25 88 25 .8 .88 .25 3.8 0 ⁻⁵ -0.3 0 ⁻⁵ 0.3	88 0.36 25 0.9 .8 2.4 .88 -0.36 .25 -0.9 .8.8 -2.4 0.9 -2.4 0.5 -0.3	88 0.36 25 0.9 .8 2.4 .88 -0.36 .25 -0.9 .8.8 -2.4 0 ⁻⁵ -0.3

Note 4: I_{OH} and I_{OL} are tested one output at a time.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time Astable,	$V_{DD} = 5V$		200	400	ns
	Astable to Osc Out	$V_{DD} = 10V$		100	200	ns
		$V_{DD} = 15V$		80	160	ns
t _{PHL} , t _{PLH}	Astable, Astable to Q, \overline{Q}	$V_{DD} = 5V$		550	900	ns
		$V_{DD} = 10V$		250	500	ns
		V _{DD} = 15V		200	400	ns
t _{PHL} , t _{PLH}	+ Trigger, – Trigger to Q	$V_{DD} = 5V$		700	1200	ns
		$V_{DD} = 10V$		300	600	ns
		V _{DD} = 15V		240	480	ns
t _{PHL} , t _{PLH}	+ Trigger, Retrigger to Q	$V_{DD} = 5V$		300	600	ns
		$V_{DD} = 10V$		175	300	ns
		V _{DD} = 15V		150	250	ns
t _{PHL} , t _{PLH}	Reset to Q, Q	$V_{DD} = 5V$		300	600	ns
		$V_{DD} = 10V$		125	250	ns
		V _{DD} = 15V		100	200	ns
t _{THL} , t _{TLH}	Transition Time Q, \overline{Q} , Osc Out	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Input Pulse Duration	Any Input				
		$V_{DD} = 5V$		500	1000	ns
		$V_{DD} = 10V$		200	400	ns
		$V_{DD} = 15V$		160	320	ns
t _{RCL} , t _{FCL}	+ Trigger, Retrigger, Rise and	$V_{DD} = 5V$			15	μs
	Fall Time	$V_{DD} = 10V$			5	μs
-		V _{DD} = 15V			5	μs
CIN	Average Input Capacitance	Any Input		5	7.5	pF


CD4047BC


www.fairchildsemi.com

CD4047BC

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.