32K x 18 Bit BurstRAM™ Synchronous Fast Static RAM With Burst Counter and Registered Outputs

The MCM67J518 is a 589,824 bit synchronous static random access memory designed to provide a burstable, high–performance, secondary cache for the i486™ and Pentium™ microprocessors. It is organized as 32,768 words of 18 bits, fabricated with Motorola's high–performance silicon–gate BiCMOS technology. The device integrates input registers, a 2–bit counter, high speed SRAM, and high drive registered output drivers onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0 – A14), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive–edge–triggered noninverting registers.

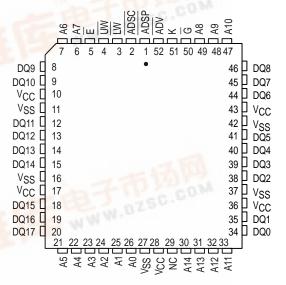
This device contains output registers for pipeline operations. At the rising edge of K, the RAM provides the output data from the previous cycle.

Output enable (\overline{G}) is asynchronous for maximum system design flexibility.

Burst can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM67J518 (burst sequence imitates that of the i486) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self–timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off–chip write pulse generation and provides increased flexibility for incoming signals.

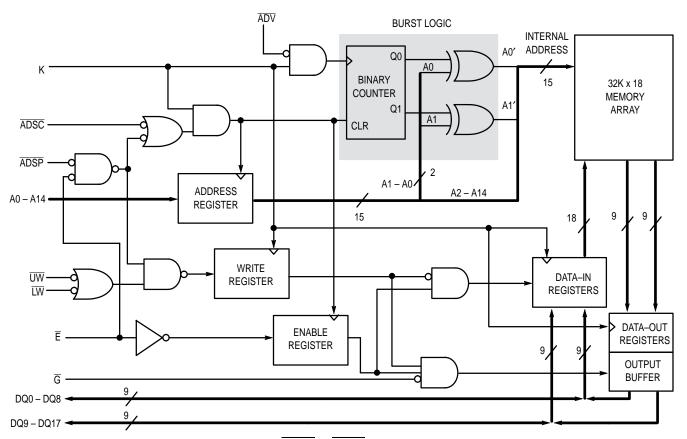
Dual write enables ($\overline{\text{LW}}$ and $\overline{\text{UW}}$) are provided to allow individually writeable bytes. $\overline{\text{LW}}$ controls DQ0 – DQ8 (the lower bits), while $\overline{\text{UW}}$ controls DQ9 – DQ17 (the upper bits).


This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information.

- Single 5 V ± 5% Power Supply
- Fast Access Time/Fast Cycle Time = 6 ns/100 MHz, 7 ns/80 MHz, 9 ns/66 MHz
- Byte Writeable via Dual Write Enables
- Internal Input Registers (Address, Data, Control)
- Output Registers for Pipelined Applications
- Internally Self–Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three–State Outputs
- Common Data Inputs and Data Outputs
- 3.3 V I/O Compatible
- High Board Density 52-Lead PLCC Package
- ADSP Disabled with Chip Enable (E) Supports Address Pipelining

MCM67J518

PIN ASSIGNMENT


PIN NAMES				
A0 – A14				

All power supply and ground pins must be connected for proper operation of the device.

BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive–edge triggered. The \overline{ADSC} or \overline{ADSP} signals control the duration of the burst and the start of the next burst. When \overline{ADSP} is sampled low, any ongoing burst is interrupted and a read (independent of \overline{W} and \overline{ADSC}) is performed using the new external address. Alternatively, an \overline{ADSP} -initiated two cycle WRITE can be performed by negating both \overline{ADSP} and \overline{ADSC} and asserting \overline{LW} and/or \overline{LW} with valid data on the second cycle (see Single Write cycle in WRITE CYCLES timing diagram). When \overline{ADSC} is sampled low (and \overline{ADSP} is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the new external address. Chip enable (\overline{E}) is sampled only when a new base address is loaded. After the first cycle of the burst, \overline{ADV} controls subsequent burst cycles. When \overline{ADV} is sampled low, the internal address is advanced prior to the operation. When \overline{ADV} is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See **BURST SEQUENCE TABLE**. Write refers to either or both byte write enables (\overline{LW} , \overline{LW}).

BURST SEQUENCE TABLE (See Note)

External Address	A14 – A2	A1	A0
1st Burst Address	A14 – A2	A1	A0
2nd Burst Address	A14 – A2	A1	A0
3rd Burst Address	A14 – A2	A1	A0

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3)

E	ADSP	ADSC	ADV	UW or LW	К	Address Used	Operation
Н	Х	L	Х	Х	L–H	N/A	Deselected
L	L	Х	Х	Х	L–H	External Address	Read Cycle, Begin Burst
L	Н	L	Х	L	L–H	External Address	Write Cycle, Begin Burst
L	Н	L	Х	Н	L–H	External Address	Read Cycle, Begin Burst
Х	Н	Н	L	L	L–H	Next Address	Write Cycle, Continue Burst
Х	Н	Н	L	Н	L–H	Next Address	Read Cycle, Continue Burst
Х	Н	Н	Н	L	L–H	Current Address	Write Cycle, Suspend Burst
Х	Н	Н	Н	Н	L–H	Current Address	Read Cycle, Suspend Burst
Н	Х	Н	L	L	L–H	Next Address	Write Cycle, Continue Burst
Н	Х	Н	L	Н	L–H	Next Address	Read Cycle, Continue Burst
Н	Х	Н	Н	L	L–H	Current Address	Write Cycle, Suspend Burst
Н	Х	Н	Н	Н	L–H	Current Address	Read Cycle, Suspend Burst

NOTES:

- 1. X means Don't Care.
- 2. All inputs except \overline{G} must meet setup and hold times for the low-to-high transition of clock (K).
- 3. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out
Read	Н	High–Z
Write	Х	High–Z — Data In
Deselected	Х	High–Z

NOTES:

- 1. X means Don't Care.
- 2. For a write operation following a read operation, \overline{G} must be high before the input data required setup time and held high through the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	l _{out}	± 30	mA
Power Dissipation	PD	1.6	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high–impedance circuit

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High–Z at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 V$)

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	VIH	2.2	V _{CC} + 0.3**	V
Input Low Voltage	V _{IL}	- 0.5*	0.8	V

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(I)}	_	± 1.0	μΑ
Output Leakage Current ($\overline{G} = V_{IH}$)	l _{lkg(O)}	_	± 1.0	μΑ
AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{Out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{KHKH} min)	ICCA6 ICCA7 ICCA9	_	310 290 275	mA
AC Standby Current (\overline{E} = V _{IH} , I _{Out} = 0 mA, All Inputs = V _{IL} and V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{KHKH} min)	ISB1	_	75	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	Voн	2.4	3.3	V

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486, Pentium bus

$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, dV = 3.0 V, T}_{A} = 25^{\circ}\text{C}, \text{ Periodically Sampled Rather Than 100\% Tested)}$

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0 – DQ17)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0 – DQ17)	C _{I/O}	6	8	pF

^{*} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA. ** V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width ≤ 20 ns) for I ≤ 20.0 mA.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 5\% \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

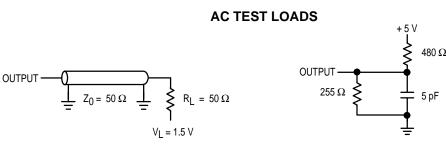
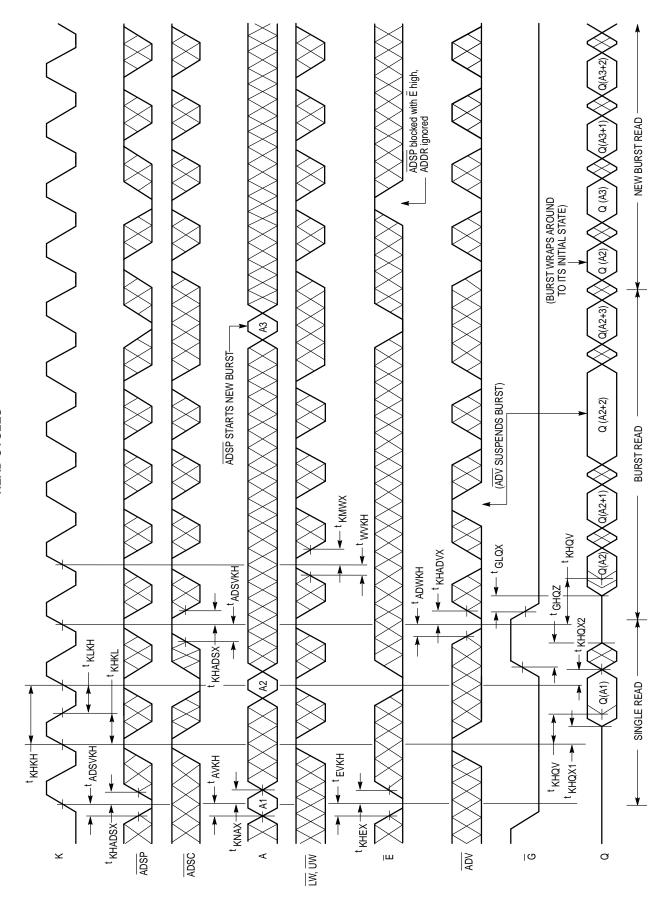
Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time 3 ns	

READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

			мсм67	′J518–6	мсм67	'J518–7	МСМ67	7J518–9		
Par	ameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time		^t KHKH	10	_	12.5	_	15	_	ns	
Clock Access Time		^t KHQV	_	6	_	7	_	9	ns	5
Output Enable to Out	tput Valid	^t GLQV	_	5	_	5	_	6	ns	
Clock High to Output	Active	^t KHQX1	2	_	2	_	2	_	ns	
Clock High to Output	Change	tKHQX2	2	_	2	_	2	_	ns	
Output Enable to Out	tput Active	^t GLQX	0	_	0	_	0	_	ns	
Output Disable to Q I	High–Z	^t GHQZ	_	6	_	6	_	6	ns	6
Clock High to Q High	ı–Z	^t KHQZ	2	6	2	6	2	6	ns	
Clock High Pulse Wid	dth	^t KHKL	4	_	5	_	5	_	ns	
Clock Low Pulse Wid	lth	^t KLKH	4	_	5	_	5	_	ns	
Setup Times:	Address Address Status Data In Write Address Advance Chip Enable	tAVKH tADSVKH tDVKH tWVKH tADVVKH tEVKH	2.5	_	2.5	_	2.5	_	ns	7
Hold Times:	Address Address Status Data In Write Address Advance Chip Enable	tKHAX tKHADSX tKHDX tKHWX tKHADVX tKHADVX	0.5	_	0.5	_	0.5	_	ns	7

NOTES:

- 1. In setup and hold times, W (write) refers to either one or both byte write enables $\overline{\text{LW}}$ and $\overline{\text{UW}}$.
- 2. A read cycle is defined by $\overline{\text{UW}}$ and $\overline{\text{LW}}$ high or $\overline{\text{ADSP}}$ low for the setup and hold times. A write cycle is defined by $\overline{\text{LW}}$ or $\overline{\text{UW}}$ low and $\overline{\text{ADSP}}$ high for the setup and hold times.
- 3. All read and write cycle timings are referenced from K or $\overline{\mathsf{G}}$.
- 4. \overline{G} is a don't care when \overline{UW} or \overline{LW} is sampled low.
- 5. Maximum access times are guaranteed for all possible i486 amd Pentium external bus cycles.
- 6. Transition is measured \pm 500 mV from steady–state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, t_{KHQZ} max is less than t_{KHQZ1} min for a given device and from device to device.
- 7. This is a synchronous device. All addresses must meet the specified setup and hold times for *ALL* rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for *ALL* rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled.

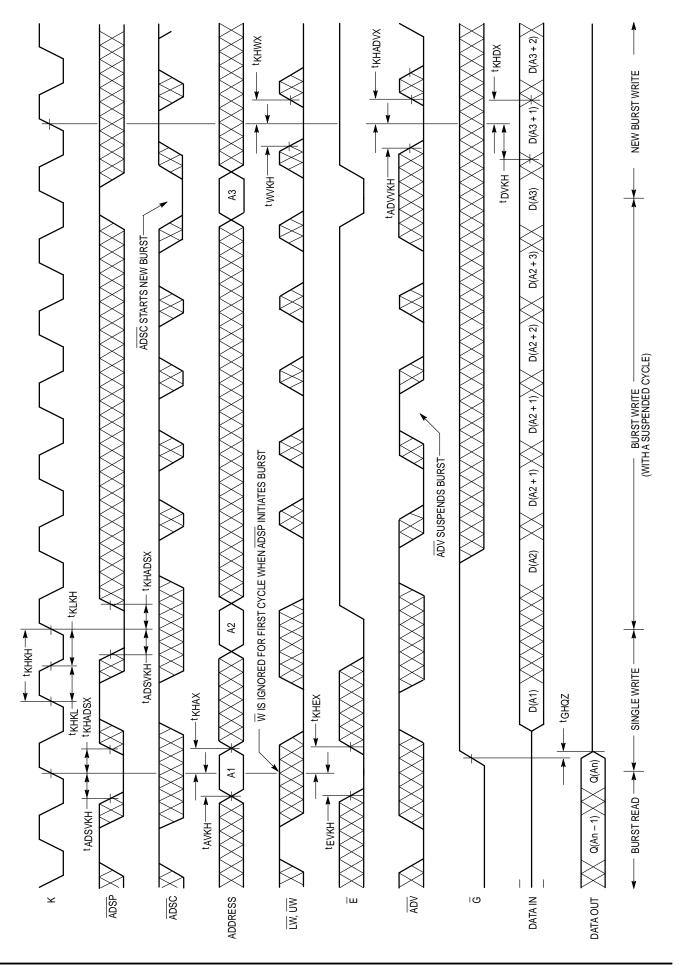
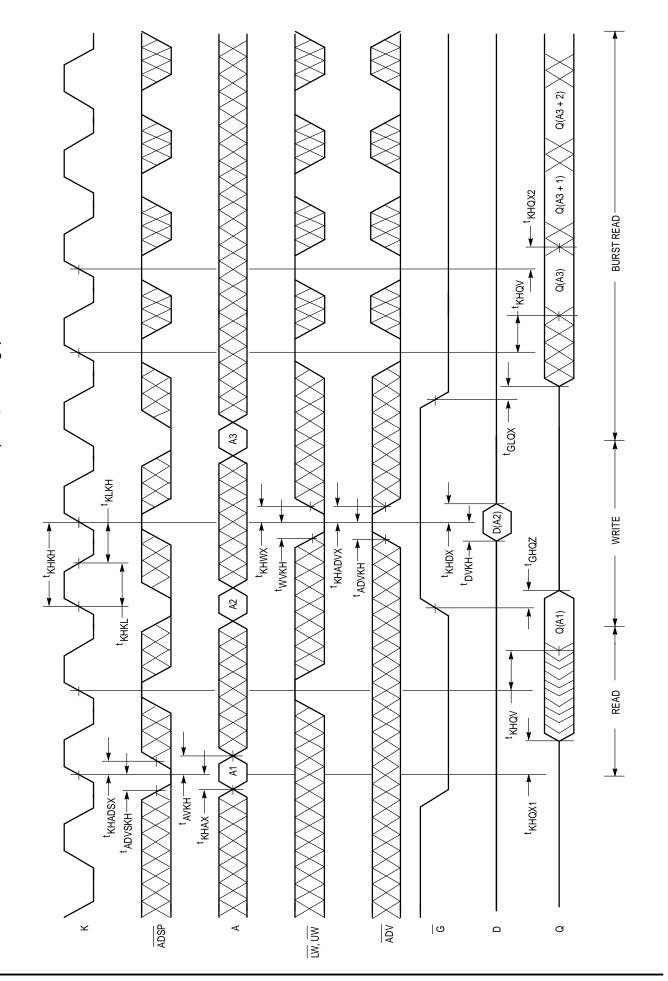
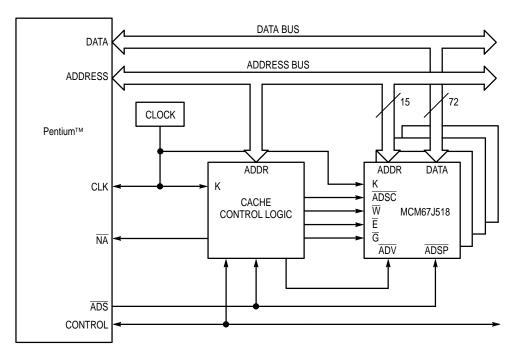

Figure 1A

Figure 1B


READ CYCLES

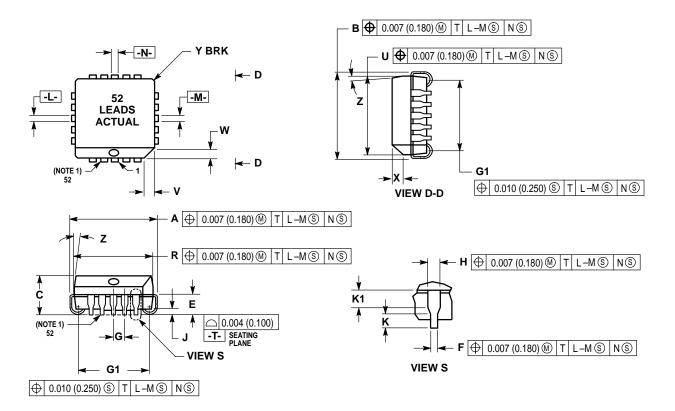

WRITE CYCLES

COMBINATION READ/WRITE CYCLES (E low, ADSC high)

APPLICATION EXAMPLE

256K Byte Burstable, Secondary Cache Using Four MCM67J518FN7s with a 75 MHz (Bus Speed) Pentium

Figure 2


ORDERING INFORMATION (Order by Full Part Number)

<u>MÇM</u> 67.	<u> 1518 </u>	<u>. X</u>	
Motorola Memory Prefix			Speed (6 = 6 ns, 7 = 7 ns, 9 = 9 ns
Part Number	J L		Package (FN = PLCC)
Full Part Numbers — MCM67.I518FN6	MCM6	7.J518FN7	MCM67.J518FN9

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

PACKAGE DIMENSIONS

FN PACKAGE 52-LEAD PLCC **CASE 778-02**

- DUE TO SPACE LIMITATION, CASE 778-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE **OUTLINE DRAWING RATHER THAN SHOWING ALL 52** LEADS.
- 2. DATUMS -L., -M., AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
 3. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-,
- SEATING PLANE.

 DIM R AND U DO NOT INCLUDE MOLD FLASH.
- ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,

- 1902.:
 THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE SOFTOM BY DE OD.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- TOP AND BOT TOM OF THE PLASTIC BODY.
 DIMENSION H DOES NOT INCLUDE DAMBAR
 PROTRUSION OR INTRUSION. THE DAMBAR
 PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION
 TO BE GREATER THAN 0.037 (0.940). THE DAMBAR
 INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.785	0.795	19.94	20.19	
В	0.785	0.795	19.94	20.19	
С	0.165	0.180	4.20	4.57	
E	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.05	0 BSC	1.27 BSC		
Н	0.026	0.032	0.66	0.81	
J	0.020	_	0.51	_	
K	0.025	_	0.64	_	
R	0.750	0.756	19.05	19.20	
U	0.750	0.756	19.05	19.20	
V	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Х	0.042	0.056	1.07	1.42	
Y	_	0.020	_	0.50	
Z	2°	10°	2°	10°	
G1	0.710	0.730	18.04	18.54	
K1	0.040	_	1.02	_	

