FEATURES

Eight Differential Line Receivers in One Package
Meets EIA Standard EIA－232E，423A，422A and CCITT V．10，V．11，V． 28

Single＋5 V Supply

Differential Inputs Withstand $\pm \mathbf{2 5}$ V
Internal Hysteresis
Low Power CMOS－3．5 mA Supply Current
TTL／CMOS Compatible Outputs
Available in 28－Pin DIP and PLCC Packages
Low Power Replacement for UC5180C／NE5180

APPLICATIONS

High Speed Communication
Computer I－O Ports
Peripherals
High Speed Modems
Printers
Logic Level Translation

GENERAL DESCRIPTION

The AD M 5180 is an octal differential line receiver suitable for a wide range of digital communication systems with data rates up to $200 \mathrm{kB} / \mathrm{s}$ ．Input signals conforming to EIA Standards 232－E，422A and CCITT V．10，V．11，V．28，X．26，and X． 27 are accepted and translated into TTL／CM OS output signal levels．
The AD M 5180 is a superior upgrade for the UC5180C and the NE5180．It is fabricated on an advanced BiCM OS process， allowing high speed bipolar circuitry to be combined with low power CM OS．This minimizes the power consumption to less than 25 mW ．

A failsafe function ensures a known output state under a variety of input fault conditions as defined in RS－422A and RS－423A．The failsafe function is controlled by FS1 and FS2．Each controls four receivers．With FS＝Low and a fault condition the output is forced low while if $\mathrm{FS}=\mathrm{H}$ igh，the output is forced high．

The device is available in both 28 －pin DIP and 28 －lead PLCC packages．

FUNCTIONAL BLOCK DIAGRAM

Truth Table

Differential Input $(+)-(-)$	Failsafe Input FS1，FS2	Receiver Logic Output
$>200 \mathrm{mV}$	X	H
$<-200 \mathrm{mV}$	X	L
O／C	L	L
S／C	L	L
O／C	H	H
S／C	H	H

ADM5180-SDECIFICATONG $\left(\mathrm{V}_{D D}=+5 \mathrm{~V} \pm 5 \%\right.$, Input Common- Mode Range $= \pm 7 \mathrm{~V}$. All Specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted.)

Parameter	Min	Typ	Max	Units	Test C onditions/Comments
POWER REQUIREMENTS $\begin{aligned} & V_{D D} \\ & I_{D D} \\ & \hline \end{aligned}$	4.75	3.5	$\begin{aligned} & 5.25 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	
INPUTS Input Resistance, $\mathrm{R}_{\text {IN }}$ Differential Input High Threshold, $\mathrm{V}_{\text {TH }}$ Differential Input Low Threshold, V_{T} H ysteresis, V_{H} Open Circuit Input Voltage, $\mathrm{V}_{\text {IOC }}$ Input C apacitance Input C urrent, $\mathrm{I}_{\text {IN }}$	$\begin{aligned} & 3 \\ & 50 \\ & \\ & -200 \\ & -400 \\ & 50 \end{aligned}$ -3.25		$\begin{aligned} & 7 \\ & 200 \\ & 400 \\ & -50 \\ & \\ & 140 \\ & 60 \\ & 20 \\ & 3.25 \end{aligned}$	$\mathrm{k} \Omega$ mV mV mV mV mV mV pF mA mA	$\begin{aligned} & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}\right\| \leq 25 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-440 \mu \mathrm{~A} \text {, See Figure } 1 \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega, \mathrm{~V}_{\text {OUT }}=2.7 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-440 \mu \mathrm{~A} \text {, See Figure } 1 \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=8 \mathrm{~mA} \text {, See Figure } 1 \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=8 \mathrm{~mA} \text {, See Figure } 1 \end{aligned}$ $\text { FS1, FS2 = } 0 \text { V or } V_{D D} \text {, See Figure } 1$ $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{~N}}=-10 \mathrm{~V} \end{aligned}$
OUTPUTS High Level Output Voltage, $\mathrm{V}_{\text {OH }}$ L ow Level Output Voltage , V oL Short Circuit O/P Current, I Ios	2.7		$\begin{aligned} & 0.4 \\ & 0.45 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {ID }}=1.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-440 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {ID }}=-1.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ID }}=-1.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=00^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ N ote 1
FAILSAFE FUNCTION F ailsafe Output Voltage, $\mathrm{V}_{\text {ofs }}$ FS1, F S2 Input C urrent	$\begin{aligned} & 2.7 \\ & -10 \end{aligned}$		$\begin{array}{r} 0.40 \\ 0.45 \\ +10 \end{array}$	$\begin{aligned} & V \\ & V \\ & V \\ & \mu \mathrm{~A} \end{aligned}$	Inputs O pen or Shorted T ogether or One Input O pen and One Grounded $\begin{aligned} & 0 \leq I_{\text {OUT }} \leq 4 \mathrm{~mA} ; F S 1, F S 2=0 \mathrm{~V} \\ & 0 \leq I_{\text {OUT }} \leq 8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0{ }^{\circ} \mathrm{C} \text { to }+700^{\circ} \mathrm{C} ; F \mathrm{FS} 1, \mathrm{FS} 2=0 \mathrm{~V} \\ & 0 \geq \mathrm{I}_{\text {OUT }} \geq-400 \mu \mathrm{~A} ; \mathrm{FS} 1, \mathrm{FS} 2=\mathrm{V}_{\text {DD }} \end{aligned}$

NOTE

${ }^{1}$ O nly one output may be shorted at any time.
Specifications subject to change without notice.

TIMING CHARACTERISTICS $\left(\mathrm{N}_{00}=+5 \mathrm{~V} \pm 5 \%\right.$.Al specifications $\mathrm{T}_{\mathrm{mut}}$ to $\mathrm{T}_{\mathrm{Tex}}$ unless otherwise noted

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
Propagation D elay-Low to High			550	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}= \pm 500 \mathrm{mV}$
Propagation D elay-H igh to Low		550	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}= \pm 500 \mathrm{mV}$	
Acceptable Input F requency		0.1	MHz	Unused Input Grounded, $V_{\text {IN }}= \pm 200 \mathrm{mV}$ Rejectable Input F requency	5.5
		MHz	Unused Input Grounded, $\mathrm{V}_{\text {IN }}= \pm 500 \mathrm{~mW}$		

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
$V_{\text {DD }}$. +7 V	
Common-M ode Input Voltage	+15 V
D ifferential Input V oltage	+25 V
F ailsafe V oltage	-0.3 V to V_{cc}
Output Short Circuit D uration	Continuous ${ }^{2}$
Power Dissipation Plastic DIP (D erate at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+50^{\circ} \mathrm{C}$)	1250 mW
$\theta_{\text {JA }}$, Thermal Impedance	$75^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation PLCC (Derate at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $+50^{\circ} \mathrm{C}$)	1000 mW
$\theta_{j A}$, Thermal Impedance	$+80^{\circ} \mathrm{C} / \mathrm{W}$

O perating T emperature Range
Commercial (J Version) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (A Version) . $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $+300^{\circ} \mathrm{C}$
Vapour Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$

NOTES

${ }^{1} T$ his is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
${ }^{2}$ Only one output should be shorted at any time.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM 5180 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. $V_{T L^{\prime}} V_{T H^{\prime}} V_{H}$ Definition

Figure 2. Timing Test Load

Figure 3. Timing Waveform

ORDERING GUIDE

Model	Temperature Range	Package Option
AD M 5180J N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{N}-28$
AD M 5180AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-28$
AD 5180J P	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	P-28A
AD M 5180AP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	P-28A

PIN CONFIGURATIONS

DIP

PLCC

PIN DESCRIPTION

Mnemonic	Function
$V_{D D}$	Power Supply Input, $5 \mathrm{~V} \pm 5 \%$.
GND	Ground Pin. M ust be connected to 0 V .
A $+\ldots \mathrm{H}+$	N oninverting Input to Differential Receivers A to H .
$\begin{aligned} & A-\ldots H- \\ & A_{0} \ldots H_{0} \end{aligned}$	Inverting Input to D ifferential Receivers A to H. Receiver Outputs A to H. A through D and FS2 controls receivers E through H .
FS1, FS2	F ailsafe C ontrol Inputs. FS1 controls receivers A through D and FS2 control Receiver E through H.

APPLICATIONS INFORMATION

FAILSAFE OPERATION

The ADM 5180 provides a failsafe operating mode to guard against input fault conditions as defined in RS-422A and RS-423A standards. The fault conditions are (1) D river in power-off condition, (2) Receiver not interconnected with D river, (3) Opencircuited interconnecting cable, and (4) Short-circuited interconnecting cable. If any of these four fault conditions occurs at the inputs of a receiver, then the output of that receiver is driven to a known logic level. The failsafe level is programmed using the failsafe (FS) input. There are two failsafe inputs, FS1 and F S2 which each control four receivers. FSI controls receivers A . . . D and FS2 controls receivers E ... H. A connection to $V_{D D}$ on the failsafe input sets the output high under fault conditions while a connection to GND sets the output low.

FS1, FS2	Output During Fault Condition
V $_{\text {DD }}$	High
GND	Low

Input Filtering

The ADM 5180 contains internal low pass filtering for additional noise rejection. F requencies above the passband will be rejected. F or the specified input (5.5 M Hz at $\pm 500 \mathrm{mV}$) the input stage attenuates the signal such that the threshold levels are not reached and therefore no change of state occurs on the output. The filtering is a function of both amplitude and and frequency. As the signal amplitude decreases then the rejected frequency will decrease.

Figure 4. EIA-232N. 28 Data Transmission

Figure 5. RS-422AN. 11 Data Transmission

Typical Performance Characteristics

Figure 6. Supply Current vs. Temperature

Figure 7. Supply Current vs. Supply Voltage

ADM5180

Figure 8. Propagation Delay vs. Amplitude

Figure 9. High Level Output Voltage vs. Output Source Current

Figure 10. Rejectable Input Frequency vs. Amplitude

Figure 11. Low Level Output Voltage vs. Output Sink Current

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead Plastic DIP (N Suffix)

28-Lead Plastic Leaded Chip Carrier (PLCC)
(P Suffix)

[^0]: Specifications subject to change without notice.

