Data sheet acquired from Harris Semiconductor SCHS176D November 1997 - Revised October 2003 # 捷多邦,专业PCB打样工厂,24小时加急出货 # CD54HC283, CD74HC283, CD54HCT283 # High-Speed CMOS Logic 4-Bit Binary Full Adder with Fast Carry #### Features - Adds Two Binary Numbers - Full Internal Lookahead - Fast Ripple Carry for Economical Expansion - Operates with Both Positive and Negative Logic - Fanout (Over Temperature Range) - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL} = 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH} ### Description The 'HC283 and 'HCT283 binary full adders add two 4-bit binary numbers and generate a carry-out bit if the sum exceeds 15. Because of the symmetry of the add function, this device can be used with either all active-high operands (positive logic) or with all active-low operands (negative logic). When using positive logic the carry-in input must be tied low if there is no carry-in. ### Ordering Information | PART NUMBER | TEMP. RANGE (°C) | PACKAGE | |---------------|------------------|--------------| | CD54HC283F3A | -55 to 125 | 16 Ld CERDIP | | CD54HCT283F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC283E | -55 to 125 | 16 Ld PDIP | | CD74HC283M | -55 to 125 | 16 Ld SOIC | | CD74HC283MT | -55 to 125 | 16 Ld SOIC | | CD74HC283M96 | -55 to 125 | 16 Ld SOIC | | CD74HCT283E | -55 to 125 | 16 Ld PDIP | | CD74HCT283M | -55 to 125 | 16 Ld SOIC | | CD74HCT283MT | -55 to 125 | 16 Ld SOIC | | CD74HCT283M96 | -55 to 125 | 16 Ld SOIC | NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250. #### **Pinout** CD54HC283, CD54HCT283 (CERDIP) CD74HC283, CD74HCT283 (PDIP, SOIC) TOP VIEW #### Functional Diagram #### #### **Thermal Information** | Thermal Resistance (Typical, Note 1) | θ_{JA} (oC/W) | |--|----------------------| | E (PDIP) Package | 67 | | M (SOIC) Package | 73 | | Maximum Junction Temperature | | | Maximum Storage Temperature Range | 65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300 ^o C | | (SOIC - Lead Tips Only) | | #### **Operating Conditions** | Temperature Range, T _A | |--| | Supply Voltage Range, V _{CC} | | HC Types | | DC Input or Output Voltage, V _I , V _O 0V to V _C (| | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max | | 6V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE 1. The package thermal impedance is calculated in accordance with JESD 51-7. #### **DC Electrical Specifications** | | | TE:
CONDI | | v _{cc} | | 25°C | | -40°C 1 | O 85°C | -55°C T | O 125 ⁰ C | | |-----------------------------|-----------------|------------------------------------|---------------------|-----------------|------|------|------|---------|--------|---------|----------------------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (S) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | - | | - | - | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | 4.5 | 3.15 | • | - | 3.15 | - | 3.15 | - | V | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | V _{OH} | H VIH OT VIL | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | OWIGO Edado | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | High Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | TTE Education | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | OWIGO Edado | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | lı | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | lcc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | # DC Electrical Specifications (Continued) | | | TES
CONDI | | v _{cc} | | 25°C | | -40°C 1 | O 85°C | -55°C T | O 125°C | | |--|------------------------------|------------------------------------|---------------------|-----------------|------|------|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (S) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HCT Types | | | | | | | | - | - | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IL} or V _{IH} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | Voн | V _{IL} or V _{IH} | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or V _{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | V _{OL} | V _{IH} or V _{IL} | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | lį | V _{CC} to
GND | - | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | ICC | V _{CC} or
GND | - | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 2) | V _{CC}
- 2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μΑ | #### NOTE: #### **HCT Input Loading Table** | INPUT | UNIT LOADS | | | | | |-----------------|------------|--|--|--|--| | C _{IN} | 1.5 | | | | | | B1, A1, A0 | 1 | | | | | | В0 | 0.4 | | | | | | B3, A3, A2, B2 | 0.5 | | | | | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μA max at $25^{o}C.$ #### **Switching Specifications** Input t_r, t_f = 6ns | | | TEST VCC (V) MIN TYP MAX | | | -40°C TO
85°C | | -55°C TO
125°C | | | | | |-----------------------|-------------------------------------|--------------------------|-----|-----|------------------|-----|-------------------|-----|-----|-----|-------| | PARAMETER | SYMBOL | | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | - | | | | | | | | | _ | | Propagation Delay | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 160 | - | 200 | - | 240 | ns | | C _{IN} to S0 | | | 4.5 | - | - | 32 | - | 40 | - | 48 | ns | | | | C _L = 15pF | 5 | - | 13 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 27 | - | 34 | - | 41 | ns | ^{2.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA. # Switching Specifications Input $t_{\rm p},\,t_{\rm f}=$ 6ns (Continued) | | | TEST | | | 25°C | | | C TO
°C | -55 ⁰
12! | C TO
5°C | | |--|--------------------------------------|-----------------------|---------------------|-----|------|-----|-----|------------|-------------------------|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | C _{IN} to S1 | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 180 | - | 225 | - | 270 | ns | | | | | 4.5 | - | - | 36 | - | 45 | - | 54 | ns | | | | C _L = 15pF | 5 | - | 15 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 31 | - | 38 | - | 46 | ns | | C _{IN} to S2, C _{IN} to C _{OUT} | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 195 | - | 245 | - | 295 | ns | | | | | 4.5 | - | - | 39 | - | 49 | - | 59 | ns | | | | C _L = 15pF | 5 | - | 16 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 33 | - | 42 | - | 50 | ns | | C _{IN} to S3 | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 230 | - | 290 | - | 345 | ns | | | | | 4.5 | - | - | 46 | - | 58 | - | 69 | ns | | | | C _L = 15pF | 5 | - | 19 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 39 | - | 49 | - | 59 | ns | | An, Bn to C _{OUT} | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 195 | - | 245 | - | 295 | ns | | | | | 4.5 | - | - | 39 | - | 49 | - | 59 | ns | | | | C _L = 15pF | 5 | - | 16 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 33 | - | 42 | - | 50 | ns | | An, Bn to Sn | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 210 | - | 265 | - | 315 | ns | | | | | 4.5 | - | - | 42 | - | 53 | - | 63 | ns | | | | C _L = 15pF | 5 | - | 18 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 36 | - | 45 | - | 54 | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation
Capacitance, (Notes 3, 4) | C _{PD} | - | 5 | - | 70 | - | - | - | - | - | pF | | HCT TYPES | | | | | | | | | | | | | Propagation Delay | | | | | | | | | | | | | C _{IN} to S0 | t _{PLH} , t _{PHL} | $C_L = 15pF$ | 5 | - | 13 | - | - | - | - | - | ns | | | | $C_L = 50pF$ | 4.5 | ı | - | 31 | - | 39 | - | 47 | ns | | C _{IN} to S1 | t _{PLH} , t _{PHL} | C _L = 15pF | 5 | ı | 18 | - | - | - | - | - | ns | | | | C _L = 50pF | 4.5 | ı | | 43 | - | 54 | - | 65 | ns | | C_{IN} to S2, C_{IN} to C_{OUT} | t _{PLH} , t _{PHL} | C _L = 15pF | 5 | - | 19 | - | - | - | - | - | ns | | | | C _L = 50pF | 4.5 | - | | 46 | - | 58 | - | 69 | ns | | C _{IN} to S3 | t _{PLH} , t _{PHL} | C _L = 15pF | 5 | i | 22 | - | - | - | - | - | ns | | | | C _L = 50pF | 4.5 | i | | 53 | - | 66 | - | 80 | ns | | An, Bn to C _{OUT} | t _{PLH} , t _{PH} L | C _L = 15pF | 5 | ı | 20 | - | - | - | - | - | ns | | | | C _L = 50pF | 4.5 | - | | 48 | - | 60 | - | 72 | ns | | An, Bn to Sn | t _{PLH} , t _{PHL} | C _L = 15pF | 5 | - | 21 | - | - | - | - | - | ns | | | | C _L = 50pF | 4.5 | - | | 49 | - | 61 | - | 74 | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 4.5 | - | | 15 | - | 19 | - | 22 | ns | #### Switching Specifications Input t_p , $t_f = 6ns$ (Continued) | | | TEST | | | 25°C | | -40 ⁰ (
85 | | -55 ⁰ (
125 | | | |--|-----------------|------------|---------------------|-----|------|-----|--------------------------|-----|---------------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Input Capacitance | C _{IN} | - | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation
Capacitance, (Notes 3, 4) | C _{PD} | - | 5 | i | 82 | Ī | ī | - | - | - | pF | #### NOTES: - 3. C_{PD} is used to determine the dynamic power consumption, per package. - 4. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: $f_i = Input$ Frequency, $C_L = Output$ Load Capacitance, $V_{CC} = Supply$ Voltage. #### Test Circuits and Waveforms FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC com 1-Jul-2005 #### **PACKAGING INFORMATION** | Orderable | e Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |-----------|---------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | 5962-897 | 6501EA | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Level-NC-NC-NC | | CD54HC | 283F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Level-NC-NC-NC | | CD54HC1 | Г283F3A | ACTIVE | CDIP | J | 16 | 1 | TBD | Call TI | Level-NC-NC-NC | | CD74H | C283E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74H0 | C283M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC | 283M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC28 | 83M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC | 283ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC | 283MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC2 | 83MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC | T283E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74HC1 | 7283EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74HC | T283M | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT | ⁻ 283M96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT2 | 83M96E4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT | 283ME4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC | T283MT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HCT2 | 283MTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder #### PACKAGE OPTION ADDENDUM 1-Jul-2005 temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. # D (R-PDSO-G16) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AC. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265