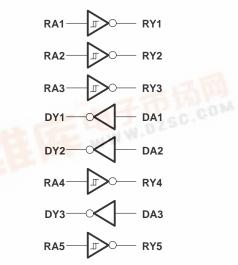
查询SN75185供应商

捷多邦,专业PCB打样工厂,24小时加急出货 SN75185 MULTIPLE RS-232 DRIVERS AND RECEIVERS

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

 Single Chip With Easy Interface Between UART and Serial Port Connector of IBM PC/AT™ and Compatibles 	DW OR N PACKAGE (TOP VIEW)
 Three Drivers and Five Receivers Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards 	V _{DD} [1 20] V _{CC} RA1 [2 19] RY1 RA2 [3 18] RY2 RA3 [4 17] RY3
Designed to Support Data Rates Up To 120 kbps	DY1 [5 16] DA1 DY2 [6 15] DA2
 ESD Protection Meets or Exceeds 10 kV on RS-232 Pins and 5 kV on All Other Pins (Human-Body Model) 	RA4 [7 14] RY4 DY3 [8 13] DA3 RA5 [9 12] RY5
Pinout Compatible With the SN75C185	

description

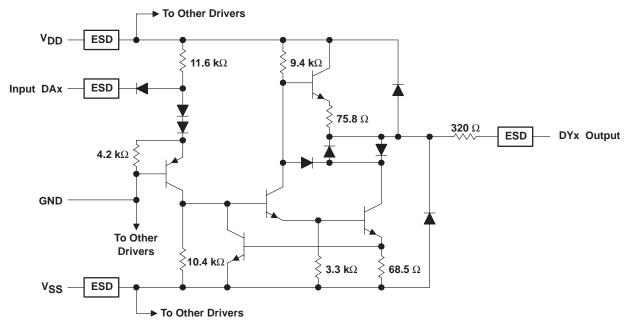

The SN75185 combines three drivers and five receivers from TI trade-standard SN75188 and SN75189 bipolar quadruple drivers and receivers, respectively. The pinout matches the flow-through design of the SN75C185 to decrease the part count, reduce the board space required, and allow easy interconnection of the UART and serial-port connector of IBM[™] PC/AT[™] and compatibles. The bipolar circuits and processing of the SN75185 provides a rugged low-cost solution for this function at the expense of quiescent power and external passive components relative to the SN75C185.

The SN75185 complies with the requirements of the TIA/EIA-232-F and ITU (formerly CCITT) v.28 standards. These standards are for data interchange between a host computer and peripheral at signaling rates up to 20 kbit/s. The switching speeds of the SN75185 are fast enough to support rates up to 120 kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be assured unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates to 120 kbit/s, use of TIA/EIA-423-B (ITU v.10) and TIA/EIA-422-B (ITU v.11) standards are recommended.

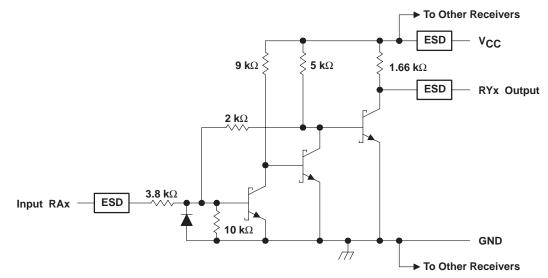
The SN75185 is characterized for operation over the temperature range of 0°C to 70°C.

logic symbol[†] 2 19 П RA1 RY1 3 18 П RY2 RA2 4 17 П RA3 RY3 5 16 \triangleleft DY1 DA1 6 15 DY2 \triangleleft DA2 7 14 П RY4 RA4 8 13 \triangleleft DY3 DA3 9 12 RA5 П RY5

⁺ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. logic diagram (positive logic)


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Pand PC/AT are trademarks of IBM Corporation.


SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

schematic of drivers

Resistor values shown are nominal.

schematic (each receiver)

Resistor values shown are nominal.

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Supply voltage, V _{DD} (see Note 1)	15 V
Supply voltage, V _{SS} (see Note 1)	
Input voltage range: Driver	
Receiver	30 V to 30 V
Driver output voltage range	–15 V to 15 V
Receiver low-level output current	
Package thermal impedance, θ_{JA} (see Note 2): DW package	97°C/W
N package	67°C/W
Electrostatic discharge: Human-body model: RS-232 pins, class 3, A (see Note 3)	10 kV
Human-body model: All pins, class 3, A (see Note 4)	5 kV
Machine model: RS-232 pins, class 3, B (see Note 5)	600 V
Machine model: All pins, class 3, B (see Note 4)	300 V
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to the network ground terminal.

- 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
- 3. RS-232 pins are tested with respect to ground and each other.
- 4. Per MIL-PRF-38535
- 5. RS-232 pins are tested with respect to ground.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}		7.5	9	15	V
Supply voltage, VSS		-7.5	-9	-15	V
Supply voltage, V _{CC}		4.5	5	5.5	V
High-level input voltage, V_{IH} (dri	iver only)	1.9			V
Low-level input voltage, VIL (driv	ver only)			0.8	V
I Pade day and a structure of a l	Driver			-6	~ ^
High-level output current, IOH	Receiver			15 -15 5.5 0.8	mA
	Driver			6	m A
Low-level output current, IOL	Receiver			mA	
Operating free-air temperature,	ГА	0		70	°C

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

supply currents

	PARAMETER		MIN MAX	UNIT		
				$V_{DD} = 9 V$, $V_{SS} = -9 V$	15	
IDD Supply current from VDD		All inputs at 1.9 V,	No load	$V_{DD} = 12 \text{ V}, V_{SS} = -12 \text{ V}$	19	mA
	Supply ourrest from Vas			$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	25	
			$V_{DD} = 9 V$, $V_{SS} = -9 V$	4.5		
		All inputs at 0.8 V,	No load	$V_{DD} = 12 \text{ V}, V_{SS} = -12 \text{ V}$	5.5	mA
				$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	9	
		All inputs at 1.9 V,	No load	$V_{DD} = 9 V$, $V_{SS} = -9 V$	-15	
				$V_{DD} = 12 \text{ V}, V_{SS} = -12 \text{ V}$	-19	mA
	Supply current from V_{SS}			$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	-25	
ISS			No load	$V_{DD} = 9 V$, $V_{SS} = -9 V$	-3.2	
		All inputs at 0.8 V,		$V_{DD} = 12 \text{ V}, V_{SS} = -12 \text{ V}$	-3.2	mA
				$V_{DD} = 15 \text{ V}, V_{SS} = -15 \text{ V}$	-3.2	
ICC	Supply current from V _{CC}	V _{CC} = 5 V,	All inputs at 5 V,	No load	30	mA

DRIVER SECTION

electrical characteristics over recommended operating free-air temperature range, V_{DD} = 9 V, V_{SS} = -9 V, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT		
VOH	High-level output voltage	V _{IL} = 0.8 V,	$R_L = 3 k\Omega$,	See Figure 1	6	7.5		V
VOL	Low-level output voltage (see Note 6)	V _{IH} = 1.9 V,	$R_L = 3 k\Omega$,	See Figure 1		-7.5	-6	V
Ιн	High-level input current	V _I = 5 V,	See Figure 2				10	μΑ
۱ _{IL}	Low-level input current	$V_{I} = 0,$	See Figure 2				-1.6	mA
IOS(H)	High-level short-circuit output current (see Note 7)	V _{IL} = 0.8 V,	$V_{O} = 0,$	See Figure 1	-4.5	-12	-19.5	mA
IOS(L)	Low-level short-circuit output current	V _{IH} = 2 V,	$V_{O} = 0,$	See Figure 1	4.5	12	19.5	mA
r _O	Output resistance (see Note 8)	$V_{CC} = V_{DD} =$	$V_{SS} = 0$,	$V_{O} = -2 V$ to 2 V	300			Ω

NOTES: 6. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only (e.g., if -10 V is maximum, the typical value is a more negative voltage).

7. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings.

8. Test conditions are those specified by TIA/EIA-232-F and as listed above.

switching characteristics, V_{CC} = 5 V, V_{DD} = 12 V, V_{SS} = -12 V, T_A = 25^{\circ}C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$R_L = 3 \text{ k}\Omega$ to 7 $\text{k}\Omega$, $C_L = 15 \text{ pF}$,		315	500	ns
^t PHL	Propagation delay time, high-to-low-level output	See Figure 3		75	175	ns
	Transition time, low to high lovel output	$R_L = 3 k\Omega$ to 7 kΩ, $C_L = 15 pF$, See Figure 3		60	100	ns
t _{TLH} Transition time, low-to-high-level output	R_L = 3 k Ω to 7 k $\Omega,$ C_L = 2500 pF, See Figure 3 and Note 9		1.7	2.5	μs	
		R _L = 3 kΩ to 7 kΩ, C _L = 15 pF, See Figure 3		40	75	ns
^t THL	Transition time, high-to-low-level output	R_L = 3 k Ω to 7 k $\Omega,$ C_L = 2500 pF, See Figure 3 and Note 10		1.5	2.5	μs

NOTES: 9. Measured between -3-V and 3-V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied.

10. Measured between 3-V and -3-V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied.

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER TEST CONDITIONS		ONDITIONS	MIN	TYP [†]	MAX	UNIT
\/-	Positivo going throshold voltage		$T_A = 25^{\circ}C$	1.75	1.9	2.3	
VT+	Positive-going threshold voltage	See Figure 5	$T_A = 0^{\circ}C$ to 70 $^{\circ}C$	1.55		2.3	V
V _T -	Negative-going threshold voltage			0.75	0.97	1.25	v
V _{hys}	Input hysteresis ($V_{T+} - V_{T-}$)			0.5			
Vau		I _{OH} = -0.5 mA	V _{IH} = 0.75 V	2.6	4	5	v
∨он	High-level output voltage		Inputs open	2.6			v
VOL	Low-level input voltage	I _{OL} = 10 mA,	V _I = 3 V		0.2	0.45	V
	High-level input current	V _I = 25 V,	See Figure 5	3.6		8.3	mA
ЧΗ	nigh-level input current	V _I = 3 V,	See Figure 5	0.43			ША
1	Low-level output current	$V_{I} = -25 V_{,}$	See Figure 5	-3.6		-8.3	mA
ΊL		$V_{I} = -3 V$,	See Figure 5	-0.43			ША
los	Short-circuit output current	See Figure 4			-3.4	-12	mA

[†] All typical values are at $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{DD} = 9$ V, and $V_{SS} = -9$ V.

switching characteristics, V_{CC} = 5 V, V_{DD} = 12 V, V_{SS} = –12 V, T_A = 25°C

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output				107	500	ns
^t PHL	Propagation delay time, high-to-low-level output	CL = 50 pF, See Figure 6	$R_L = 5 k\Omega$		42	150	ns
^t TLH	Transition time, low-to-high-level output				175	525	ns
^t THL	Transition time, high-to-low-level output				16	60	ns

PARAMETER MEASUREMENT INFORMATION

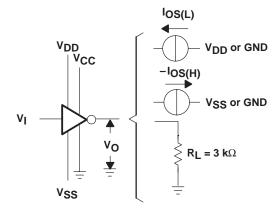


Figure 1. Driver Test Circuit for V_{OH} , V_{OL} , $I_{OS(H)}$, and $I_{OS(L)}$

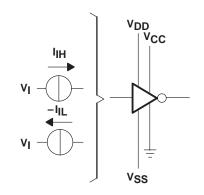
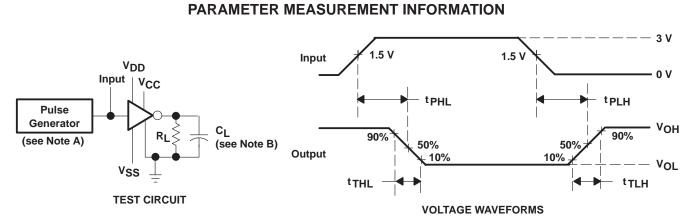
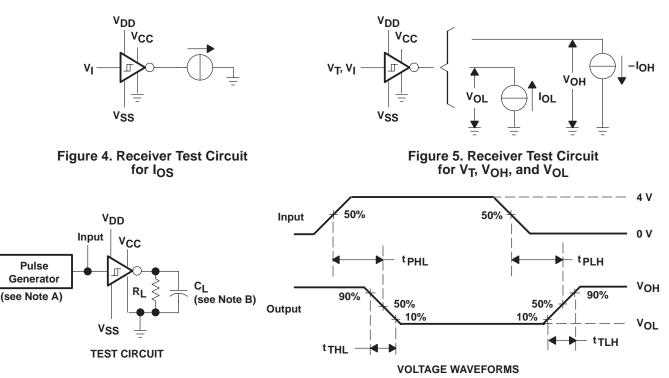



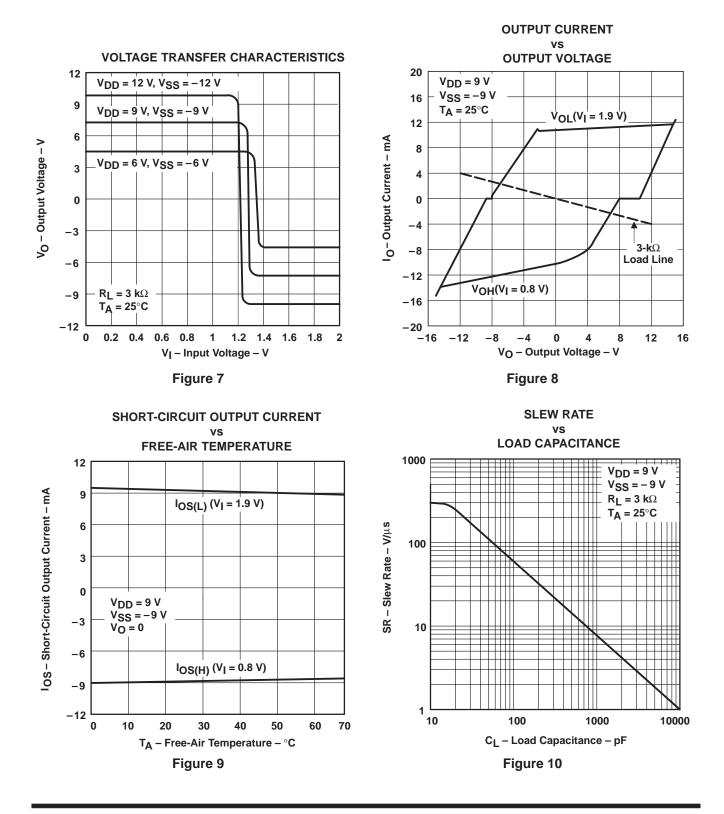
Figure 2. Driver Test Circuit for $I_{\mbox{\scriptsize IH}}$ and $I_{\mbox{\scriptsize IL}}$



SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu$ s, PRR = 20 kHz, $Z_O = 50 \ \Omega$, $t_T = t_f < 50 \ ns$. B. C_I includes probe and jig capacitance.

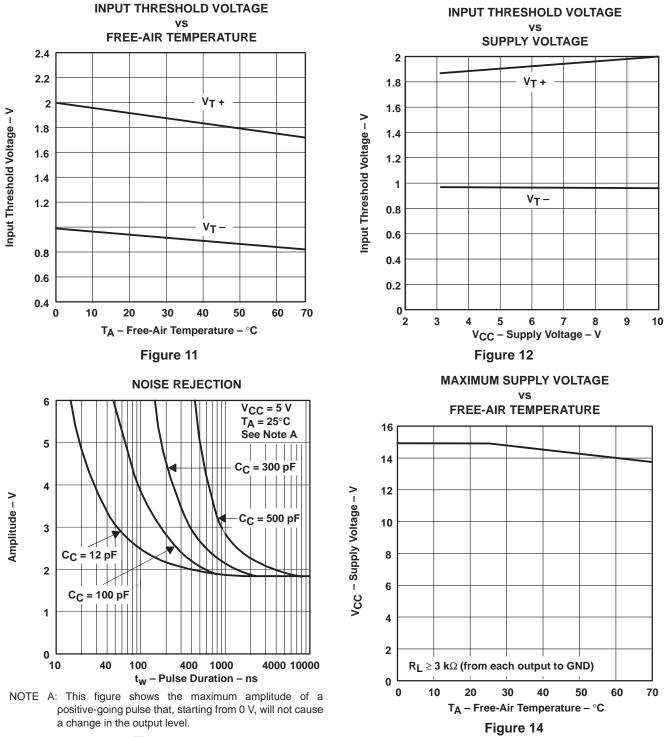
NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu$ s, PRR = 20 kHz, $Z_O = 50 \ \Omega$, $t_f = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.


Figure 6. Receiver Propagation and Transition Times

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

TYPICAL CHARACTERISTICS

DRIVER SECTION



SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

TYPICAL CHARACTERISTICS

RECEIVER SECTION

SLLS181A - DECEMBER 1994 - REVISED NOVEMBER 1998

APPLICATION INFORMATION

Diodes placed in series with the V_{DD} and V_{SS} leads protect the SN75185 in the fault condition in which the device outputs are shorted to ± 15 V and the power supplies are at low and provide low-impedance paths to ground (see Figure 15).

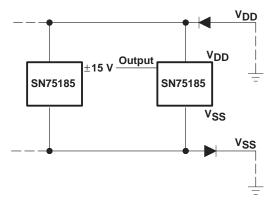
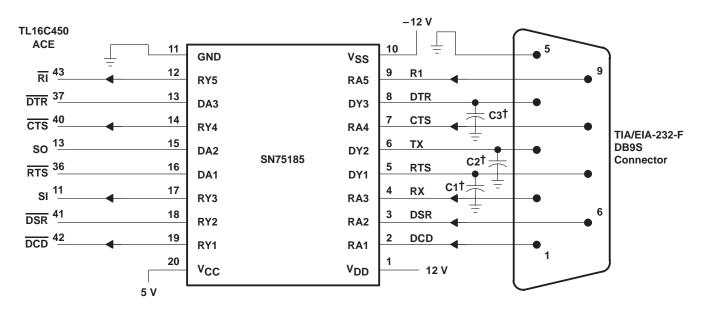



Figure 15. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

[†] See Figure 10 to select the correct values for the loading capacitors (C1, C2, and C3), which are required to meet the RS-232 maximum slew-rate requirement of 30 V/μs. The value of the loading capacitors required depends upon the line length and desired slew rate, but typically is 330 pF.

Figure 16. Typical Connection

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated