查询NJM386B供应商

₩₩₩₩₩₩₩₩₩ 捷多邦,专业PCB打样工厂,24小时加 急出资

LOW VOLTAGE AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

PACKAGE OUTLINE

The NJM386B is wider operating voltage and higher output power version of NJM386. The maximum operating voltage is 18V, and the maximum output power is up to 1W.

(4V~18V)

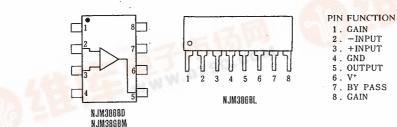
(5mA)

 $(20 \sim 200)$

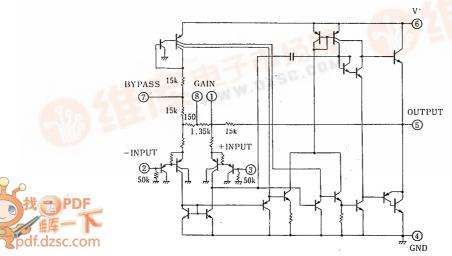
DIP8, SIP8, DMP8

FEATURES

JRC


- Operating Voltage
- Minimum External Components
- Low Operating Current
- Voltage Gain
- Single Supply Operation
- Self-centering of Output Offset Voltage
- Package Outline
- Bipolar Technology

APPLICATIONS


- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultra-sonic Drivers
- Small servo drivers
- Power converters

PIN CONFIGURATION

5

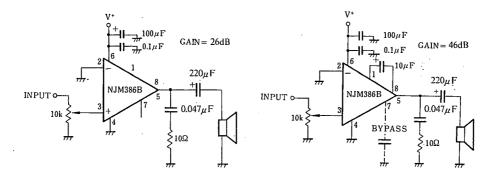
EQUIVALENT CIRCUIT

NJM386BD

N JM386 BM

(Ta=25℃)

ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	22	v
Power Dissipation	Po	(DIP-8) 700	mW
		(SIP-8) 800	mW
		(DMP-8) 300	mW
Input Voltage Range	VIN	±0.4	v
Operating Temperature Range	Topr	-40~+85	r
Storage Temperature Range	Tstg	-40~+125	°C

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4		18	v
Operating Current	Icc	$V^{+}=6V, V_{IN}=0$	_	5	8	mA
Output Power	Po	$V^{+}=6V, R_{L}=8\Omega, THD=10\%$	250	325		mW
		$V^{+}=9V, R_{L}=8\Omega, THD=10\%$ (note 2)	500	850	_	mW
		$V^+=16V, R_L=32\Omega, THD=10\%$ (note 1)	700	1000	_	mW
Voltage Gain	Av	Vs=6V, f=1kHz	24	26	28	dB
		10µF from Pin 1 to 8	43	46	49	dB
Bandwidth	BW	$V^+=6V$, Pins 1 and 8 Open		600	-	kHz
Total Harmonic Distortion	THD	$V^{+}=6V, R_{L}=8\Omega, P_{OUT}=125mV$	_	0.1	_	%
		f=1kHz, Pins 1 and 8 Open				
Power supply Rejection Ratio	SVR	$V^+=6V$, f=1kHz, C _{BYPASS} =10 μ F	-	50	-	dB
		Pins 1 and 8 Open		1		
Input Resistance	RIN		-	50	-	kΩ
Input Bias Current	lB	V ⁺ =6V, Pins 2 and 3 Open	-	100		nA

(note 1) NJM386BM: At on Board (note 2) NJM386BS: At on Board

TYPICAL APPLICATION

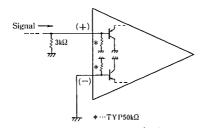
(Ta=25℃)

5

1000 SIP 800 DIP 125°C/W Power Dissipation P_D(mW) 600 143°C/W 400 DMP 200 333°C/W 0 -25 0 25 50 75 100 -50 Ta(℃) Ambient Temperature

POWER DISSIPATION VS. AMBIENT TEMPERATURE

NOTICE WHEN APPLICATION


Prevention of Oscillation

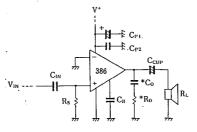
It is recommended to insert capacitors at around the supply source and the GND pins with the value of 0.1μ F and more than 100μ F which are featuring higher frequency efficiency.

When the speaker load condition, it is recommendable to insert the resisitor of 10Ω and the capacitor of 0.047μ F between the output and the GND pins.

How to use the Input Resistor (TYP. 50kΩ)

The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermeasure to be recommended is to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation $(3k\Omega \text{ approximately})$ in parallel application.

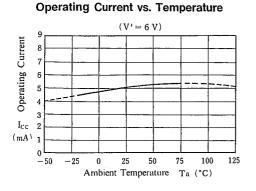
Maintenance of Output Offset Voltage


By making connection of both input pins with low value (below $10k\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor × input bias current, that is, (input resistor × input bias current)× 20 times voltage is to be sheared, which in the result, no distortion output Oscillation range shall be decreeased.

In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resistor of less than about $10k\Omega$ on DC condition.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENED VALUE	REMARKS
Rs	Current like noise reduction V _{OQ} stabilization	Below 10kΩ	The noise becomes high when the input pin opend.
CIN	V _{OQ} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
Cpi	V ⁺ stabilization	$\cong C_{cup}$	It can be decreased in value when the output impedance source is low.
CP2	Oscitallation prevention	0.1μF	Insert near around the supply source and GND pins.
Cv	Ripple rejection to Voby way of V ⁺	47µF	It is not required when the V ⁺ is stabilized.
*Co	Oscillation preventon	0.047µF	To be decided in value according to load condition.
*Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
Ccup	Output DC decoupling	$470\mu F \text{ when}$ $R_{L} = 4\Omega$ $220\mu F \text{ when}$ $R_{L} = 8\Omega$	Low band cutoff frequency (f_L) shall be decided by $C_{CUP} R_L$. When C_{CUP} is less in value, f_L is to be increassed.

• The Application Purpose and Recommended Value of the External Parts.


NJM386B Recommended Circuit

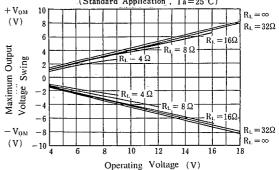
NJM386B

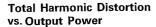
5

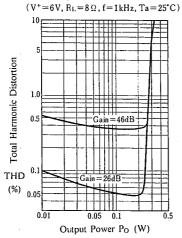
TYPICAL CHARACTERISTICS

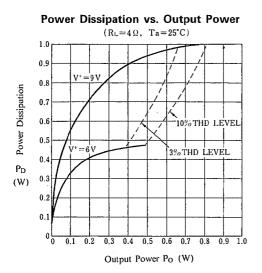
Voltage Gain vs. Temperature $(V^+ = 6 V, 26 dB Application)$ 31 30 Voltage Gain 29 28 27 26 A_{ν} 25 (dB)24 23 22 _____50 -250 25 50 75 100 125 Ambient Temperatre Ta (°C)

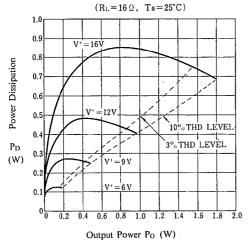
Operating Current vs. Operating Voltage $(T_a = 25^{\circ}C)$ 10 Operating Current I_{CC} (mA) 0 i

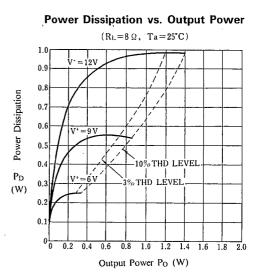

10 Operating Voltage V+ (V)


15

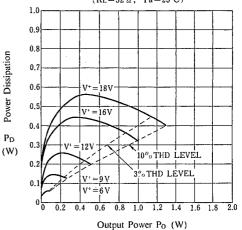

20


Maximum Output Voltage Swing





TYPICAL CHARACTERISTICS



Power Dissipation vs. Output Power

Power Dissipation vs. Output Power $(R_L=32 \Omega, T_a=25^{\circ}C)$

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -