

Content

1	SiS630 Ov	/erview1	
	1.1	Function Block Reference Table	
2	Features	5	
3	Pin Assign	nment	
	3.1	Pin Assignment (Top View)12	
	3.1.1	SiS630 Pin Assignment (Top View-Left Side)12	
	3.1.2	SiS630 Pin Assignment (Top View-Right Side)	
	3.2	SiS630 Alphabetical Pin List	
	3.3	Power Plane 20	
	34	Muxpin 21	
4	Pin Descri	ntion (Preliminary)	
т	4 1	Host Rus Interface	
	4.1	DRAM Controller 27	
	4.2	PCI Interface 27	
	4.3	PCI IDE Interface	
	4.4		
	4.5	VGA Internace	
	4.6	Power management interface	
	4.7		
	4.8	Keyboard controller Interface	
	4.9	LPC Interface	
	4.10	RIC Interface	
	4.11	AC' 97 interface	
	4.12	Fast Ethernet and Homenetworking interface	
	4.13	USB interface	
	4.14	Legacy I/o and Miscellaneous Signals	
	4.15	Power and Ground Signals	
5	Hardware ⁻	Trap	
6	Function D	Description	
	6.1	MA Mapping Table	
	6.1.1	SDRAM/System Memory	
	6.1.2	SDRAM/FBC	
	6.1.3	VCM/System Memory	
	6.1.4	VCM/FBC	
	6.2	PSON# and ACPILED Description	
	6.2.1	ACPI 57	
	6.3	Power States for SiS630 Signals 58	
	64	Arbiter Tree 62	
	6.5	Nand Tree Test Scheme 63	\mathbf{N}
7	Register S	Summary / Description – Core Logic	
'	7 1	Device 0, Eunction 0 (Host-to-PCI Bridge)	
	711	Configuration Space Header	
	710	Provide the state of the state	
	712	Shadow RAM & PCLHole Area	
	1.1.3		

i

Preliminary V.10 Oct.07,1999

Prel	limina	ry V.10 C	Dct.07,1999 ii Silicon Integrated Systems C	Corporation
10		Register		
12	12.3	Le(Register	yacy Support Registers	
	10.0	12.2.1	nosi Controller Operational Registers	
	12.2	US	B UpenHCI Host Controller Operational Registers	
	40.0	12.1.1	USB Configuration Space	
	12.1	US	B OpenHCI Host Controller Configuration Space	
12	40.4	Register	Summary / Description –USB Summary	
40	11.2	LP	C Bridge Configuration Registers	
	11.1	LP	C Bridge Configuration Registers	
11		Register	Summary / Description – LPC Summary	
		10.1.1	Legacy ISA Registers	
	10.1	Re	gister Summary	
10	40.4	Register	Summary / Description Legacy	
40	9.10	AG	P Configuration Registers	
	9.9	PC	Dentiguration Registers	
	9.8	VIL	JEU/IV EXTENDED Registers	
	9.7	EX		
	9.6	Co	NOF REGISTERS	
	9.5	Atti	ribute Controller and Video DAC Registers	
	9.4	Gra		
	9.J	50	quencer Registers	
	9.2	CR		
	0.0	9.1.1	IVIIScellaneous Output Registers	
	9.1	Ge		
Э	Kegi		mary / Description – Graphics	
^	ŏ.1 Doci	UII otor Curre	set Registers for PUBUS Master IDE Control Registers	
Q	PUI ₀ ₄		iguiation Space Register	
0	1.4 DOI		iduration Space Perister	II/ 105
	71	7.3.1U \/im	A.G.F. CUILIUL REGISTERS	1 10 117
		1.3.9 7240		
		1.3.0 730	DRAM Priority Timer Control Projector	۱۱U
		1.3.1 739	A G P GAPT and Page Table Control Projectors	IUI 110
		1.3.0 727	Hardware Tran Control	
		1.3.5		
		725	Shadow PAM Area	
		1.3.3	DDAM Control Dogisters	
		1.3.2		
		7.3.1	Configuration Space Header	12 07
	7.3	724 Ke	Usier Description Core logic	
	7.2	De	vice z, Function U (Virtual POI-to-POI Bridge)	
	70	7.1.9	A.G.P.	
		7.1.8	Integrated VGA Control	
		7.1.7	GARI and Page Table Registers	
		7.1.6	Clock Control	70
		7.1.5	Host Bridge & PCI Arbiter Characteristics	69
		7.1.4	Hardware-Trap Control	69

Preliminary V.10 Oct.07,1999

	13.1	MAC and PHY Registers	231
		13.1.1 MAC Configuration Space (Function 1)	231
		13.1.2 MAC Operational Registers	232
		13.1.3 PHY Configuration Registers	232
	13.2	10M/100M Ethernet Controller Registers	233
	13.3	PCI Configuration Registers	234
	13.4	MAC Operational Registers	246
		13.4.1 (Wake-up Sample Frame Byte Mask Register	272
	13.5	MII PHY Registers	272
	13.6	Home SPI Registers	281
14		Register Summary / Description – Audio Accelerator Summary	289
	14.1	Audio Configuration Space (Function 4)	289
		14.1.1 Audio Configuration Registers:	290
	14.2	Operational Registers.	298
		14.2.1 Bit 70 X Timer1 Preset Value	307
		14.2.2 Bit 0 / Enable Timer 1	308
		14.2.3 Wave Engine Register:	320
15		Register Summary / Description - SMBus	344
	15.1	SMBUS Control Registers	344
16		Register Summary / Description - ACPI/Summary	345
	16.1	ACPI Configuration Registers	345
	16.2	GPIOx Logic	348
	16.3	ACPI Register	348
17		Register Ssummary / Description - Automatic Power Control Summary	379
	17.1	Automatic Power Control (APC) Registers	379
		17.1.1 RTC Registers	379
	17.2	APC Register	380
18		Electrical Characteristics	387
	18.1	Absolute maximum Ratings	387
	18.2	DC Characteristics	387
		18.2.1 DC Characteristics	387
		18.2.2 DC Characteristics for DAC (Analog Output Characteristics)	388
19		Mechanical Dimension	389
20		Power Sequence in SiS630	390
	20.1	SiS630 Package on 4 Layer PCB (With Heatsink)	391
	20.2	SiS630 Package on 4 Layer PCB (Without Heatsink)	391
21		Copyright Notice	393

iii

Figure

Figure 1-1 SiS630 System Block Diagram	2
Figure 1-2 SiS630: Ready for Easy PC	3
Figure 6.2-1 PSON#	56
Figure 6.2-2 ACPILED	57
Figure 6.4-1 Arbiter Tree	62
Figure 6.5-1 The Mechanism of NAND Tree	63
Figure 6.5-2 The Test Scheme of NAND Tree	64
Figure 13.4-1 Receive Filter Algorithm	
Figure 16.2-1 GPIØx Logic	
Figure 20.2-1 SiS630 A Temp vs Power(2)	
Table	
TABLE 6.5-1 Nand Tree List for SiS630	

TABLE 6.5-1 Nand Tree List for SiS630	
Table 9.1-1 Sync Polarity vs. Vertical Screen Resolution1	42
Table 9.1-2 Table for Video Clock Selection	42
Table 9.3-1 Table of Sequencer Registers.,	153
Table 9.4-2 Table of Function Select1	157
Table 9.4-3 Table of Rotate Count	157
Table 9.4-4 Table for Write Mode1	158
Table 9.4-5 Table of Memory Address Select	158
Table 9.5-1 Table of Attribute Controller Registers	60
Table 9.5-2 Table for Video Read-back Through Diagnostic Bit (1)1	62
Table 9.5-3 Table for Video Read-back Through Diagnostic Bit (II)	62
Table 9.5-4 Table of Pixel Panning1	62
Table 9.7-1 Table of Extended Registers	65
Table 9.8-2 Table of digital video interface registers1	171
Table11.1-1 Interrupt Pin Reroute Table1	86
Table 18.1-1 Absolute Maximum Ratings	387
Table 18.2-1 DC Characteristics of Host, DRAM, PCI and IDE Interface	387
Table 18.2-1 Table of DC Characteristics for DAC	388

iv

Preliminary V.10 Oct.07,1999

Date	Rev	Description
		1. Revisions to Chapter 3 A4, A7,B4, C5, D5 ,M12,M13,M14
	(O)	Pin List delete "EEDI/F8"
		2.Revision to 3.4 Muxpin Ball No.W4
	/	1.Removed GPIO9/PLED1#/OC4# in Chap.4.
	\sim	2.Revisions to Chapter 4 USB (UV[4:0])
		3. Change "PLED0/OC3#/GPIO8" to "PLED0/OC2#/GPIO8", "LDRQ1#/OC2#/GPIO2" to "LDRQ1#/OC3#/GPIO2" and "ACTIVITY indication" to "LINK/ACTIVITY indication"
		4.Revision to 4.5 VGA Interface Name VBA1.
		5.Revision to 4.12 PLED#.
		6.Revision to 4.15 PHYVDD.
		1.Add Arbiter Tree to Chap 6
Oct.1999	1.0	2.Revisions to Mapping Table.
		3.Revisions to 6.3 CRURST# and CKE.
		1.Revision7.3.2 Register 08h.
		1.Revisions to Chap.8 IDE Register
		1.Revisions to 9.9 CNFG04,CNFG3C.
		1. Revisions to Chap.10-11_South_Bridge
		Add an interrupt pin table.
		Change some description of Reg 40h
		Remove the description " These registers can be accessed
		from PCI bus and ISA bus".
		1.Revisions to Chap.11 Register 5F Reg47, Reg48, Reg62
		Reg72, Reg73, Reg6a and Reg76
		1.Revisions to Chap 14 (Audio)

v

Revision History

Preliminary V.10 Oct.07,1999

	1.Chap.16_Register Summary-ACPI.doc
	Register 4Ah and 4Bh must reverse.
	2.In the summary table of registers, Register 4a and 4B
	would be changed.
	3.Register 60~61h
$\left(\right)$	The description of bit0 has been changed for instantly
\land	power-off function.
	4,Register 30~31h has changed for A1 version
	1.Revisions to Chap.17 Reg02h,Reg03h,Reg02 bit6:5 ,Reg02
$\sim (\bigcirc)$	bit4:3, Reg02 bit2 ,Reg02 bit1, Reg03 bit7:6

Preliminary V.10 Oct.07,1999

vi **Silicon**

1 SiS630 Overview

The single chipset, SiS630, provides a high performance/low cost Desktop solution for the Intel Slot 1 and socket 370 series CPUs based system by integrating a high performance North Bridge, advanced hardware 2D/3D GUI engine and Super-South bridge. In addition, SiS630 provides system-on-chip solution that complies with Easy PC Initiative which supports Instantly Available/OnNow PC technology, USB, Legacy Removal and Slotless Design and FlexATX form factor.

By integrating the UltraAGP[™] technology and advanced 128-bit graphic display interface, SiS630 delivers AGP 4x performance and up to 2 GB/s memory bandwidth. Furthermore, SiS630 provides powerful hardware decoding DVD accelerator to improve the DVD playback performance. In addition to providing the standard interface for CRT monitors, SiS630 also provides the Digital Flat Panel Port (DFP) for a standard interface between a personal computer and a digital flat panel monitor. To extend functionality and flexibility, SiS also provides the "Video Bridge" (SiS301) to support the NTSC/PAL Video Output, Digital LCD Monitor and Secondary CRT Monitor, which reduces the external Panel Link transmitter and TV-Out encoder for cost effected solution. SiS630 also adopts Share System Memory Architecture which can flexibly utilize the frame buffer size up to 64MB.

The "Super-South Bridge" in SiS630 integrates all peripheral controllers/accelerators /interfaces. SiS630 provides a total communication solution including 10/100Mb Fast Ethernet for Office requirement and 1Mb HomePNA for Home Networking. SiS630 offers AC' 97 compliant interface that comprises digital audio engine with 3D-hardware accelerator, on-chip sample rate converter, and professional wavetable along with separate modem DMA controller. SiS630 also provides interface to Low Pin Count (LPC) operating at 33 MHz clock which is the same as PCI clock on the host, and dual USB host controller with five USB ports that deliver better connectivity and 2 x 12Mb bandwidth.

The built-in fast PCI IDE controller supports the ATA PIO/DMA, and the Ultra DMA33/66 function that supports the data transfer rate up to 66 MB/s. It provides the separate data path for two IDE channels that can eminently improve the performance under the multi-tasking environment.

The following illustrates the system block diagram.

1

Preliminary V.10 Oct.07,1999

Figure 1-1 SiS630 System Block Diagram

2

1.1 Function Block Reference Table

Bus #	Device #	Function #	Device ID	IDSEL	Device Function
Bus 0	Device 0	Function 0	0630h	AD11	North Bridge
Bus 0	Device 0	Function 1	5513h	AD11	PCI IDE
Bus 1	Device 0	Function 0	6300h	AD11	GUI
Bus 0	Device 1	Function 0	0008h	AD12	LPC
Bus 0 Device 1		Function 1	0900h	AD12	LAN
Bus 0 Bus 0	Device 1 Device 1	Function 0 Function 1	0008h 0900h	AD12 AD12	LPC LAN

3

Preliminary V.10 Oct.07,1999

Bus 0	Device 1	Function 2	7001h	AD12	USB 0
Bus 0	Device 1	Function 3	7001h	AD12	USB 1
Bus 0	Device 1	Function 4	7018h	AD12	H/W Audio
Bus 0	Device 1	Function 6	7013h	AD12	S/W Modem
Bus 0	Device 2	Function 0	6001h	AD13	Virtual PCI-to-PCI
					Bridge

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

4

2 Features

Host Interface Controller

- Supports Intel Pentium II/!!! CPU at 66MHz/100MHz Front Side Bus Frequency
- Synchronous Host/DRAM Clock Scheme
- Asynchronous Host/DRAM Clock Scheme

Integrated DRAM Controller

- 3-DIMM/6-Bank of 3.3V SDRAM
- Supports NEC Virtual Channel Memory (VC-SDRAM) Technology
- Supports Memory Bus up to 133 MHZ
- System Memory Size up to 1.5 GB
- Up to 512MB per Row
- Supports 16Mb, 64Mb, 128Mb, 256Mb, 512Mb SDRAM Technology
- Suspend-to-RAM (STR)
- Relocatable System Management Memory Region
- Programmable Buffer Strength for CS#, DQM[7:0], WE#, RAS#, CAS#, CKE, MA[14:0] and MD[63:0]
- Shadow RAM Size from 640KB to 1MB in 16KB increments
- Two Programmable PCI Hole Areas

Integrated A.G.P. Compliant Target/66Mhz Host-to-PCI Bridge

- AGP v2.0 Compliant
- Supports Graphic Window Size from 4MBytes to 256MBytes
- Supports Pipelined Process in CPU-to-Integrated 3D A.G.P. VGA Access
- Supports 8 Way, 16 Entries Page Table Cache for GART to Enhance Integrated A.G.P. VGA Controller Read/Write Performance
- Supports PCI-to-PCI Bridge Function for Memory Write from 33Mhz PCI Bus to Integrated A.G.P. VGA

Meet PC99 Requirements

PCI 2.2 Specification Compliant

High Performance PCI Arbiter

- Supports up to 4 PCI Masters
- Rotating Priority Arbitration Scheme
- Advanced Arbitration Scheme Minimizing Arbitration Overhead.
- Guaranteed Minimum Access Time for CPU And PCI Masters

Integrated Host-To-PCI Bridge

- Zero Wait State Burst Cycles
- CPU-to-PCI Pipeline Access
- 256B to 4KB PCI Burst Length for PCI Masters
- PCI Master Initiated Graphical Texture Write Cycles Re-mapping

Preliminary V.10 Oct.07,1999

■ Reassembles PCI Burst Data Size into Optimized Block Size

Fast PCI IDE Master/Slave Controller

- Supports PCI Bus Mastering
- Native Mode and Compatibility Mode
- PIO Mode 0, 1, 2, 3, 4
- Multiword DMA Mode 0, 1, 2
- Ultra DMA 33/66
- Two Independent IDE Channels Each with 16 DW FIFO

Virtual PCI-to-PCI Bridge

Integrated Ultra AGP/VGA for Hardware 2D/3D Video/Graphics Accelerators

- Supports Tightly Coupled 64 Bits 100mhz Host Interface to VGA to Speed Up GUI Performance and Video Playback Frame Rate
- AGP v. 2.0 Compliant
- Zero-Wait-State 128x4 Post-Write Buffer with Write Combine Capability
- Zero-Wait-State 128x4 2-Way Read Ahead Cache Capability
- Re-locatable Memory-Mapped and t/O Address Decoding
- Flexible Design Shared Frame Buffer Architecture for Display Memory
- Shared System Memory Area up to 64MB
- Built-in 8K Bytes Texture Cache
- 32-Bit VLIW Floating-Point Primitive Setup Engine
- Peak Polygon Rate: 4M Polygon/Sec @ 1 Pixel/Polygon With 16bpp, Bilinear Textured, Z Buffered And Alpha Blended
- Supports Flat and Gouraud Shading
- Supports High Quality Dithering
- Supports Z-Test, Stencil Test, Alpha Test and Scissors Clipping Test
- Supports Z Pre-Test for Reducing Texture Read DRAM Bandwidth
- Supports 256 Rops
- Supports Individual Z-Buffer and Render Buffer at the Same Time
- Supports 16/24/32 BPP Z Buffer Integer/Floating Formats
- Supports 16/32 BPP Render Buffer Format
- Supports 1/2/4/8 Stencil Format
- Supports Per-Pixel Texture/Fog Perspective Correction
- Supports MIPMAP with Point-Sampled, Linear, Bi-Linear and Tri-Linear Texture Filtering
- Supports Single Pass Two MIPMAP Texture, One Texture on Clock
- Supports up to 2048x2048 Texture Size
- Supports 2' S Power of Width and Height Structure Rectangular Texture
- Supports 1/2/4/8 BPP Palletize Texture with 32 Bit ARGB Format
- Supports Palette for High Performance Palette Look Up

Preliminary V.10 Oct.07,1999

- Supports 1/2/4/8 BPP Luminance Texture
- Supports 1/2/4/8 BPP Intensity Texture
- Supports 8/16/24/32 BPP RGB/ARGB Texture Format
- Supports Video YUV Texture in All Supported Texture Formats
- Supports MIP-Mapped Texture Transparency, Blending, Wrapping, Mirror and Clamping
- Supports Fogging and Alpha Blending
- Supports Vertex Fogging, Linear Fogging Table and Non-Linear Fogging Table
- Supports Specula Lighting
- Supports Sort Dependent/Edge Anti-Aliasing
- Supports Full Scene Anti-Aliasing
- Supports Hardware Back Face Culling
- Internal Full 32 Bits ARGB Format Ultra Pipelined Architecture for Ultra High Performance and High Rendering Quality
- 128-Bit 2D Engine with a Full Instruction Set
- Built-In 64x64x2 Bit-Mapped Hardware Cursor
- Built-In 32x32x16, 32x32x32 Bit-Mapped Color, Hardware Cursor
- Maximum 64 MB Frame Buffer with Linear Addressing
- MPEG-2 ISO/IEC 13818-2 MP@ML and MPEG-1 ISO/IEC 11172-2 Standards Compliant
- Supports Hardware DVD Accelerator
- Direct DVD to TV Playback
- Supports Single Frame Buffer Architecture
- Supports Two Independent Video Windows with Overlay Function and Scaling Factors
- Supports YUV-To-RGB Color Space Conversion
- Supports Bi-Linear Video Interpolation with Integer Increments of Pixel Accuracy
- Supports Graphic and Video Overlay Function
- Supports CD/DVD to TV Playback Mode
- Simultaneous Graphic and TV Video Playback Overlay
- Supports Current Scan Line of Refresh Red-Back and Interrupt
- Supports Tearing Free Double/Triple Buffer Flipping
- Supports Input Video Vertical Blank or Line Interrupt
- Supports RGB555, RGB565, YUV422 and YUV420 Video Playback Format

7

- Supports Filtered Horizontal Up and Down Scaling Playback
- Supports DVD Sub-Picture Playback Overlay
- Supports DVD Playback Auto-Flipping
- Built-in Two Video Playback Line Buffers
- Supports DCI Drivers
- Supports Direct Draw Drivers

Preliminary V.10 Oct.07,1999

- Built-in Programmable 24-bit True-Color RAMDAC up to 270 MHz Pixel Clock RAMDAC Snoop Function
- Built-in Reference Voltage Generator and Monitor Sense Circuit
- Supports Down-Loadable RAMDAC for Gamma Correction in High Color and True Color Modes
- Built-in Dual-Clock Generator
- Supports Multiple Adapters and Multiple Monitors
- Built-in PCI Multimedia Interface
- Supports Digital Flat Panel Port for Digital Monitor (LCD Panel)
- Built-in VESA Plug and Display for CH7003, PanelLink[™] and LVDS Digital Interface
- Built-in Secondary CRT Controller for Independent Secondary CRT, LCD or TV digital output
- Supports VESA Standard Super High Resolution Graphic Modes
 - 640x480 16/256/32K/64K/16M colors 120 Hz NI
 - 800x600 16/256/32K/64K/16M colors 120 Hz NI
 - 1024x768 256/32K/64K/16M colors 120 Hz NI
 - 1280x1024 256/32K/64K/16M colors 120 Hz NI
 - 1600x1200 256/32K/64K/16M colors 100 Hz NI
 - 1920x1200 256/32K/64K/16M colors 80 Hz NI
- Low Resolution Modes
- Supports Virtual Screen up to 4096x4096
- Fully Directx 6.0 Compliant
- Efficient and Flexible Power Management with ACPI Compliance
- Supports DDC1, DDC2B and DDC 3.0 Specifications
- Cooperate with "SiS Video Bridge" to Support
 - NTSC/PAL Video Output
 - Digital LCD Monitor
 - Secondary CRT Monitor

Low Pin Count Interface

- Forwards PCI I/O and Memory Cycles into LPC Bus
- Translates 8-/16-bit DMA Cycles into PCI Bus Cycles

Advanced PCI H/W Audio & Modem

- Advanced Wavetable Synthesizer
 - 64-Voices Polyphony Wavetable Synthesizer Supports All Combinations of Stereo/Mono, 8-/16-bits, and Signed/Unsigned Samples

8

- Per Channel Volume and Envelop Control, Pitch Shift, Left/Right Pan, Tremolo, and Vibrato
- Global Effect Process for Reverb, Chorus and Echo

Preliminary V.10 Oct.07,1999

- DirectMusic[™] Support with Unlimited Downloadable Samples in System Memory
- DLS-1-Compatible Downloadable Samples Support
- DirectSound[™] 3D
 - 64-Voice DirectSound[™] Channels
 - 32-Voice DirectSound[™]3D Accelerator with IID, IAD and Doppler Effects on 3D Positional Audio buffer
 - DirectSound Accelerator for Volume, Pan and Pitch Shift Control on Streaming or Static Buffers
 - VirtualHRTF Interactive 3D Positional Audio Accelerator for DirectX[™] 5/6
- Advanced Streaming Architecture
 - Microsoft WDM Streaming Architecture Compliant and Re-routable Endpoint Support
 - Three Stereo Capture Channels
 - AC' 97/98 Stereo Recording Channel Through AC-Link
- High Quality Audio and AC' 97/98 Support
 - CD Quality Audio with 90dB+ SNR Using External High Quality AC' 97/98 CODEC
 - AC' 97/98 Support with Full Duplex, Independent Sample Rate Converter for Audio Recording and Playback
 - On-Chip Sample Rate Converter Ensures All Internal Operation at 48KHz
 - High Precision Internal 26-bit Digital Mixer with 20-bit Digital Audio Output
- Full Legacy Compatibility
 - SoundBlaster Pro/16
 - VirtualFM[™] Enhances Audio Experience through Realtime FM-to-Wavetable Conversion
 - MPU-401 Compatible UART for External or Internal Synthesis
- Telephony & Modem
 - Full Duplex VirtualPhone Speaker Phone with Modem Capable AC' 97/98
 - HSP V.90 Modem
- Software Support
 - Complete DirectX Driver Suite(DirectSound3D, DirectSound, DirectMusic, DirectInput) for Windows 98/Windows 2000
 - Configuration Installation and Diagnostics under Real Mode DOS, Windows 98 DOS Box
 - Windows 98/NT5.0 Configuration, Installation and Mixer Program
- Extras
 - 2-to-6 Speakers Output with Optional VirtaulFX ,VirtualAC3
 - DirectX Timer for Video/Audio Synchronization

Preliminary V.10 Oct.07,1999

- I²S and SPDIF Interface

Advanced Power Management

- Meets ACPI 1.0 Requirements
- Meets APM 1.2 Requirements
- ACPI Sleep States Include S1, S2, S3, S4, S5
- CPU Power States Include C0, C1, C2 C3
- Power Button with Override
- RTC Day-of-Month, Month-of-Year Alarm
- 24-bit Power Management Timer
- LED Blinking in S0,S1,S2 and S3 States
- System Power-Up Events Include: Power Button, Hot-Key, Keyboard Password/ Hot-Key, RTC Alarm, Modem Ring-In, SMBALY#, LAN, PME#, AC' 97 Wake-Up and USB Wake-Up
- Software Watchdog Timer
- Power Supply' 98 Support
- PCI Bus Power Management Interface Spec. 1.0

Integrated DMA Controller

- Two 8237A Compatible DMA Controllers
- 8/16- bit DMA Data Transfer
- Distributed DMA Support

Integrated Interrupt Controller

- Two 8237A Compatible DMA Controllers
- Two 8259A Compatible Interrupt Controllers
- Level- or Edge-Triggered Programmable
- Serial IRQ
- Interrupt Sources Re-routable to Any IRQ Channel

Three 8254 Compatible Programmable 16-bit Counters

- System Timer Interrupt
- Generate Refresh Request
- Speaker Tone Output

Integrated Keyboard Controller

- Hardwired Logic Provides Instant Response
- Supports PS/2 Mouse Interface
- Password Security and Password Power-Up
- System Sleep and Power-Up by Hot-Key
- KBC and PS2 Mouse Can Be Individually Disabled

Integrated Real Time Clock(RTC) with 256B CMOS SRAM

10

Preliminary V.10 Oct.07,1999

- Supports ACPI Day-of-Month and Month-of-Year Alarm
- 256 Bytes of CMOS SRAM
- Provides RTC H/W Year 2000 Solution

Universal Serial Bus Host Controller

- OpenHCI Host Controller with Root Hub
- Two USB Host Controller
- Five USB Ports
- Supports Legacy Devices
- Over Current Detection

I²C Bus/SMBUS Series Interface

Integrated Fast Ethernet Controller and 10/100 Megabit Per Second (Mbps) Physical Layer Transceivers for the PCI Local Bus

- Plug and Play Compatible
- High-Performance 32-Bit PCI Bus Master Architecture with Integrated Direct Memory
- Access (DMA) Controller for Low CPU and Bus Utilization
- Supports an Unlimited PCI Burst Length
- Supports Big Endian and Little Endian Byte Alignments
- Supports PCI Device ID, Vendor ID/Subsystem ID, Subsystem Vendor ID Programming through the EEPROM Interface
- Implements Optional PCI 3.3v Auxiliary Power Source 3.3Vaux Pin And Optional PCI
- IEEE 802.3 and 802.3u Standard Compatible
- IEEE 802.3u Auto Negotiation and Parallel Detection for Automatic Speed Selection
- Full Duplex and Half Duplex Mode for Both 10 and 100 Mbps
- Fully Compliant Ansi X3.263 Tp-Pmd Physical Sub-Layer Which Includes Adaptive Equalization and Baseline Wander Correction.
- Automatic Jam and IEEE 802.3x Auto-Negotiation for Flow Control
- Single Access to Complete PHY Register Set
- Built-In Waveform Shaping Requires No External Filters
- Single 25MHz Clock for 10 and 100 Mbps Operation
- Power Down of 10base-T/100base-Tx Sections When not in Use
- Jabber Control and Auto-Polarity Correction for 10base-T
- User Programmable LED Function Mapping
- Supports Software, Enhanced Software, and Automatic Polling Schemes to Internal PHY Status Monitor and Interrupt
- Supports 10base-T, 100base-Tx

NAND Tree for Ball Connectivity Testing

618-Balls BGA Package

1.8V Core with Mixed 3.3V and 5V I/O CMOS Technology

Preliminary V.10 Oct.07,199911Silicon Integrated Systems Corporation

3 Pin Assignment

3.1 Pin Assignment (Top View)

3.1.1 SiS630 Pin Assignment (Top View-Left Side)

		$ \land $		\square											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А			AC_SDIN0	TXAVDD	REXT	HRTXRXN	GPIO2	AC_SYNC	AD2	C/BE0#	AD13	STOP#	FRAME#	AD19	AD20
в		SMBALT#	AC_SDIN1	RXAVDD	оşс25мні	HRTXRXP	GPI06	AC_BIT_CLK	AD1	AD7	AD11	PAR	TRDY#	AD18	AD22
С	PMDAT	PMCLK	KLOCK#	AC_RESET#	RXAVSS	EESK	GPIO5	THERM#	AD0	AD6	AD10	AD15	DEVSEL#	AD16	AD23
D	PSON#	ACPILED	KBDAT	KBCLK	PLED0#	EECS	GPIO4	GPI00	AC_SDOUT	AD4	AD9	AD14	PLOCK#	C/BE2#	C/BE3#
Е	USBVDD	UV3-	PWRBTN#	RING	PME#	PCIRST#	EEDO	GPIO1	GPIO7	AD3	AD5	AD12	C/BE1#	AD17	AD21
F	UV3+	USBVDD	UV2+	UV4-	UV4+	СКЕ		EEDI		EXTSMI#		AD8		IRDY#	AD24
G	RTCVDD	AUXOK	UV0+	UV1+	UV2-	\sim									
н	OSC32KHO	OSC32KHI	PWROK	RTCVSS	UVQ-	UV1-	\mathcal{D}	\land						VCC3	VCC3
1	CLK48M	SMCLK	INTD#	INTC#	INTB#	(\land)		$/\langle$	TPI-	TPI+	TPO-	TPO+	VCC3	VCC3	VCC3
К	LAD1	LAD3	SPK	SMBDAT	INTA#	ваток	///	\sum	OVDD(AUX)						
L	VMD63	SIRQ	LFRAME#	LAD2	SERR#	\langle	///	//2	LVDD(AUX)						
М	VMD58	VMD60	VMD61	VMD62	LDRQ#	LAD0	\bigtriangledown	\square	vcez	~		RXAVSS	TXAVSS	OSC25AVSS	VSS
Ν	VDQM6	VDQM7	VMD56	VMD57	VMD59			VCC3	vcc3	$\langle \rangle$		VSS	VSS	VSS	VSS
Р	VMD53	VMD55	VDQM4	VDQM5	VMD54	VCS#		vce3	vcc3			VSS	VSS	VSS	VSS
R	VMD49	VMD50	VMD51	VMD52	VMD44	VMD48		VCC3	усс3			VSS	VSS	VSS	VSS
Т	VMD47	VMD46	VMD45	VMD43	VMD40	VMD32		VCC3	vcc3	//		VSS	VSS	VSS	VSS
U	VMD42	VMD41	VMD39	VMD38	VMD31				VCC3	$\langle \rangle$	\supset)	VSS	VSS	vss	vss
v	VMD37	VMD36	VMD35	VMD34	VMD27	VDQM3			VCC3	\bigcirc	//	vss	VSS	VSS	VSS
w	VMD33	VMA10	VMA11	VBA1	VMD23				IVDD	$\overline{\langle}$	/	\sim			
Y	VMD30	VMD29	VMD28	VMD26	VMD25	VMD15			IVDD	\sim	/	///			
AA	VMD24	VDQM2	VDQM1	VDQM0	VMD7				IVDD	IVDD	IVDD	vcc3	VCC3	VCC3	VCC3
AB	VMD22	VMD21	VMD20	VMD19	VMD18	SSYNC		Ver	0.73	\langle		/		VCC3	VCC3
AC	VMD17	VMD16	VMD14	VMD13	VMD12			5.13	.199	9					
AD	VMD11	VMD10	VMD9	VMD8	VMD6	IDA5		IDA12		IDA14		IIRQA		IDB10	IDB14
AE	VMD5	VMD4	VMD3	VMD2	IDA7	IDA4	IDA8	IIOWA#	IDA13	IDB7	IDREQA	CBLIDA	IDB8	IDB12	IDREQB
AF	VMD1	VMD0	VSYNC	COMP	IDA6	IDA11	IDA10	ICHRDYA	IDSAA0	IDB6	IDB11	IDB1	IIORB#	IDSAB0	IIRQB
AG	OSCI	HSYNC	DDCDATA	RSET	IDA9	IDA3	IDA1	IIORA#	IDSAA2	IDB9	IDB3	IDB0	ICHRDYB	IDECSB0#	ENTEST
AH		DDCCLK	DCLKAVDD	VREF	ROUT	DACAVDD	IDA0	IDACKA#	IDECSA0#	IDB5	IDB2	IDB15	IDACKB#	IDECSB1#	IDEAVDD
AJ			ECLKAVDD	BOUT	GOUT	IDA2	IDA15	IDSAA1	IDECSA1#	IDB4	IDB13	IIOWB#	IDSAB1	PCICLK	SDCLK
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

12

Preliminary V.10 Oct.07,1999

3.1.2 SiS630 Pin Assignment (Top View-Right Side)

		/	$\left(\right)$)										
16	17	18	19	20	21	22	23	24	25	26	27	28	29	
AD25	AD30	CPUCER	CPUAVDD	FERR#	HD61#	HD53#	VTTB	GTLREFB	HD36#	HD38#	HD28#			А
AD26	AD31	PREQ2#	INIT#	IGNE#	HD55#	HD57#	HD49#	VSSQ	HD40#	HD33#	HD31#	HD30#		в
AD27	PGNT1#	PREQ0#	STPCLK#	INTR	HD56#	HD59#	HD51#	HD47#	HD43#	HD32#	HD29#	HD26#	HD27#	с
AD29	PGNT0#	SMI#	CPUSLP#	HD62#	HD50#	HD46#	HD41#	HD45#	HD34#	HD35#	HD25#	HD24#	HD22#	D
AD28	PREQ1#	A20M#	HD63#	HD58#	HD54#	н048#	HD42#	HD44#	HD37#	HD23#	HD19#	HD21#	HD18#	Е
PGNT2#		NMI		HD60#	$\langle \rangle$	HD52#		HD39#	HD16#	HD13#	HD17#	HD11#	HD15#	F
				\sim		\sim			HD10#	HD14#	HD7#	HD9#	HD6#	G
VCC3					$\langle /$	$\langle \cap$	\mathbb{N}	HD20#	HD8#	HD5#	HD2#	HD0#	HD1#	н
VCC3	VCC3	VCC3	IVDD	IVDD	IVDD	\sim		$\langle \rangle$	HD12#	BREQ0#	HA29#	HA30#	HA26#	J
					IVDD	JY		HD4#	HA31#	HA27#	HA28#	HA20#	HA23#	к
					IVDD			\sim	HD3#	HA25#	HA19#	HA15#	HA18#	L
vss	vss	vss			VCC3	\langle		CPURST#	HA24#	HA17#	HA11#	HA13#	HA12#	М
vss	vss	vss			VCC3		\sim	\square	HA22#	НА8#	HA7#	HA5#	VTTA	Ν
vss	vss	vss			VCC3	VCC3		HA21#	HA16#	HA9#	HA6#	HA4#	GTLREFA	Р
vss	vss	vss			VCC3	VCC3	`	НА10#	НА14#	BPRI#	HREQ0#	BNR#	VSSQ	R
vss	vss	vss			VCC3	VCC3		HTRDY#	НА3#	HLOCK#	DEFER#	HREQ4#	HREQ1#	Т
vss	vss	vss			VCC3			~	HREQ3#	нтм#	RS0#	DRDY#	HREQ2#	U
vss	vss	vss			VCC3			MD62	нт#	RS1#	RS2#	ADS#	DBSY#	v
					IVDD				MD58	MD29	MD30	MD63	MD31	w
					IVDD			MD56	MD59	MD27	MD60	MD28	MD61	Y
VCC3	VCC3	VCC3	IVDD	IVDD	IVDD				MD54	MD24	MD57	MD25	MD26	AA
VCC3								MD48	MD53	MD21	MD22	MD55	MD23	AB
									CSB3#	MD51	MD19	MD52	MD20	AC
CBLIDB		MD40		MD46		CSA4#		DQM3	MD16	MD49	MD17	MD50	MD18	AD
IDSAB2	MD34	MD38	MD42	MD11	SCAS#	DQM4	CSA5#	MA0	CSB1#	CSB0#	DQM6	DQM2	DQM7	AE
MD33	MD3	MD5	MD8	MD43	MD13	WE#	SRAS#	CSA0#	MA4	MA14	CSB5#	CSB4#	CSB2#	AF
MD0	MD35	MD37	MD7	MD10	MD45	MD15	DQM1	CSA1#	MA3	MA7	MA11	MA12	MA13	AG
MD32	MD2	MD4	MD39	MD9	MD12	MD47	DQM5	CSA2#	MA2	MA6	MA9	MA10		AH
SDAVDD	MD1	MD36	MD6	MD41	MD44	MD14	DQM0	CSA3#	MA1	MA5	MA8			AJ
16	17	18	19	20	21	22	23	24	25	26	27	28	29	

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

13

3.2 SiS630 Alphabetical Pin List

	SIGNAL	SiS630		SIGNAL	SiS630
	NAME	BALL		NAME	BALL
		No.			No.
	A20M#	E18		AD3	E10
ļ	AC_BIT_CLK	B8	\geq	AD30	A17
	AC_RESET#	_C4/_		AD31	B17
	AC_SDIN0	A3	$\langle \langle \rangle$		D10
	AC_SDIN1	B3	2		510
	AC_SDOUT	D9		AD5	E11
	AC_SYNC	A8		AD6	C10
	ACPILED	D2		AD7	B10
	AD0	C9		AD8	F12
	AD1	B9			F12
	AD10	C11		AD9	D11
	AD11	B11		ADS#	V28
	AD12	E12		AUXOK	7 G2
-	AD13	A11		ваток	/K6/
	AD14	D12		BNR#	
	AD15	C12		BOUT	
	AD16	C14			
	AD17	E14		BPRI#	R20
	AD18	B14		BREQ0#	J26
	AD19	A14		C/BE0#	A10
	AD2	A9		C/BE0#	A10
	AD20	A15		C/BE1#	E13
	AD21	E15		C/BE2#	D14
	AD22	B15 C15		C/BE3#	D15
	AD23	E15			AE12
	AD24	A16			AEIZ
	AD25			CBLIDB	AD16
	AD26	010		CKE	F6
	AD27	C16		CLK48M	J1
	AD28	E16		COMP	AF4
	AD29	D16		CPUAVDD	A19

		SIGNAL	SiS630
		NAME	BALL No.
		CPUCLK	A18
		CPURST#	M24
		CPUSLP#	D19
1		CSA0#	AF24
-		CSA1#	AG24
		CSA2#	AH24
		CSA3#	AJ24
		CSA4#	AD22
		CSA5#	AE23
		CSB0#	AE26
		CSB1#	AE25
	~	CSB2#	AF29
	\geq	CSB3#	AC25
/		CSB4#	AF28
)		CSB5#	AF27
	$\langle \zeta \rangle$	DACAVDD	AH6
	\sim	DBSY#	V29
		DCLKAVDD	AH3
1	$\langle \rangle$	DDCCLK	AH2
_		DDCDATA	AG3
	~	DEFER#	T27
_		DEVSEL#	C13
		DQM0	AJ23
		DQM1	AG23
		DQM2	AE28
		DQM3	AD24
		DQM4	AE22
-		DQM5	AH23

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

14

SIGNAL

NAME

HD15#

HD16#

HD17#

HD18#

HD19#

HD2#

SiS630 BALL

No.

F29

F25

F27

E29

E27

H27

SIGNAL NAME	SiS630 BALL No.		SIGN NAN
DQM6	AE27		HA1
DQM7	AE29		HA1
DRDY#	U28		HA1
ECLKAVDD	AJ3	\geq	HA1
EECS	D6/	$\left(\right)$	HA2
EEDI	F8	$\langle \cdot \rangle$	HA2
EEDO	Ę7	/	HA2
EESK	C6		
EESK	C6		HA2
ENTEST	AG15		HA2
EXTSMI#	F10		HA2
FERR#	A20		HA2
FRAME#	A13		HĄ2
GOUT	AJ5		HA2
GPIO0	D8		HAS
GPIO1	E8		
GPIO2	A7		
GPIO4	D7		ная
GPIO5	C7		HA
GPIO6	B7		HAT
GPIO7	E9		HA8
GTLREFA	P29		HAS
GTLREFB	A24		HDO
HA10#	R24		HD
HA11#	M27		HD1
HA12#	M29		HD1
HA13#	M28		HD1
HA14#	R25		HD1

SIGNAL NAME	SiS630 BALL No.	
HA16#	P25	
HA17#	M26	
HA18#	L29	
HA19#	L27	
HA20#	K28	
HA21#	P24	
HA22#	N25	
HA23#	K29	
HA24#	M25	
HA25#	L26	
HA26#	J29	
HA27#	K26	
HA28#	K27	
HA29#	J27	~
HA3#	Т25	\geq
HA30#	J28/	\sum
HA31#	K25	
HA4#	P28	
HA5#	N28	\bigcirc
HA6#	P27	\swarrow
HA7#	N27	\sim
HA8#	N26	\langle
HA9#	P26	
HD0#	H28	
HD1#	H29	
HD10#	G25	
HD11#	F28	
HD12#	J25	
HD13#	F26	
HD14#	G26	

15

	HD20#	H24
	HD21#	E28
	HD22#	D29
	HD23#	E26
	HD24#	D28
	HD25#	D27
	HD26#	C28
	HD27#	C29
>	HD28#	A27
	HD29#	C27
	HD3#	L25
Ć	HD30#	B28
	//HD31#	B27
	HD32#	C26
\bigtriangledown	/HD33#	B26
/	HD34#	D25
~	HD35#	D26
	HD36#	A25
	HD37#	E25
	HD38#	A26
	HD39#	F24
	HD4#	K24
	HD40#	B25
	HD41#	D23

Preliminary V.10 Oct.07,1999

L28

HA15#

SIGNAL

SIGNAL	SiS630	
NAME	BALL	
	NO.	
HD42#	E23	
HD43#	C25	
HD44#	E24	
HD45#	D24	>
HD46#	D22/	
HD47#	C24	\langle
HD48#	É22	/
HD49#	B23	
HD5#	H26	
HD50#	D21	\sim
HD51#	C23	
HD52#	F22	
HD53#	A22	
HD54#	E21	
HD55#	B21	
HD56#	C21	
HD57#	B22	
HD58#	E20	
HD59#	C22	
HD6#	G29	
HD60#	F20	
HD61#	A21	
HD62#	D20	
HD63#	E19	
HD7#	G27	
HD8#	H25	
HD9#	G28	
HIT#	V25	
HITM#	U26	
HLOCK#	T26	

SIGNAL NAME	SiS630 BALL No.		
HREQ0#	R27		
HREQ1#	T29		
HREQ2#	U29		
HREQ3#	U25		
HREQ4#	T28		
HRTXRXN	A6		
HRTXRXP	B6		
HSYNC	AG2		
HTRDY#	T24		
ICHRDYA	AF8		
ICHRDYB	AG13		
IDA0	AH7		
IDA1	AG7		
IDA10	AET	~	
IDA11	AF6	\geq	
IDA12	AD8	\geq	
IDA13	AE9		
IDA14	AD10	$\langle \zeta \rangle$	\sum
IDA15	AJ7	\bigcirc	
IDA2	AJ6	\checkmark	
IDA3	AG6	\searrow	Ĺ.,
IDA4	AE6		
IDA5	AD6	~	
IDA6	AF5		
IDA7	AE5		
IDA8	AE7		
IDA9	AG5		
IDACKA#	AH8		
IDACKB#	AH13		
IDB0	AG12		

16

	NAME	BALL No.
	IDB1	AF12
	IDB10	AD14
	IDB11	AF11
	IDB12	AE14
	IDB13	AJ11
	IDB14	AD15
	IDB15	AH12
	IDB2	AH11
	IDB3	AG11
	IDB4	AJ10
	IDB5	AH10
	IDB6	AF10
	IDB7	AE10
	IDB8	AE13
	IDB9	AG10
	IDEAVDD	AH15
)	IDECSA0#	AH9
Ś	IDECSA1#	AJ9
7	IDECSB0#	AG14
	IDECSB1#	AH14
\checkmark	IDREQA	AE11
		AE15
~	IDSAA0	AF9
	IDSAA1	AJ8
	IDSAA2	AG9
	IDSAB0	AF14
	IDSAB1	AJ13
	IDSAB2	AE16
	IGNE#	B20
	IIORA#	AG8

SiS630

Preliminary V.10 Oct.07,1999

		1
SIGNAL	SiS630	
NAME	BALL	
	NO.	
	AF13	
IIOWA#	AE8	
IIOWB#	AJ12	
IIRQA	AD12	\geq
IIRQB	AF15	\int
INIT#	B19)<
INTA#	K5	/
INTB#	J5	
INTC#	J4 <	
INTD#	J3	
INTR	C20	
IRDY#	F14	
KBCLK	D4	
KBDAT	D3	
KLOCK#	C3	
LAD0	M6	
LAD1	K1	
LAD2	L4	
LAD3	K2	
LDRQ#	M5	
LFRAME#	L3	
MA0	AE24	
MA1	AJ25	
MA10	AH28	
MA11	AG27	
MA12	AG28	
MA13	AG29	
MA14	AF26	
MA2	AH25	
MA3	AG25	

SIGNAL NAME	SiS630 BALL No.		
MA4	AF25		
MA5	AJ26		
MA6	AH26		
MA7	AG26		
MA8	AJ27		
MA9	AH27		
MD0	AG16		
MD1	AJ17		
MD10	AG20		
MD11	AE20		
MD12	AH21		
MD13	AF21		
MD14	AJ22		
MD15	AG22		
MD16	AD25	\geq	
MD17	AD27	\geq	
MD18	AD29	\bigcirc	
MD19	AC27	6	
MD2	AH17	$\overline{\bigcirc}$	
MD20	AC29		
MD21	AB26		
MD22	AB27		
MD23	AB29	\sim	
MD24	AA26		
MD25	AA28		
MD26	AA29		
MD27	Y26		
MD28	Y28		
MD29	W26		
MD3	AF17		

17

	SIGNAL	SiS630
	NAME	BALL No.
	MD30	W27
	MD31	W29
	MD32	AH16
	MD33	AF16
	MD34	AE17
	MD35	AG17
	MD36	AJ18
	MD37	AG18
	MD38	AE18
	MD39	AH19
	MD4	AH18
	MD40	AD18
	MD41	AJ20
	MD42	AE19
	MD43	AF20
	MD44	AJ21
	MD45	AG21
~	MD46	AD20
/	MD47	AH22
/	MD48	AB24
	MD49	AD26
	MD5	AF18
	MD50	AD28
	MD51	AC26
	MD52	AC28
	MD53	AB25
	MD54	AA25
	MD55	AB28
	MD56	Y24
	MD57	AA27

Preliminary V.10 Oct.07,1999

SIGNAL	SiS630	
NAME	BALL No.	
MD58	W25	
MD59	Y25	
MD6	AJ19	
MD60	Y27	\geq
MD61	Y29	\cap
MD62	V24	
MD63	W28	/
MD7	AG19	
MD8	AF19 <	\bigcirc
MD9	AH20	
NMI	F18	
OSC25AVSS	M14	
OSC25MHI	B5	
OSC32KHI	H2	
OSC32KHO	H1	
OSCI	AG1	
PAR	B12	
PCICLK	AJ14	
PCIRST#	E6	
PGNT0#	D17	
PGNT1#	C17	
PGNT2#	F16	
PLED0#	D5	
PLOCK#	D13	
PMCLK	C2	
PMDAT	C1	
PME#	E5	
PREQ0#	C18	
PREQ1#	E17	
PREQ2#	B18	

SIGNAL NAME	SiS630 BALL	
	No.	
PSON#	D1	
PWRBTN#	E3	
PWROK	H3	
REXT	A5	
RING	E4	
ROUT	AH5	
RS0#	U27	
	V26	
RS2#	V27	
RSET	AG4	
RTCVDD	G1	
RTCVSS	H4	
RXAVDD	B 4	
RXAVSS	/ M12	$\langle \rangle$
RXAVSS	C5	\geq
SCAS#	AE21	\sum
SDAVDD	AJ16	
SDCLK	AJ15	
SERR#	L5 🤇	\bigcirc
SIRQ	L2	\sim
SMBALT#	B2	
SMBDAT	K4	\langle
SMCLK	J2	
SMI#	D18	
SPK	K3	
SRAS#	AF23	
SSYNC	AB6	
STOP#	A12	
STPCLK#	C19	

18

SIGNAL	SiS630
NAME	BALL No.
THERM#	C8
TPI-	J9
TPI+	J10
TPO-	J11
TPO+	J12
TRDY#	B13
TXAVDD	A4
TXAVSS	M13
USBVDD	E1
USBVDD	F2
UV0-	H5
UV0+	G3
UV1-	H6
UV1+	G4
UV2-	G5
UV2+	F3
UV3-	E2
UV3+	F1
UV4-	F4
UV4+	F5
VBA1	W4
/ XCS#	P6
VDQM0	AA4
VDQM1	AA3
VDQM2	AA2
VDQM3	V6
VDQM4	P3
VDQM5	P4
VDQM6	N1
VDQM7	N2
VMA10	W2

Preliminary V.10 Oct.07,1999

SIGNAL	SiS630
NAME	BALL No.
VMA11	W3
VMD0	AF2
VMD1	AF1
VMD10	AD2
VMD11	AD1
VMD12	AC5
VMD13	AC4
VMD14	AC3
VMD15	Y6
VMD16	AC2
VMD17	AC1
VMD18	AB5
VMD19	AB4
VMD2	AE4
VMD20	AB3
VMD21	AB2
VMD22	AB1
VMD23	W5
VMD24	AA1
VMD25	Y5
VMD26	Y4
VMD27	V5
VMD28	Y3
VMD29	Y2
VMD3	AE3
VMD30	Y1
VMD31	U5
VMD32	T6
VMD33	W1
VMD34	V4
VMD35	V3

NAME BALL No. NAM VMD36 V2 VMD VMD37 V1 VMD VMD38 U4 VMD VMD39 U3 VMD VMD4 AE2 VRE VMD40 T5 VSS VMD41 U2 VSS VMD42 U1 VSS VMD43 T4 VSS VMD44 R5 VTI VMD45 T3 VTI VMD46 T2 WE VMD48 R6 VTI VMD48 R6 VTI VMD5 AE1 WE VMD51 R3 VTI VMD53 P1 VMD54 VMD55 P2 VMD56 VMD57 N4 VMD59 VMD58 M1 VMD59 VMD60 M2 VMD61 VMD61 M3 VMD62	SIGNAL	SiS630		SIGN
VMD36 V2 VMD VMD37 V1 VMD VMD38 U4 VMD VMD39 U3 VMD VMD4 AE2 VRE VMD40 T5 VRE VMD41 U2 VSS VMD42 U1 VSS VMD43 T4 VSS VMD44 R5 VTT VMD45 T3 VTT VMD46 T2 WE VMD47 T1 WE VMD48 R6 VTT VMD49 R1 WE VMD5 AE1 VTT VMD53 P1 VMD54 VMD53 P1 VMD55 VMD54 P5 VMD55 VMD55 P2 VMD56 VMD58 M1 VMD59 VMD60 M2 VMD61 VMD61 M3 VMD62	NAME	BALL No.		NAM
VMD37 V1 VMI VMD38 U4 VMI VMD39 U3 VMI VMD4 AE2 VRI VMD40 T5 VRI VMD41 U2 VSS VMD42 U1 VSS VMD43 T4 VSS VMD44 R5 VSS VMD45 T3 VTI VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD50 R2 WE VMD51 R3 VMD52 VMD53 P1 VMD54 VMD55 P2 VMD56 VMD57 N4 VMD58 VMD58 M1 VMD59 VMD60 M2 VMD61 VMD61 M3 VMD61	VMD36	V2		VMD
VMD38 U4 VMI VMD39 U3 VMI VMD4 AE2 VMI VMD40 T5 VSS VMD41 U2 VSS VMD42 U1 VSS VMD43 T4 VSS VMD45 T3 VTI VMD46 T2 WE VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD50 R2 WE VMD51 R3 VMD52 VMD53 P1 VMD54 VMD55 P2 VMD56 VMD56 N3 VMD57 VMD58 M1 VMD59 VMD58 M1 VMD59 VMD60 M2 VMD61 VMD61 M3 VMD62	VMD37	V1		VME
VMD39 U3 VMI VMD4 AE2 VRI VMD40 T5 VRI VMD41 U2 VSS VMD42 U1 VSS VMD43 T4 VSY VMD44 R5 VTI VMD45 T3 VTI VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD5 AE1 WE VMD51 R3 VMD52 VMD53 P1 VMD53 VMD54 P5 VMD55 VMD55 P2 VMD56 VMD57 N4 VMD58 VMD58 M1 VMD59 VMD60 M2 VMD61 VMD61 M3 VMD62	VMD38	U4		VME
VMD4 AE2 VR VMD40 T5 VR VMD41 U2 VS VMD42 U1 VSS VMD43 T4 VSS VMD44 R5 VT VMD45 T3 VT VMD46 T2 WE VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD50 R2 WD51 VMD51 R3 VMD52 VMD53 P1 VMD54 VMD55 P2 VMD55 VMD56 N3 VMD57 VMD58 M1 VMD59 VMD59 N5 VMD6 VMD60 M2 VMD61 VMD61 M3 VMD62	VMD39	U3		VME
VMD40 T5 VIII VMD41 U2 VIII VMD42 U1 VSS VMD43 T4 VSS VMD44 R5 VTI VMD45 T3 VTI VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD50 R2 WE VMD51 R3 VIII VMD52 R4 VMD53 VMD54 P5 VIII VMD55 P2 VMD56 VMD57 N4 VIII VMD58 M1 VIII VMD59 N5 VIII VMD60 M2 VIIII	VMD4	AE2		
VMD41 U2 V33 VMD42 U1 VS3 VMD43 T4 VS9 VMD43 T4 VS9 VMD44 R5 VT1 VMD45 T3 VT1 VMD46 T2 WE VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD50 R2 WD51 VMD51 R3 VMD52 VMD53 P1 VMD54 VMD54 P5 VMD55 VMD55 P2 VMD56 VMD57 N4 VMD59 VMD58 M1 VMD59 VMD6 AD5 VMD60 VMD61 M3 VMD62	VMD40	T5		
VMD42 U1 VSS VMD43 T4 VSY VMD44 R5 VTT VMD45 T3 VTT VMD46 T2 WE VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD5 AE1 WE VMD50 R2 WD51 VMD51 R3 VMD52 VMD53 P1 VMD54 VMD55 P2 VMD56 VMD56 N3 VMD57 VMD58 M1 VMD59 VMD6 AD5 VMD60 VMD61 M3 VMD62	VMD41	U2		V33
VMD43 T4 VSY VMD44 R5 VTT VMD45 T3 VTT VMD46 T2 WE VMD46 T2 WE VMD46 T2 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD5 AE1 WE VMD50 R2 WD51 VMD51 R3 VMD52 VMD53 P1 VMD54 VMD54 P5 VMD55 VMD56 N3 VMD57 VMD58 M1 VMD59 VMD6 AD5 VMD60 VMD61 M3 VMD62	VMD42	U1		VSS
VMD44 R5 VTI VMD45 T3 VTI VMD46 T2 WE VMD47 T1 WE VMD47 T1 WE VMD48 R6 WE VMD49 R1 WE VMD5 AE1 WE VMD50 R2 WD51 VMD51 R3 VMD52 VMD53 P1 VMD53 VMD54 P5 VMD55 VMD55 P2 VMD56 VMD56 N3 VMD57 VMD58 M1 VMD60 M2 VMD61 M3 VMD62 M4	VMD43	T4		VSYN
VMD45 T3 VTT VMD46 T2 WE VMD47 T1 WE VMD48 R6 WD47 VMD48 R6 WD47 VMD48 R6 WE VMD49 R1 WE VMD50 R2 WD51 VMD51 R3 WD52 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD6 AD5 VMD61 M3 VMD62 M4	VMD44	R5		VTT
VMD46 T2 WE VMD47 T1 VMD48 R6 VMD49 R1 VMD5 AE1 VMD5 AE1 VMD5 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD60 M2 VMD61 M3 VMD62 M4	VMD45	ТЗ		VTT
VMD47 T1 VMD48 R6 VMD49 R1 VMD5 AE1 VMD5 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD46	T 2		WE
VMD48 R6 VMD49 R1 VMD5 AE1 VMD50 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD60 M2 VMD61 M3 VMD62 M4	VMD47	Х T1		
VMD49 R1 VMD5 AE1 VMD50 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD48	R6		
VMD5 AE1 VMD50 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD49	R1	\geq	
VMD50 R2 VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD5	AE1		
VMD51 R3 VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD50		$\widehat{}$	
VMD52 R4 VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD51		1	
VMD53 P1 VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD52	R4	$\langle \langle \rangle$	
VMD54 P5 VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD60 M2 VMD61 M3 VMD62 M4	VMD53	P1		
VMD55 P2 VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD6 AD5 VMD61 M3 VMD62 M4	VMD54	P5	\sim	
VMD56 N3 VMD57 N4 VMD58 M1 VMD59 N5 VMD6 AD5 VMD60 M2 VMD61 M3 VMD62 M4	VMD55	P2	_	
VMD57 N4 VMD58 M1 VMD59 N5 VMD6 AD5 VMD60 M2 VMD61 M3 VMD62 M4	VMD56	N3		
VMD58 M1 VMD59 N5 VMD6 AD5 VMD60 M2 VMD61 M3 VMD62 M4	VMD57	N4		
VMD59 N5 VMD6 AD5 VMD60 M2 VMD61 M3 VMD62 M4	VMD58	M1		
VMD6 AD5 VMD60 M2 VMD61 M3 VMD62 M4	VMD59	N5		
VMD60 M2 VMD61 M3 VMD62 M4	VMD6	AD5		
VMD61 M3 VMD62 M4	VMD60	M2		
VMD62 M4	VMD61	M3		
	VMD62	M4		

19

SIGNAL NAME	SiS630 BALL No.
VMD63	L1
VMD7	AA5
VMD8	AD4
VMD9	AD3
VREF	AH4
VSSQ	R29
VSSQ	B24
VSYNC	AF3
VTTA	N29
VTTB	A23
WE#	AF22

Preliminary V.10 Oct.07,1999

3.3 Power Plane

• 630 POWER

20

3.4	Mux	oin
•••		

Ball No	Name	MUX	Default Function	Controlled by		
E7	EEDO	GPIO3	GPIO3	APC_R02B0		
D8	GPIQ0	PREQ3#/OC0#	GPIO0	APC_R03B6		
E8	GPIO1	PGNT3#/OC1#	GPIO1	APC_R03B6		
A7	GPIO2	LDRQ1#/OC3#	GPIO2	APC_R03B7		
E9	GPI07	SPDIF	GPIO7	APC_R02B2		
D4	KBCLK	GPIO11	GPIO11	APC_R02B[6:5]		
D3	KBDAT	GPIO10	GPIO10	APC_R02B[6:5]		
D5	PLED0	GPIO8/OC2#	GPIO8	APC_R02B[4:3]		
C2	PMCLK	GPIO13	GPIO13	APC_R02B[6:5]		
C1	PMDAT	GPIO12	GPIO12	APC_R02B[6:5]		
C3	KLOCK	GPIO14	GPIQ14	APC_R02B[6:5]		
E4	SMBALT#	GPIO15	GPIO15	APC_R02B7		
W4	VBA1	VBCLK/PLPWDN#	VBCLK	H/W MD36&MD33		
W2	VMA10	MA10/VBHCLK	VMA10	H/W MD36&MD33		
W3	VMA11	MA11/VGCLK	VMA11	H/W MD36&MD33		
Y3	VMD28	DDC2DATA	VMD28	H/W MD36&MD33		
Y2	VMD29	DDC2CLK	VMD29	H/W MD36&MD33		
Y1	VMD30	VBVSYNC	VMD30			
U5	VMD31	VBHSYNC	VMD31	H/W MD36&MD33		
Т6	VMD32	VBCAD	VMD32	H/W MD36&MD33		
W1	VMD33	TVCTL1	VMD33	H/W MD36&MD33		
V4	VMD34	TVCTL0	VMD34	H/W MD36&MD33		
V3	VMD35	VBBLANKN	VMD35	H/W MD36&MD33		
V2	VMD36	VBRGB15	VMD36	H/W MD36&MD33		
V1	VMD37	VBRGB14	VMD37	H/W MD36&MD33		
U4	VMD38	VBRGB12	VMD38	H/W MD36&MD33		
U3	VMD39	VBRGB13	VMD39	H/W MD36&MD33		
Prelimina	Preliminary V.10 Oct.07,1999 21 Silicon Integrated Systems Corporation					

T5	VMD40	VBRGB8	VMD40	H/W MD36&MD33
U2	VMD41	VBRGB9	VMD41	H/W MD36&MD33
U1	VMD42	VBRGB11	VMD42	H/W MD36&MD33
T4	VMD43	VBRGB10	VMD43	H/W MD36&MD33
R5	VMD44	VBRGB23	VMD44	H/W MD36&MD33
Т3	VMD45	VBRGB22	VMD45	H/W MD36&MD33
T2	VMD46	VBRGB21	VMD46	H/W MD36&MD33
T1	VMD47	VBRGB20	VMD47	H/W MD36&MD33
R6	VMD48	VBRGB19	VMD48	H/W MD36&MD33
R1	VMD49	VBRGB16	VMD49	H/W MD36&MD33
R2	VMD50	VBRGB17	VMD50	H/W MD36&MD33
R3	VMD51	VBRGB18	VMD51	H/W MD36&MD33
R4	VMD52	VBRGB0	VMD52	H/W MD36&MD33
P1	VMD53	VBRGB1	VMD53	H/W MD36&MD33
P5	VMD54	VBRGB2	VMD54	H/W MD36&MD33
P2	VMD55	VBRGB3	VMD55	H/W MD36&MD33
N3	VMD56	VBRGB4	VMD56	H/W MD36&MD33
N4	VMD57	VBRGB5	VMD57	H/W MD36&MD33
M1	VMD58	VBRGB6	VMD58	H/W MD36&MD33
N5	VMD59	VBRGB7	VMD59	H/W MD36&MD33

22

4 Pin Description (Preliminary)

Power Plane:

Aux: Power exists regardless the system is power down or power up unless the power cord is disconnected.

Main: Power exists only the system is power up.

RTC: Battery power.

Name	Tolerance	Power Plane	Type Attr	Description
CPUCLK	3.3V/5V	MAIN	I	Host Clock :
ADS#	1.5V	MAIN	I/O	Address Strobe :
		A	GTL+	Address Strobe is driven by CPU to indicate the start of a CPU bus cycle.
HREQ[4:0]#	1.5V	MAIN	1/0	Request Command:
			GTL+	HREQ[4:0]# are used to define each transaction type during the clock when ADS# is asserted and the clock after ADS# is asserted.
BREQ0#	1.5V	MAIN	0//	Symmetric Agent Bus Request:
			GTL+	BREQ0# is driven by the symmetric agent to request for the bus.
BNR#	1.5V	MAIN	I/O 🗸	Block Next Request:
			GTL+	This signal can be driven asserted by any bus agent to block further requests being pipelined.
HLOCK#	1.5V	MAIN	I	Host Lock :
			GTL+	CPU-asserts HLOCK# to indicate the current bus cycle is locked.
HIT#	1.5V	MAIN	I/O GTL+	Keeping a Non-Modified Cache Line:

4.1 Host Bus Interface

Preliminary V.10 Oct.07,199923Silicon Integrated Systems Corporation

HITM#	1.5V	MAIN	I/O	Hits a Modified Cache Line:
			GTL+	Hit Modified indicates the snoop cycle hits a modified line in the L1 cache of CPU.
DEFER#	1.5V	MAIN	0	Defer Transaction Completion:
\bigwedge	Ro		GTL+	SiS630 will use this signal to indicate a retry response to host bus.
RS[2:0]#	1.5V	MAIN	0	Response Status:
		\bigcirc	GTL+	RS[2:0]# are driven by the response agent to indicate the transaction response type. The following shows the response type.
		\sim		RS[2:0] Response
	/	$\langle \rangle$		000 Idle State
	\sim	$\left(\begin{array}{c} \circ \end{array} \right)$	\square	100 Reserved
				001 Retry
				101 No data
			$\langle \rangle$	010 Reserved
		~	\square	110 Implicit Write-back
				011 Reserved
				111 Normal Data
HTRDY#	1.5V	MAIN	I/Ø//	Target Ready:
			GTL+	During write cycles, response agent will drive TRDY# to indicate the agent is ready to accept data.
DRDY#	1.5V	MAIN	I/O	Data Ready:
			GTL+	DRDY# is driven by the bus owner whenever the data is valid on the bus.
DBSY#	1.5V	MAIN	I/O	Data Bus Busv:
			GTL+	Whenever the data is not valid on the bus with DRDY# is deserted, DBSY# is asserted to hold the bus.

24

Preliminary V.10 Oct.07,1999

BPRI#	1.5V	MAIN	O GTL+	Priority Agent Bus Request: BPRI# is driven by the priority agent that wants to request the bus.
				BPRI# has higher priority than BREQ0# to access a bus.
CPURST#	1.5V	MAIN	0	Host Bus Reset:
			GTL+	CPURST# is used to keep all the bus agents in the same initial state before valid cycles issued.
HA[31:3]# 🛇	1.5V	MAIN	I/O	Host Address Bus :
			GTL+	
HD[63:0]#	1.5V	MAIN	I/O	Host Data Bus :
		\square	GTL+	
FERR#	1.5V~5V	MAIN	I	Floating Point Error :
	\sim			CPU will assert this signal upon a floating point error occurring.
IGNE#	1.5V~5V	MAIN	OD	Ignore Numeric Error :
			12	IGNE# is asserted to inform CPU to ignore a numeric error.
				Speed Trap for PII :
				This pin will be forced to voltage level according to the input value of MD41 or APC0h.4 during system reset period.
NMI	1.5V~5V	MAIN	OD	Non-Maskable Interrupt :
				A rising edge on NMI will trigger a non-maskable interrupt to CPU.
				Speed Trap for PII :
				This pin will be forced to voltage level according to the input value of MD44 or APC0h.7 during system reset period.

Preliminary V.10 Oct.07,1999

25

INTR	1.5V~5V	MAIN	OD	Interrupt Request :
				High-level voltage of this signal indicates the CPU that there is outstanding interrupt(s) needed to be serviced.
				Speed Trap for PII :
				This pin will be forced to voltage level according to the input value of MD43 or APC0h.6 during system reset period.
CPUSLP#	1.5V~5V	MAIN	OD	CPU Sleep :
				SiS630 can optionally assert CPUSLP# to force the CPU into deep sleep mode when going to S2 state.
STPCLK#	1.5V~5V 🤇	MAIN	OD	Stop Clock :
				STPCLK# will be asserted to inhibit or throttle CPU activities upon a pre-defined power management event occurs.
SMI#	1.5V~5V	MAIN		System Management Interrupt :
				SMI# will be asserted when a pre- defined power management event occurs.
INIT#	1.5V~5V	MAIN	OD	Initialization :
			(INIT is used to re-start the CPU without flushing its internal caches and registers. In Pentium II platform it is active high. This signal requires an external pull-up resistor tied to 3.3V.

26

A20M#	1.5V~5V	MAIN	OD	Address 20 Mask :
				When A20M# is asserted, the CPU A20 signal will be forced to "0"
				Speed Trap for PII :
				This pin will be forced to voltage level according to the input value of
\bigcirc				MD42 or APC0h.5 during system reset period.

4.2 DRAM Controller

Name	Tolerance	Power Plane	Type Attr	Description
SDCLK	3.3V/5V	MAIN	I	SDRAM Clock Input
MD[63:0]	3.3V	MAIN	I/O	System Memory Data Bus
MA[14:0]	3.3V	MAIN	0	System Memory Address Bus
CSA[5:0]#	3.3V		O	SDRAM Chip Select
CSB[5:0]#	3.3V	MAIN	o	SDRAM Chip Select Signals (Duplicated Copy)
DQM[7:0]#	3.3V	MAIN	0	SDRAM Input/Output Data Mask
WE#	3.3V	MAIN 🗸	0	SDRAM Write Enable
SRAS#	3.3V	MAIN	0	SDRAM Row Address Strobe
SCAS#	3.3V	MAIN	0	SDRAM Column Address Strobe
CKE	3.3V	AUX	0 ×	SDRAM Clock Enable
				During Suspend-to-DRAM mode (ACPI S2 or S3 state), SDRAM can be put into self-refresh mode by asserting CKE.

4.3 PCI Interface

Name	Tolerance	Power Plane	Type Attr	Description
------	-----------	-------------	--------------	-------------

Preliminary V.10 Oct.07,1999	27	Silicon Integrated Systems Corporation
------------------------------	----	--

PCICLK	3.3V/5V	MAIN	I	PCI Clock :
				The PCICLK input provides the fundamental timing and the internal operating frequency for the SiS Chip. It runs at the same frequency and skew of the PCI local bus.
C/BE[3:0]#	3.3V/5V	MAIN	I/O	PCI Bus Command and Byte Enables:
				PCI Bus Command and Byte Enables define the PCI command during the address phase of a PCI cycle, and the PCI byte enables during the data phases. C/BE[3:0]# are outputs when the SiS Chip is a PCI bus master and inputs when it is a PCI slave.
AD[31:0]	3.3V/5V 🗸	MAIN	1/0	PCI Address /Data Bus:
		S//	$\sum_{i=1}^{n}$	In address phase:
			3	1.When the SiS Chip is a PCI bus master, AD[31:0] are output signals.
				2,When the SiS Chip is a PCI target, AD[31:0] are input signals.
				In data phase:
			(1.When the SiS Chip is a target of a memory read/write cycle, AD[31:0] are floating.
				2.When the SiS Chip is a target of a configuration or an I/O cycle, AD[31:0] are output signals in a read cycle, and input signals in a write cycle.

28

Preliminary V.10 Oct.07,1999

FRAME# 3.3V/5V MAIN I/O Frame#: FRAME# 3.3V/5V MAIN I/O Frame#: IRDY# 3.3V/5V MAIN I/O Frame#: IRDY# 3.3V/5V MAIN I/O Initiator Ready : IRDY# indicates that the PCI bus master's ability complete the current data phase the transaction. For a read cy indicates that the PCI master is prepared to accept read data on the following rise edge of the PCI clock. For a weycycle, IRDY# indicates that the Imaster has	PAR	3.3V/5V	MAIN	I/O	Parity : SiS630 drives out Even Parity covering AD[31:0] and C/BE[3:0]#. It does not check the input parity signal.
IRDY# 3.3V/5V MAIN I/O Initiator Ready : IRDY# is an output when the Chip is a PCI bus master. assertion of IRDY# indicates current PCI bus master's ability complete the current data phase the transaction. For a read cy IRDY# indicates that the PCI master is prepared to accept read data on the following ris edge of the PCI clock. For a w cycle, IRDY# indicates that the I master has driven valid data on PCI-bus. When the SiS Chip i	FRAME#	3.3V/5V	MAIN	I/O	Frame#: FRAME# is an output when the SiS Chip is a PCI bus master. The SiS Chip drives FRAME# to indicate the beginning and duration of an access. When the SiS Chip is a PCI slave device, FRAME# is an input signal.
PCI slave, IRDY# is an input pin	IRDY#	3.3\/5\	MAIN		Initiator Ready : IRDY# is an output when the SiS Chip is a PCI bus master. The assertion of IRDY# indicates the current PCI bus master's ability to complete the current data phase of the transaction. For a read cycle, IRDY# indicates that the PCI bus master is prepared to accept the read data on the following rising edge of the PCI clock. For a write cycle, IRDY# indicates that the bus master has driven valid data on the PCI bus. When the SiS Chip is a PCI slave, IRDY# is an input pin.

29

TRDY#	3.3V/5V	MAIN	I/O	Target Ready :
	Ro Ro			TRDY# is an output when the SiS Chip is a PCI slave. The assertion of TRDY# indicates the target agent's ability to complete the current data phase of the transaction. For a read cycle, TRDY# indicates that the target has driven valid data onto the PCI bus. For a write cycle, TRDY# indicates that the target is prepared to accept data from the PCI bus. When the SiS Chip is a PCI master, it is an input pin.
STOP#	3.3V/5V	MAIN	I/O	Stop# :
				STOP# indicates that the bus master must start terminating its current PCI bus cycle at the next clock edge and release control of the PCI bus. STOP# is used for disconnection, retry, and target- abortion sequences on the PCI bus.

30

Preliminary V.10 Oct.07,1999

DEVSEL#	3.3V/5V	MAIN	I/O	Device Select :
	R C C C C			As a PCI target, SiS Chip asserts DEVSEL# by doing positive or subtractive decoding. SiS Chip positively asserts DEVSEL# when the DRAM address is being accessed by a PCI master, PCI configuration registers or embedded controllers' registers are being addressed, or the BIOS memory space is being accessed. The low 16K I/O space and low 16M memory space are responded subtractively. The DEVESEL# is an input pin when SiS Chip is acting as a PCI master. It is asserted by the addressed agent to claim the current transaction.
PLOCK#	3.3V/5V	MAIN	()/O	PCI Lock :
			$\sum_{i=1}^{n}$	When PLOCK# is sampled asserted at the beginning of a PCI cycle, SiS630 considers itself being locked and remains in the locked state until PLOCK# is sampled and negated at the following PCI cycle.
PREQ[2:0]#	3.3V/5V	MAIN	X	PCI Bus Request :
				PCI Bus Master Request Signals
PGNT[2:0]#	3.3V	MAIN	0	PCI Bus Grant :
				PCI Bus Master Grant Signals
INT[A:D]#	3.3V/5V	MAIN		PCI interrupt A,B,C,D : The PCI interrupts will be connected to the inputs of the internal Interrupt controller through the rerouting logic associated with each PCI interrupt.

31

Preliminary V.10 Oct.07,1999

PCIRST#	3.3V	AUX	0	PCI Bus Reset :
				PCIRST# will be asserted during the period when PWROK is low, and will be kept on asserting until about 24ms after PWROK goes high.
SERR#	3.3V/5V	MAIN	I	System Error :
				When sampled active low, a non- maskable interrupt (NMI) can be generated to CPU if enabled.

4.4 PCI IDE Interface

Name	Tolerance	Power Plane	Type Attr	Description
IDA[15:0]	3.3V/5V	MAIN	I/O	Primary Channel Data Bus
IDB[15:0]	3.3V/5V 🛇	MAIN		Secondary Channel Data Bus
IDECSA[1:0]#	3.3V	MAIN	0	Primary Channel CS[1:0]
IDECSB[1:0]#	3.3V	MAIN	Q	Secondary Channel CS[1:0]
IIOR[A:B]#	3.3V	MAIN	0	Primary/Secondary Channel IOR# Signals
IIOW[A:B]#	3.3V	MAIN	0	Primary/Secondary Channel IOW# Signals
ICHRDY[A:B]	3.3V/5V	MAIN		Primary/Secondary Channel ICHRDY# Signals
IDREQ[A:B]	3.3V/5V	MAIN	I	Primary/Secondary Channel DMA Request Signals
IDACK[A:B]#	3.3V	MAIN	0	Primary/Secondary Channel DMACK# Signals
IIRQ[A:B]	3.3V/5V	MAIN	Ι	Primary/Secondary Channel Interrupt Signals
IDSAA[2:0]	3.3V	MAIN	0	Primary Channel Address [2:0]
IDSAB[2:0]	3.3V	MAIN	0	Secondary Channel Address [2:0]

32

Preliminary V.10 Oct.07,1999

CBLID[A:B] 3.3V/5V MAIN	i	Primary/Secondary Ultra-66 Cable ID
-------------------------	---	-------------------------------------

4.5 VGA Interface

Name	Tolerance	Power Plane	Type Attr	Description
HSYNC	3.3V	MAIN	0	Horizontal Sync
	3.3V	MAIN	0	Vertical Sync
SSYNC	3.3V	MAIN	0	Stereo Sync
DDCCLK	3.3V/5V	MAIN	I/O	Display Data Channel Clock Line
DDCDATA	3.3∀/5∨	MAIN	I/O	Display Data Channel Data Line
COMP		MAIN	AI	Compensation Pin: Connect this pin to AVDD via a 0.1uF capacitor
RSET		MAIN	AI	Reference Resistor: An external resistor is connected between the RSET pin and AGND to control the magnitude of the full-scale current.
VREF		MAIN	Al	Voltage Reference: Connect 0.1uF Capacitor to Ground.
VCS#	3.3V	MAIN	I/O ~	VGA Frame Buffer Cache Chip Select
ROUT		MAIN	AO	Red Signal Output
GOUT		MAIN	AO	Green Signal Output
BOUT		MAIN	AO	Blue Signal Output

33

VBA1	3.3V	MAIN	0	Display Memory Bank Select:
VBCLK			I/O	When 128bits DRAM interface enable, it
PLPWDN#			0	represents the Memory Bank Select
				Digital Video Clock Input:
	\bigcirc			When Video Bridge connected, it represents the Digital Video Clock Input
				Panel Power Down
				When external LCD transmitter connected, it represents power down.
VMA11	3.30	MAIN	0	Display Memory Address bit 11
VGCLK		$\left(\right) \right)$	0	When 128bits DRAM interface enable, it represents the Memory Address bit 11
		\sim		Digital Video Clock Output:
			\rightarrow	When Video Bridge connected, it represents the Digital Video Clock Output
VMA10	3.3V	MAIN	Ø	Display Memory Address bit 10
VBHCLK			0	When 128bits DRAM interface enable, it represents the Memory Address bit 10
			\sim	Control Clock Output:
				When Video Bridge connected, it represents the Control Clock Output
VMD[63:60]	3.3V	MAIN	I/O	Display Memory Data Bus bits [63:60]
VMD[59:52]	3.3V	MAIN	I/O	Display Memory Data Bus bits [59:52]
VBRGB[7:0]			0	Digital Video Data bits [7:0]
VMD[51:49]	3.3V	MAIN	I/O	Display Memory Data Bus bits [51:49]
VBRGB[18:16]			0	Digital Video Data bits [18:16]
VMD[48:44]	3.3V	MAIN	I/O	Display Memory Data Bus bits [48:44]
VBRGB[19:23]			0	Digital Video Data bits [19:23]
VMD[43:42]	3.3V	MAIN	I/O	Display Memory Data Bus bits [43:42]
VBRGB[10:11]			0	Digital Video Data bits [10:11]

34

Preliminary V.10 Oct.07,1999

VMD[41:40]	3.3V	MAIN	I/O	Display Memory Data Bus bits [41:40]
VBRGB[9:8]]			0	Digital Video Data bits [9:8]
VMD[39:38]	3.3V	MAIN	I/O	Display Memory Data Bus bits [39:38]
VBRGB[13:12]			0	Digital Video Data bits [13:12]
VMD[37:36]	3.3V	MAIN	I/O	Display Memory Data Bus bits [37:36]
VBRGB[14:15]			0	Digital Video Data bits [14:15]
VMD35	3.3V	MAIN	I/O	Display Memory Data Bus bit 35
VBBLANKN		/	0	Digital Video Display Enable
VMD[34:33]	3.3V	MAIN	I/O	Display Memory Data Bus bits [34:33]
TVCTL[0:1]	/	$\left(\right)$	0	Video Bridge Data Control bits [0:1]
VMD32	3.3V	MAIN	I/O	Display Memory Data Bus bit 32
VBCAD			I/O	Video Bridge Programming Control
VMD31	3.3V	MAIN	/ 1/0/	Display Memory Data Bus bit 31
VBHSYNC		G	N/O	Digital Video Horizontal Sync
VMD30	3.3V	MAIN	1/0	Display Memory Data Bus bit 30
VBVSYNC			(I/O	Digital Video Vertical Sync
VMD29	3.3V	MAIN	I/O	Display Memory Data Bus bit 29
DDC2CLK			I/O	Second Display data channel clock line
VMD28	3.3V	MAIN	I/O	Display Memory Data Bus bit 28
DDC2DATA			I/O	Second Display data channel data line
VMD[27:0]	3.3V	MAIN	I/O	Display Memory Data Bus bits [27:0]
VDQM[7:0]	3.3V	MAIN	0	Display Memory SDRAM Input /Output Mask
OSCI	3.3V/5V	MAIN	I	External 14.318MHz Clock Input
ENTEST	3.3V/5V	MAIN	I	Test Mode Enable

35

Name	Tolerance	Power Plane	Type Attr	Description
ACPILED	<=5V	AUX	OD	ACPILED : ACPILED can be used to control the blinking of an LED at the frequency of 1 Hz to indicate the system is at power saving mode.
EXTSMI#	3.3V/5V	MAIN	I	External SMI#: EXTSMI# can be used to generate wakeup event, sleep event, or SCI/SMI#/GPEIRQ event to the ACPI-compatible power management unit.
PME#	3.3V/5V	AUX		PME# : When the system is in power-down mode, an active low event on PME# will cause the PSON# to go low and hence turn on the power supply. When the system is in suspend mode, an active PME# event will cause the system wakeup and generate an SCI/SMI#/GPEIRQ.
PSON#	<=5V	AUX	OD	ATX Power ON/OFF control: PSON# is used to control the on/off state of the ATX power supply. When the ATX power supply is in the OFF state, an activated power-on event will force the power supply to ON state.
PWRBTN#	3.3V/5V	AUX	I	Power Button: This signal is from the power button switch and will be monitored by the ACPI-compatible power management unit to switch the system between working and sleeping states.

4.6 **Power management Interface**

Preliminary V.10 Oct.07,1999

RING	3.3V/5V	AUX	I	Ring Indication : An active RING pulse and lasting for more than 4ms will cause a wakeup event for system to wake from S1~S5.
THERM#	3.3V/5V	MAIN	Ι	Thermal Detect : THERM# is connected to the internal ACPI-compatible power management unit as an indication of outstanding thermal event. An active THERM# event can be used to generate SCI/SMI#/GPEIRQ. If THERM# is activated for more than 2 second, a thermal override event will occur and the system will enter CPU thermal throttling mode automatically.
GPIO[6:4]	3.3V/5V	AUX	I/O/OD	General Purpose Input/Output [6:4]: Refer to GPIO description.
I.7 SMBus	Interface	9		

SMBus Interface 4.7

Name	Tolerance	Power Plane	Type Attr	Description
SMBDAT I2CDAT	3.3V/5V	MAIN	1/OD I/OD	SMBus Data : SMBus data input/output pin. I2C Data : I2C data input/output pin.
SMCLK I2CCLK	3.3V/5V	MAIN	I/OD I/OD	SMBus Clock : SMBus clock input/output pin. I2C Clock : I2C clock input/output pin.

SMBALT#	3.3V/5V	AUX	I/OD	SMBus Alert :
I2CALT# GPIO15			1/OD 1/O/OD	This pin is used for SMBus device to wake up the system from sleep state or to generate SCI/SMI#/GPEIRQ.
				I2C Alert :
				This pin is used for I2C device to wake up the system from sleep state or to generate SCI/SMI#/GPEIRQ.
	$/(\alpha)$			General Purpose Input/Output 15 :
	$\langle \rangle \rangle \rangle \rangle$	<u>^</u>		Refer to GPIO description.

4.8 Keyboard controller Interface

Name	Tolerance	Power Plane	Type Attr	Description
KBDAT	3.3V/5V	AUX	I/OD	Keyboard Dada :
GPIO10			I/O/ÓD	When the internal keyboard controller is enabled, this pin is used as the keyboard data signal.
				General Purpose Input/Output 10 :
				Refer to GPIO description.
KBCLK	3.3V/5V	AUX	I/OD	Keyboard Clock :
GPIO11			I/O/OD	When the internal keyboard controller is enabled, this pin is used as the keyboard clock signal.
				General Purpose Input/Output 11 :
				Refer to GPIO description.
PMDAT	3.3V/5V	AUX	I/OD	PS2 Mouse Data:
GPIO12			I/O/OD	When the internal keyboard and PS2 mouse controllers are enabled, this pin is used as PS2 mouse data signal.
				General Purpose Input/Output 12 :
				Refer to GPIO description.

Preliminary V.10 Oct.07,1999 38 Si

PMCLK	3.3V/5V	AUX	I/OD	PS2 Mouse Clock:
GPIO13			I/O/OD	When the internal keyboard and PS2 mouse controllers are enabled, this pin is used as the PS2 mouse clock signal.
				General Purpose Input/Output 13 :
	$\left(\right)$			Refer to GPIO description.
KLOCK#	3.3V/5V	AUX	Ι	Keyboard Lock:
GPIO14			I/O/OD	When KLOCK# is tied low, the internal keyboard controller will not respond to any key-strikes.
		$\langle \rangle$		General Purpose Input/Output 14 : Refer to GPIO description.

 \sim

4.9 LPC Interface

Name	Tolerance	Power Plane	Type Attr	Description
LAD[3:0]	3.3V/5V	MAIN	VO	LPC Address/Data Bus : LPC controller drives these four pins to transmit LPC command, address, and data to LPC device.
LDRQ#	3.3V/5V	MAIN		LPC DMA Request 0: This pin is used by LPC device to request DMA cycle.
LFRAME#	3.3V	MAIN	0	LPC Frame : This pin is used to notify LPC device that a start or a abort LPC cycle will occur.
SIRQ	3.3V/5V	MAIN	I/OD	Serial IRQ : This signal is used as the serial IRQ line signal.

4.10 RTC Interface

Name Tolerance Power Type Attr Description Plane Plane Description Description
--

 Preliminary V.10 Oct.07,1999
 39
 Silicon Integrated Systems Corporation

AUXOK	1.8V	RTC	I	Auxiliary Power OK : This signal is supplied from the power source of resume well. It is also used to reset the logic in resume power well. If there is no auxiliary power source on the system, this pin should be tied together with PWROK.
BATOK	1.8V	RTC	I	Battery Power OK:
				When the internal RTC is enabled, this signal is used to indicate that the power of RTC well is stable. It is also used to reset the logic in RTC well. If the internal RTC is disabled, this pin should be tied low.
OSC32KHI	1.8V	RTC 2		RTC 32.768 KHz Input :
				When internal RTC is enabled, this pin provides the 32.768 KHz clock signal from external crystal or oscillator.
OSC32KHO	<1.8V	RTC	//0/\	RTC 32.768 KHz Output :
				When internal RTC is enabled, this pin should be connected with the other end of the 32.768 KHz crystal or left unconnected if an oscillator is used.
PWROK	1.8V	RTC		Main Power OK :
				A high-level input to this signal indicates the power being supplied to the system is in stable operating state. During the period of PWROK being low, CPURST and PCIRST# will all be asserted until after PWROK goes high for 24 ms.

4.11 AC' 97 interface

Name	Tolerance	Power Plane	Type Attr	Description
------	-----------	----------------	-----------	-------------

 Preliminary V.10 Oct.07,1999
 40
 Silicon Integrated Systems Corporation

AC_BITCLK	3.3V/5V	MAIN	I	AC' 97 Bit Clock :
				This signal is a 12.288MHz serial data clock, which is generated by primary Codec.
AC_RESET#	3.3V	AUX	0	AC' 97 Reset :
	$\langle R \rangle$			Hardware reset signal for external Codecs.
AC_SDIN[1:0]	○ 3.3V/5V	AUX	I	AC' 97 Serial Data input :
	$\langle \rangle \langle \rangle$			Serial data input from primary Codec and secondary Codec.
AC_SDOUT	3.3V	MAIN	0	AC' 97 Serial Data output :
	/	$\langle O \rangle$		Serial data output to Codecs.
AC_SYNC	3.3V 🗸	MAIN	0	AC' 97 Syncronization :
			$\sum $	This is a 48KHz signal, which is used to syncronize the Codecs.
SPDIF	3.3V/5V	MAIN	$\langle \rangle$	S/PDIF Transmitter Output
GPIO7			1/0/0D	General Purpose Input/Output 7 :
		\sim	\langle / \rangle	Refer to GPIO description.
			$\langle // \rangle$	\rangle

4.12 Fast Ethernet and Homenetworking interface

Name	Tolerance	Power Plane	Type Attr	Description
EECS	3.3V	AUX	0	Serial EEPROM Chip Select :
				This enables the EEPROM during loading of the Ethernet configuration data.
EEDI	3.3V	AUX	0	Serial EEPROM Data Input :
				During serial EEPROM access cycle, the SiS630 will use this pin to serially write OP codes, addresses and data into the serial EEPROM.

Preliminary V.10 Oct.07,1999	41	Silicon Integrated Systems Corporation

EEDO	3.3V/5V	AUX	I	Serial EEPROM Data Output :
GPIO3			I/O/OD	During serial EEPROM access cycle, the SiS630 will read the contents of the EEPROM serially through this pin.
	\sim			Requires external pull-up resistor.
	$\left(\right)$			General Purpose Input/Output 3 :
				Refer to GPIO description.
EESK	3.3V	AUX	0	Serial EEPROM Clock :
		$\langle \rangle$		This pin provides the clock for the serial EEPROM.
OSC25MHI	3.3V	AUX	I	PHY 25MHz Clock Input :
		\sim		This pin is supplied the 25MHz clock signal input from the external crystal or an oscillator.
PLEDO#	3.3V	AUX	OD	Programmable LED Output :
OC3#))0 /	(A)Select 10/100Mbps LAN Mode:
GPIO8		9	1/0/00	This pin is used as an LINK/ACTIVITY indication output.
		\sim		(B)Select Home Networking Mode:
				This pin is also an LINK/ACTIVITY indication output.
			<	QC3#:
				When this pin-is configured as OC3#, it can detects USB Port 3 over current condition.
				General Purpose Input/Output 8 :
				Refer to GPIO description.
REXT		AUX	I	Transmit Current Set :
				An external resistor connected between this pin and GND will set the output current level for the twisted pair outputs.
TPIP		AUX	I	Twisted Pair Receive Positive Input
TPIN		AUX	I	Twisted Pair Receive Negative Input
TPOP		AUX	0	Twisted Pair Transmit Positive Output

Preliminary V.10 Oct.07,1999

42

TPON	AUX	0	Twisted Pair Transmit Negative Output
HRTXRXP	AUX	I/O	Twisted Pair Transmit / Receive Positive Data
HRTXRXN	AUX	I/O	Twisted Pair Transmit / Receive Negative Data

4.13 USB interface

Name	Tolerance	Power Plane	Type Attr	Description
CLK48M	3.3V/5V	MAIN	I	USB 48 MHz clock input :
	\sim			This signal provides the fundamental clock for the USB Controller.
OC0#	3.3V/5V	MAIN	I	USB Port 0 Over Current Detection :
PCIREQ3# GPIO0	\langle	\square	I I/Q/OD	OC0# is used to detect the over current condition of USB Port 0.
) / ((External PCI Master Request 3:
		S		PCIREQ3# is used for PCI Device on PCI Slot 3 to assert its request to hold PCI Bus.
		$\langle \rangle$		General Purpose Input/Output 0 :
			\sim	Refer to GRIO description.
OC1#	3.3V/5V	MAIN		USB Port 1 Over Current Detection :
PCIGNT3#			0	OC1# is used to detect the over current
GPIO1			I/O/OD	condition of USB Port 1.
				External PCI Master Grant 3 :
				PCIGNT3# is used to indicate PCI Device on PCI Slot 3 the PCI Bus has been granted.
				General Purpose Input/Output 1 :
				Refer to GPIO description.

Preliminary V.10 Oct.07,1999

43

OC3#	3.3V/5V	MAIN	I	USB Port 3 Over Current Detection:
LDRQ1#				OC3# is used to detect the over current condition of USB Port 3.
01102			1/0/00	LPC DMA Request 1 :
/	\mathbb{R}			LDRQ1# is the second LPC DMA request signal used by LPC Device to request DMA cycles.
(0 / / /			General Purpose Input/Output 2 :
		2		Refer to GPIO description.
USBP[4:0]P	3.3V	AUX	I/O	USB Port [4:0] Positive Input/Output
USBP[4:0]N	3.3V	AUX	I/O	USB Port [4:0] Negative Input/Output

4.14 Legacy I/o and Miscellaneous Signals

Name	Tolerance	Power Type Attr Plane	Description
SPK	3.3V	MAIN	Speaker output : The SPK is connected to the system speaker.
445 Dame			$\sum_{i=1}^{n}$

4.15 Power and Ground Signals

Name	Tolerance	Power Plane	Type Attr Description
VSS		GROUND	OV OV
IVDD		MAIN	1.8V
IVDD (AUX)		AUX	1.8V
OVDD (AUX)		AUX	3.3V
USBVDD		AUX	3.3V
RTCVDD		RTC	1.8V
DCLKAVDD		MAIN	3.3V
ECLKAVDD		MAIN	3.3V
TXAVDD		AUX	3.3V
RXAVDD		AUX	3.3V

44

Preliminary V.10 Oct.07,1999

DACAVDD		MAIN	3.3V
IDEAVDD		MAIN	1.8V
SDAVDD		MAIN	3.3V
CPUAVDD		MAIN	3.3V
VTTB	\frown	MAIN	1.5V
VSSQ	$\left(\Omega \right)$	GROUND	0V
VTTA	\geq	MAIN	1.5V
VCC3		MAIN	3.3V

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

5 Hardware Trap

There are some pins used for trapping purpose to identify the hardware configurations at the power-up stage. These pins will be recognized as "1" if pull-up resistors are used; and will be recognized as "0" if pull-down resistors are used.

The following table is a summary of all the Hardware Trap pins in SiS630.

Symbol	Description
MD62	PCI Clock PLL Circuit Enable
	Pull-up: Disable
	Pull-down: Enable (recommended)
MD61	SDRAM Clock DLL Circuit Enable
	Pull-up: Disable
	Pull-down: Enable (recommended)
MD60	CPU Clock DLL Circuit Enable
\checkmark (\diamond)	Pull-up: Disable
	Pull-down: Enable (recommended)
MD[59:58]	SDRAM Clock DLL
``\/	ER[1:0]
MD[57:56]	CPU Clock DLL
	ER[1:0]
MD[55:54]	PCI Clock PLL
	ER[1:0]
MD49	High : internal control output
	Low : internal clock output
MD48	Output internal signals from XVDQM
MD44	PII CPU Speed Trap for NMI
	The voltage level on this pin will be forwarded to NMI during CPURST period and last 7 PCICLK after CPURST is deasserted. It is
	used to determine PII CPU Core/Bus frequency ratio.
MD43	PII CPU Speed Trap for INTR

46

Preliminary V.10 Oct.07,1999

	The voltage level on this pin will be forwarded to INTR during CPURST period and last 7 PCICLK after CPURST is deasserted. It is used to determine PII CPU Core/Bus frequency ratio.
MD42	PII CPU Speed Trap for A20M#
	The voltage level on this pin will be forwarded to A20M# during CPURST period and last 7 PCICLK after CPURST is deasserted. It is used to determine PII CPU Core/Bus frequency ratio.
MD41	PII CPU Speed Trap for IGNE#
	The voltage level on this pin will be forwarded to IGNE# during CPURST period and last 7 PCICLK after C PURST is deasserted. It is used to determine PII CPU Core/Bus frequency ratio.
MD40	Enable/Disable System Auto-Reset Function
	If the auto-reset function is enabled, PCIRST# will be asserted every 5~6 seconds unless the software disables the function by writing a zero to ACPI56h.6.
	Low: Enable
	High: Disable
MD38	VGA Interrupt Function Enable
	Pull-up: Enable
	Pull-down: Disable
MD37	External CLKGEN Enable
	Pull-up: Use External Clock
	Pull-down: Use Internal Clock
MD36	Panel Link Enable (Note 2)
	Pull-up: Enable Panel Link
	Pull-Down: Disable Panel Link(default)
MD35	VGA Multi-Function Select

47

Preliminary V.10 Oct.07,1999

	Pull-up: Select Function 1
	Pull-Down: Select Function 0
MD34	VGA Multi-Function Enable
	Pull-up: Enable
	Pull-Down: Disable
MD33	Video Bridge Enable (Note 2)
	Pull-up: Enable
\sim	Pull-down: Disable
MD32	PAL/NTSC Select
	Pull-up: Select PAL system
	Pull-Down: Select NTSC system

Note:

There are internal pull-down resistors on MD lines.

MD36	MD33	Function
0	0	FBC
0	1	Enable SiS301 Video Bridge
1	0	The 3rd Party Panel Link Chip is used
1	1	TV Encoder

48

Preliminary V.10 Oct.07,1999

6 Function Description

6.1 MA Mapping Table

6.1.1 SDRAM/System Memory

SD	RAM		(NBA	XNR	AXN)											
TYPE	(1X11 X8	1X13 X8	2X12 X8	2X13 X8	1X11 X9	1X13 X9	2X12 X9	2X13 X9	1X11 X10	1X13 X10	2X12 X10	2X13 X10	2X11 X8	1X13 X11	2X12 X11	2X13 X11
DIMM	SDM chip	CA	CA	ÇA	ĊA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA
MA0	MA0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
MA1	MA1	4	4	4 🧹	4	4	4	4	4	4	4	4	4	4	4	4	4
MA2	MA2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
MA3	MA3	6	6	6	6 🗸	6 /	6	6 /	6	6	6	6	6	6	6	6	6
MA4	MA4	7	7	7	7	7 (₹∠	π	7	7	7	7	7	7	7	7	7
MA5	MA5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
MA6	MA6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
MA7	MA7	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@	10@
MA8	MA8					23#/ 23	23	23	23	23	23	23	23		23	23	23
MA9	MA9									24#/ 24	24	24	24		24	24	24
MA10	AP	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
MA11	BA0	11	11	11	11	11	11	11	11	11	11/	11_	11	11	11	11	11
MA12	BA1	[0]	[0]	12	12	[0]	[0]	12	12	[0]	[0]	12	12	12	[0]	12	12
MA13	MA11														27#/ 27	27#/ 27	27
MA14	MA12																
SIDE-MA	(SINGLE/ DOUBLE)	[0]/12	[0]/12	[0]/13	[0]/13	[0] /12	[0]/ 12	[0]/13	[0]/13	[0]/12	[0]/12	[0]/13	[0]/ 13	[0]/13	[0]/12	[0]/13	[0]/13
DIMM	SDM chip	RA	RA	RA	RA	RA	RA	RA	RA								

49

Preliminary V.10 Oct.07,1999

MA0	MA0	13	13	13 / 25#	13 / 26#	13	13	13 / 26#	13 / 27#	13	13	13 / 27#	13 / 28#	13 / 24#	13	13 / 28#	13 / 29#
MA1	MA1	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
MA2	MA2	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
MA3	MA3	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
MA4	MA4	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
MA5	MA5	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
MA6	MA6	19	19⁄	19	19	19	19	19	19	19	19	19	19	19	19	19	19
MA7	MA7	20 <	20	20	20/	20	20	20	20	20	20	20	20	20	20	20	20
MA8	MA8	21	21 (21	21	21	21	21	21	21	21	21	21	21	21	21	21
MA9	MA9	22#/22	22	22	22⁄	22	22	22	22	22	22	22	22	22	22	22	22
MA10	AP	12/2 3#	12/2 5#	23	23	12/2 4#	12/2 6#	25#/ 25	25	12/2 5#	12/2 7#	25	27#/ 27	23#/ 23	12/2 8#	25	25
MA11	BA0	11	11	11	11 /	11	11	11	11	11	11	11	11	11	11	11	11
MA12	BA1	[0]	[0]	12	12	[0]	[0]	12⁄	12	[0]	[0]	12	12	12	[0]	12	12
MA13	MA11		24#/ 24	24#/ 24	24		24	24	26#/ 26		26#/ 26	26#/ 27	26		26	26	26
MA14	MA12		23		25#/ 25		25#/ 25		24		25		25		25		28#/ 28

 Rank Size
 8MB
 32MB
 64MB
 16MB
 64MB
 64MB
 128MB
 32MB
 128MB
 256MB
 16MB
 256MB
 512MB

 System Reg.(0000)
 (0001)
 (0011)
 (0101)
 (0111)
 (1010)
 (1011)
 (1001)
 (1011)
 (1001)
 (1011)
 (1101)
 (1111)
 (1101)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (1111)
 (11111)
 (1111)
 (1111)

Note: 1.@ for page hit comparator, #for rank decoder. 2. Constant Page Size: 2K byte (4Kbyte for GUI-128 BIT ACCESS) 3. A1.2:A1 for single sided DIMM, A2 for double-sided DIMM.

SE	DRAM	(N BA	XNRAXN	ICA)						
TYPE		1x9x8	1x10x8 1X11X8		2X12X8	1X11X9	1X11X10	2X11X8	1X12X8	
DIMM	SDM chip	CA	CA	CA	CA	ca 📈	CA	CA	CA	
MA0	MA0	3	3	3	3	3	3	3	3	
MA1	MA1	4	4	4	4	4	4	4	4	
MA2	MA2	5	5	5	5	5	5	5	5	
MA3	MA3	6	6	6	6	6	6	6	6	
MA4	MA4	7	7	7	7	7	7	7	7	
MA5	MA5	8	8	8	8	8	8	8	8	
Prelimi	nary V.10 (Oct.07,199	9	50	Silicon	Integrate	d Systems	Corpora	tion	

Preliminary V.10 Oct.07,1999

MA6	MA6	9	9	9	9	9	9	9	9
MA7	MA7	10@	10@	10@	10@	10@	10@	10@	10@
MA8	MA8					23#	23		
MA9	MA9						24#		
MA10	AP	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
MA11	BA0	11)	11	11	11	11	11	11	11
MA12	BA1	[0]	[0]	[0]	12	[0]	[0]	12	[0]
MA13	MA11								
MA14	MA12 <								
		$\left(O \right)$				-	•		-
DIMM	SDM chip	RA	RA	RA	RA	RA	RA	RA	RA
MA0	MA0	13	13	13	13	13	13	13	13
MA1	MA1	14	14	14	14	14	14	14	14
MA2	MA2	15	15	15	15	15	15	15	15
MA3	MA3	16	16	16	16	16	16	16	16
MA4	MA4	17	17	17	17	17	17	17	17
MA5	MA5	18	18	18	18	18	18	18	18
MA6	MA6	19	19	19	19	19	19	19	19
MA7	MA7	20#	20	20	20	20	20	20	20
MA8	MA8		21#	21	21//	21	21	21	21
MA9	MA9			22#	22	22	22	22	22
MA10	AP	12	12	12	23	12	12	23#	12
MA11	BA0	11	11	11	11	11	11	11	11
MA12	BA1	[0]	[0]	[0]	12	[0]	101	12	[0]
MA13	MA11				24#				23#
MA14	MA12								
	Rank Size System Reg.	2MB {0000}	4MB {0001}	8MB {0010}	32MB {0011}	16MB {0100}	32MB {0101}	16MB {0110}	16MB {0111}

Note: 1. Additional Configurations:1x9x8, 1x10x8, 1x12x8, and the other configurations are the same as system

configurations 2.Additional PinS for 128-bit solution are "GUI_AP","GUI_BA1","GUI_MA11"

51

6.1.3 VCM/System Memory

Preliminary V.10 Oct.07,1999

VC SDRAM TYP	(NBAXNRAXNCAXNSA)								
	1X13X6X2	1X13X7X2	1X13X8X2						
	СА	CA	СА						
MA0	3	3	3						
MA1	4	4	4						
MA2	5	5	5						
маз	6	6	6						
MA4	7	7	7						
MA5	8@	8	8						
MA6	(9)*	9@	9						
MA7	(10)*	(10)*	10@						
MA8(CH0)									
MA9(CH1)									
MA10/AP	[0]	[0]	[0]						
MA11/BA0(BA)	[0]	[0]	[0]						
MA12/BA1	[0]	[0]	[0]						
MA13/MA11(CH2)									
МА14/МА12(СН3)									
	SA	SA	SA						
MAO(SEG0)	11	11	11						
MA1(SEG1)	12	12	12						
MA2									
MA3									
MA4									
MA5									
MA6									
MA7									
MA8(CH0)									
МА9(СН1)									
MA10/AP	[1]	[1]	[1]						
MA11/BA0(BA)	13	13	13						
MA12/BA1									
MA13/MA11(CH2)									
MA14/MA12(CH3)									
	[0] /4 4	[0] /4 4	[0]/4.4						

52

Preliminary V.10 Oct.07,1999

	RA	RA	RA	
MAO	15	15	15	
MA1	16	16	16	
MA2	17	17	17	
MA3	18	18	18	
MA4	19	19	19	
MA5	20	20	20	
MA6	21	21	21	
МА7	22	22	22	
MA8	23	23	23	
MA9	24	24	24	
MA10/AP	9	25	25	
MA11/BA0	13	13	13	
MA12/BA1				
MA13/MA11	14 / 25	14 / 26	14 / 27	
MA14/MA12	10	10	26	
Rank/DIMM Size	32MB	64MB	128MB	
System Reg.	{0000}	{0001}	{0010}	

Note: 1.@ for boundary page hit comparator, #for rank decoder.

Page Size is programmable (0.5k, 1k, 2k), and constant for all vc-sdram rank.

2.A1/A2: A1 for single sided DIMM or 128-bit mode, A2 for double-sided & 64-bit mode.

6.1.4 VCM/FBC

VC SDRAM	
TYPE	1X13X6X2
	CA
MAO	3 (2)
MA1	4
MA2	5
MA3	6
MA4	7 (
MA5	8
MA6	(9)*
MA7	(10)*
MA8(CH0)	
MA9(CH1)	
MA10/AP	[0]
MA11/BA0(BA)	[0]
MA12/BA1	[0]
MA13/MA11(CH2)	
MA14/MA12(CH3)	

		SA		
	MAO(SEG0)	11		MA0
	MA1(SEG1)	12		MA1
	MA2			MA2
	MA3			MA3
	MA4			MA4
	MA5			MA5
	MÂ6			MA6
/	MĄ7			MA7
	МА8(сно)			MA8
	МА9(сн1)			MA9
	MA10/AP	[1]	-	MA1
~	МА11/ВА0(ва)	13		MA1
	MA12/BA1	/		MA1
	МА13/МА11(сн2)	2	-	MA1
	МА14/МА12(снз)	$ \rightarrow \land $		MA1
	МА14/МА12(снз)			GUI
		//		GUI
	<	\langle / \rangle		
			c	
		\sim		\searrow
		\sim	/ /	\sim
		\langle		
		/	$^{/}$	· /

	RA
MA0	15
MA1	16
MA2	17
МАЗ	18
MA4	19
MA5	20
MA6	21
MA7	22
MA8	23
MA9	24
MA10/AP	9
MA11/BA0	13
MA12/BA1	
MA13/MA11	14
MA14/MA12	10

GUI Size: 32MB GUI Reg. {0000}

6.2 **PSON#** and **ACPILED** Description

Pin Name	Buffer Type	Description
PSON#	Auxiliary /	PS_ON# is an active low signal that turns on all of the main power rails.
	Open Drain	When a power-up event occurs, SiS630 would assert PSON# to turn on the power supply.
		When a power-down event occurs, SiS630 would deassert PSON# to turnoff the power supply.
		This signal should be held at +5VDC by a pullup resistor internal to the power supply.

55

Preliminary V.10 Oct.07,1999

Figure 6.2-1 PSON#

Pin Name	Buffer Type	Description
ACPILED	Auxiliary/	ACPILED is used to denote that the
	Open Drain	computer is in the sleep mode.

Preliminary V.10 Oct.07,1999	56	Silicon Integrated Systems Corporation
------------------------------	----	--

6.2.1 ACPI

Register 62h~63h System Wakeup form S3/S4/S5 Control Register (S5WAK_CNT) Default Value: 0000h

Access: Read/Write

Figure 6.2-2 ACPILED

7:6	RO	ACPILED Output State Control The output state of ACPILED can be controlled by the following combination when system is in S0/S1/S2/S3 states. If the system is in S4/S5 state ACPILED will be set to high
		impedance.
		00 : Output low
		01 : Blink
		10 : High impedance
		11 : Reversed

Power States for SiS630 Signals 6.3

Term	Pin Type	Description
In	Input	When PCIRST# is asserted, the I/O pin will be set to input mode.
Fixed		
Driven	Inpút	The pin is driven by external resistors. The logic value is allowed tobe changed.
		The logic value of the input pin is independent of PCIRST#.
Running	Input/Output	Clocks.
High	Input/Output	SiS630 drives the pin to a logic high level, or the pin is driven to a high logic level by external components.
Low	Input/Output	SiS630 drives the pin to a logic low level, or the pin is driven to a low logic level by external components
Defined	Output	SiS630 drives the pin to a logic level, that depends on the function.
Off	Output	The output buffer is powered off.
High-Z	Output	The output buffer is high impedence.

		-					
Signal Name	Buffer Power Type Plane		During PCIRST#	After PCIRST#	S1	S3	S4/S5
			PCI Interfa	ce 🗸 🚬	5),		
PCICLK	1	Core	Running	Running	Running	Low	Low
SERR#	I	Core		🔨	High	Low	Low
INT[A:D]#	I	Core			Driven	Low	Low
AD[31:0]	I/O	Core	High-Z	High	High-Z	Off	Off
C/BE[3:0]#	I/O	Core	High-Z	High	High-Z	Off	Off
FRAME#	I/O	Core	High-Z	High-Z	High-Z	Off	Off
IRDY#	I/O	Core	High-Z	High-Z	High-Z	Off	Off
TRDY#	I/O	Core	High-Z	High-Z	High-Z	Off	Off
DEVSEL#	I/O	Core	High-Z	High-Z	High-Z	Off	Off
STOP#	I/O	Core	High-Z	High-Z	High-Z	Off	Off
PAR	I/O	Core	High-Z	Low	Low	Off	Off
PCIRST#	0	Resume	Low	High	High	Low	Low
			CPU Interfa	се			
Due line in energy 17.40	0-(07.4	000	7	····			
Preliminary V.10 Oct.07,1999 58 Silicon Integrated Systems Corporatio							

Preliminary V.10 Oct.07,1999

OPURST#	OD		Core	e Low			Keep Low 10ns		High		Off		Off
INIT#	OD		Core	e	High	-Z	High	ז-Z	High	ו-Z		Off	Off
A20M#	OD		Core	е	Defined		High-Z Hig		High	High-Z		Off	Off
SMI#	OD		Core	Э	High	-Z	High	ז-Z	High	ligh-Z		Off	Off
STPCLK#	(OD)		Core	Э	High	-Z	High	ז-Z	Low			Off	Off
CPUSLP#	OD	$\langle \langle$	Core	э	High	-Z	High	ז-Z	High	ו-Z		Off	Off
	OD	\geq	Core	Э	Defi	ned	Low	1	Low			Off	Off
NMI	ÓD		Core	e	Defi	ned	Low	1	Low	,		Off	Off
IGNE#	OD (Core	e 🔨	Defi	ned	High	ז-Z	High	ו-Z		Off	Off
FERR#			Core	e	<u>}-</u>				High	1		Off	Off
					/	ACPI							
PWRBTN#	Ι	<	Res	ume	Dr	iven	Driv	en	Drive	n	Dr	iven	Driven
EXTSMI#	Ι		Core	√	Dr	iven	Driv	en	Drive	n	Lo	W	Low
RING	Ι		Res	ume	() () () ()	iven	Driv	en	Drive	n	Dr	iven	Driven
PME#	Ι		Res	ume	Dr	iven	Driven		Driven		Driven		Driven
PSON#	OD		Res	ume	Low		Low Low		Low	v Higł		gh	High
CKE	0		Res	ume	High		High Hi		High		Low		High
THERM#	Ι		Core	Э	Driven		Driven		Driven		Low		Low
ACPILED	OD		Res	ume	Defined		Defi	ned	Defin	ed	De	efine	High-Z
							\square	\sim)		d		
			0		<u> </u>					-	0		0"
SMBDAT	I/OD		Core	9	High-Z		High-Z High		High-	Z A	Of	1	011
SMBCLK	I/OD		Core	Э	High-Z		Hign-z Hign-z		Δ			Οπ	
	1/0		Cor			Interna			Linh			4	0#
	0		Core	.		yn rh	⊓igi Liak					ж И	011
	0		Core	<u>e</u>		gn	⊓ıgr	1					
			Core	.		ah 7		. 7		7		9VV 4	LOW Off
	1/0			9			пıgr	Hign-∠ High-		Z	0i	1	UII
	1	P	тс	Punn	ina	Runn	ina	Pup	ning	Pu	nnir	20	Dunning
	0		TC	Rupp	ing ing	Runn	ing	Run	ning	Pu	nnir		Running
PWROK	1	P	TC	High	Running RU		iiig	High			 	'Y	
		P	тс	High		High		Hiah		LOW			High
BATOK		R	TC	High		High		High		Hic	n nh		High
	'				0 M	dem In	terfa	r iigii ce	1	1 10	<u>, , , , , , , , , , , , , , , , , , , </u>		i ligi i
	Audio Modem Interface												

59

Preliminary V.10 Oct.07,1999

AC_RESET#	¢ (0	Resume	Low	Low	Defined	Low	Low
AC_SYNC	(0	Core	Low	Low	Low	Off	Off
AC_CLK		I	Core	Core Low Low		Low	Low	
AC_SDOUT	. (0	Core	Low	Low	Low	Off	Off
AC_SDIN[1:0)]		Resume	Driven	Driven	Driven	Driven	Driven
				PHY Ir	terface			
OSC25MHI CLK25M			Resume	Running	Running	Running	Running	Running
HRTXRXP	I/Ø		Resume	High-Z	High-Z	High-Z	High-Z	High-Z
HRTXRXN	I/O		Resume	High-Z	High-Z	High-Z	High-Z	High-Z
REXT	-	7	Resume	High	High	High	High	High
TPO+	0	I	Resume	Defined	Defined	Defined	Defined	Defined
TPO-	0	I	Resume	Defined	Defined	Defined	Defined	Defined
TPI+	Ι	I	Resume	Driven	Driven	Driven	Driven	Driven
TPI-	Ι	I	Resume \checkmark	Driven	Driven	Driven	Driven	Driven
EECS	0	I	Resume	Low	Low	Low	Low	Low
EEDI	0	I	Resume	Low	Low	Low	Low	Low
EESK	0	I	Resume	Low	Low	Low	Low	Low
USB Interface								
UV+[4:0]	I/O	F	Resume	High-Z	High-Z	High-Z	High-Z	High-Z
UV-[4:0]	I/O	F	Resume	High-Z	High-Z	High-Z	High-Z	High-Z
CLK48M	I	(Core	Running	Running	Running	Low	Low
Legacy I/O								
SPK	0) (Core	Low	Low	Low	Off	Off
CLK14M	I	(Core	Running	Running	Running	Off	Off
				GF	910	/		
GPIO0	1/0	0	Core	In	In	Defined	Off	Off
PCIREQ3#	Ι					High	Off	Off
OC0#	Ι			High	High	High	Off	Off
GPIO1	1/0	0	Core	In	In	Defined	Off	Off
PCIGNT3#	0)		High	High	High	Off	Off
OC1#	Ι			Hgh	High	High	Off	Off
GPIO2	1/0	0	Core	In	In	Defined	Off	Off
LDRQ1#	Ι			High	High	High	Low	Low
OC3#	Ι			High	High	High	Off	Off
GPIO3	1/0	0	Resume	In	In	Defined	Off	Off

60

Preliminary V.10 Oct.07,1999

EEDO	Ι				Driven	Driven	Driven
GPIO4	I/O	Resume	In	In	Defined	Off	Off
GPIO5	I/O	Resume	In	In	Defined	Off	Off
GPIO6	I/O	Resume	In	In	Defined	Off	Off
GPIO7	1/0	Core	In	In	Defined	Off	Off
SPDIF	Ó ()		Low	Low	Low	Off	Off
GPIO8) ixo	Resume	In	In	Defined	Off	Off
PLED0#	OD	2	Defined	Defined	Defined	Defined	Defined
OC2#			High	High	High	High	High
GPIO10	I/O	Resume	In	In	Defined	Off	Off
KBDAT	I/O		Driven	Driven	Driven	High-Z	High-Z
	D						
GPIO11	I/O	Resume	In	In	Defined	Off	Off
KBCLK	I/O		Driven	Driven	Driven	High-z	High-Z
	D		$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	\bigwedge			
GPIO12	I/O	Resume		In	Defined	Off	Off
PMDAT	I/O		Driven	Driven	Driven	High-Z	High-Z
	D	-		$\frac{1}{2}$			
GPIO13	I/O	Resume	In 🗸	In	Defined	Off	Off
PMCLK	1/0		Driven	Driven	Driven	High-Z	High-Z
		Pocumo	In		Dofined	0#	Off
	1/0	Resume	Dofined	Defined	Defined		
			Denned	Denned	Delined	LOW	LOW
GPIO15	1/0	Resume	In	In 🗸	Defined	Off	Off
SMBALT#			High	High	High	High	High
I2CALT#			High	High	High	/High	High

6.4 Arbiter Tree

Figure 6.4-1 Arbiter Tree

Note 1: SIO means the System I/O for LPC Bridge.

Note 2: PCI3 can issue its request to SiS630 only when modem is disabled.

6.5 Nand Tree Test Scheme

Figure 6.5-1 The Mechanism of NAND Tree

	The Test S	cheme of N	AND Tree				
TEST#							
TESTIN1							
TESTIN2							
TESTIN3				-		/	
TESTIN4	(0)			-	-		
		$\left(\begin{array}{c} 0 \end{array} \right)$					
TESTOUT							
		$\overline{p_{\mathcal{I}}}$		P1 passed	P2 passed	P3 passed	P4 passed

Figure	6.5-2	The	Test	Scheme	of	NAND	Tree
--------	-------	-----	------	--------	----	------	------

Table 6.5-1 NAND Tree List for SiS630

TEST INPUT	TEST OUTPUT
BALL NAME LIST	BALL NAME
BXGPIO6, BXGPIO5, BXGPIO4, BXGPIO3, XEESK, XEEDI, BXGPIO9, BXGPIO8, XEECS, XPCIRSTN, XACRSTN, XSDATAI0, XSDATAI1, BXGPIO15, BXGPIO14, BXGPIO13, BXGPIO12, BXGPIO11, BXGPIO10, XACPILED, XPSONN, XPMEN, BXRING, XPWRBTNN, XCKE, BXDP4, BXDM4, BXDP3, BXDM3, BXDP2, BXDM2, BXDP1, BXDM1, BXDP0, BXDM0, XINTAN, XINTBN, XINTCN, XINTDN, XSERRN, BXSMBCLK, XUCLK48M, BXSMBDAT, XSPK, BXLAD3, BXLAD2, BXLAD1, BXLAD0, XLFRAMEN, XLDRQN, BXSIRQ, BXVMD63, BXVMD62, BXVMD61, BXVMD60, BXVMD59, BXVMD58, BXVMD57, BXVMD56, XVCSN, XVDQM7, XVDQM6, XVDQM5, XVDQM4, BXVMD55, BXVMD54, BXVMD53, BXVMD52, BXVMD51, BXVMD50, BXVMD44, BXVMD48, BXVMD47, BXVMD46, BXVMD50, BXVMD49, BXVMD48, BXVMD47, BXVMD46, BXVMD40, BXVMD49, BXVMD43, BXVMD42, BXVMD46, BXVMD40, BXVMD44, BXVMD43, BXVMD47, BXVMD46, BXVMD40, BXVMD40, BXVMD41, BXVMD42, BXVMD41, BXVMD40, BXVMD31, BXVMD31, BXVMD33, BXVMD32, XVMA10, XVMA11, XVBA1, BXVMD31, BXVMD30, BXVMD25, BXVMD24, XVDQM3, XVDQM2 , XVDQM1, XVDQM0, BXVMD23, BXVMD27 , BXVMD26, BXVMD15, BXVMD17, BXVMD11, BXVMD10, BXVMD19, BXVMD13, BXVMD12, BXVMD11, BXVMD10, BXVMD14, BXVMD13, BXVMD17, BXVMD16, BXVMD15, BXVMD14, BXVMD13, BXVMD17, BXVMD16, BXVMD4, BXVMD3, BXVMD2, BXVMD17, BXVMD16, BXVMD4, BXVMD3, BXVMD2, BXVMD17, BXVMD16, BXVMD48, BXVMD40, BXVMD17, BXVMD14, BXVMD17, BXVMD14, BXVMD14, BXVMD14, BXVMD17, BXVMD14, BXVMD14, BXVMD14, BXVMD17, BXVMD14, BXVMD14, BXVMD14, BXVMD14, BXVMD17, BXVMD14, BXVMD14, BXVMD17, BXVMD14, BXVMD14, BXVMD14, BXVMD14, BXVMD17, BXVMD14, BXVMD44,	BXEXTSMIN

64

Preliminary V.10 Oct.07,1999

BXIDA3, BXIDA12, BXIDA2, BXIDA13, BXIDA1, BXIDA14, BXIDA0,	
BXIDA15, BXIAIOWCN, XIADRQ, XIACHRDY, BXIAIORCN,	
BXIADACK, XIAIRQ, BXIADSA1, BXIADSA0, BXIADSA2, XIACBLID,	
BXIACSN0, BXIACSN1, BXIDB7, BXIDB8, BXIDB6, BXIDB9,	
BXIDB5, BXIDB10, BXIDB4, BXIDB11, BXIDB3, BXIDB12, BXIDB2,	
BXIDB13, BXIDB1, BXIDB14, BXIDB0, BXIDB15, BXIBIOWCN,	
XIBDRQ, BXIBIORCN, XIBCHRDY, BXIBDACK, BXIBDSA1,	
BXIBDSA0, BXIBDSA2, BXIBCSN0, BXIBCSN1, XIBIRQ, XIBCBLID,	
XPCICLK, XSDCLK, BXMD32, BXMD0, BXMD33, BXMD1,	
BXMD34, BXMD2, BXMD35, BXMD3, BXMD36, BXMD4, BXMD37,	
BXMD5, BXMD38, BXMD6, BXMD39, BXMD7, BXMD40, BXMD8,	
BXMD41, BXMD9, BXMD42, BXMD10, BXMD43, BXMD11,	
BXMD44, BXMD12, BXMD45, BXMD13, BXMD46, BXMD14,	
BXMD47, BXMD15, XSCASN, XRAMWN, XDQM4, XDQM0,	
XDQM5, XDQM1, XSRASN, XCSNA5, XCSNA4, XCSNA3,	
XCSNA2, XCSNA1, XCSNA0, XMA0, XMA1, XMA2, XMA3, XMA4,	
XMA5, XMA6, XMA7, XMA8, XMA9, XMA10, XMA11, XMA12,	
XMA13, XMA14, XCSNB5, XCSNB4, XCSNB3, XCSNB2, XCSNB1,	
XCSNB0, XDQM6, XDQM2, XDQM7, XDQM3, BXMD48, BXMD16,	
BXMD49, BXMD17, BXMD50, BXMD18, BXMD51, BXMD19,	
BXMD52, BXMD20, BXMD53, BXMD21, BXMD54, BXMD22,	
BXMD55, BXMD23, BXMD56, BXMD24, BXMD57, BXMD25,	
BXMD58, BXMD26, BXMD59, BXMD27, BXMD60, BXMD28,	
BXMD61, BXMD29, BXMD62, BXMD30, BXMD63, BXMD31,	
BXRSN1, BXRSN2, BXADSN, BXDBSYN, BXHITN, BXHITMN,	
BXRSNO, BXHREQN3, BXDRDYN, BXHREQN2, XHLOCKN,	
BXDEFERN, BXHREQN4, BXHTRDYN, BXHREQN1, BXBPRIN,	
BXHREQNO, BXBNRN, BXHAN4, BXHAN6, BXHAN9, BXHAN3,	
BXHAN5, BXHAN7, BXHAN10, BXHAN8, BXHAN12, BXHAN14,	
BXHAN13, BXHAN11, BXHAN16, BXHAN17, BXHAN18, BXHAN15,	
BXHAN19, BXHAN25, BXHAN21, BXHAN23, BXHAN20, BXHAN22,	
BXHAN28, BXHAN27, BXHAN24, BXHAN31, BXHAN26, BXHAN30,	~
BXHAN29, BXBREQ0N, BXCPURSTN, BXHDN1, BXHDN0,	
BXHDN3, BXHDN2, BXHDN5, BXHDN4, BXHDN8, BXHDN6,	
BXHDN9, BXHDN7, BXHDN14, BXHDN12, BXHDN10, BXHDN15,	
BXHDN11, BXHDN17, BXHDN13, BXHDN20, BXHDN16, BXHDN18,	
BXHDN21, BXHDN19, BXHDN23, BXHDN22, BXHDN24, BXHDN25,	
BXHDN27, BXHDN26, BXHDN30, BXHDN29, BXHDN31, BXHDN28,	
BXHDN35, BXHDN32, BXHDN33, BXHDN38, BXHDN37, BXHDN34,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN49, BXHDN47, BXH	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN48, BXHDN46, BXHDN59, BXHDN57, BXHDN54, BXHDN53,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN48, BXHDN46, BXHDN59, BXHDN57, BXHDN54, BXHDN53, BXHDN50, BXHDN60, BXHDN56, BXHDN55, BXHDN63, BXHDN61,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN48, BXHDN46, BXHDN59, BXHDN57, BXHDN54, BXHDN53, BXHDN50, BXHDN60, BXHDN56, BXHDN55, BXHDN63, BXHDN61, BXHDN58, BXHDN62, XINTR, XNMI, XIGNEN, XFERRN,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN48, BXHDN46, BXHDN59, BXHDN57, BXHDN54, BXHDN53, BXHDN50, BXHDN60, BXHDN56, BXHDN55, BXHDN63, BXHDN61, BXHDN58, BXHDN62, XINTR, XNMI, XIGNEN, XFERRN, XCPUCLK, XCPUSLPN, XSTPCLKN, XA20MN, XINIT, XSMIN,	
BXHDN43, BXHDN40, BXHDN36, BXHDN39, BXHDN44, BXHDN45, BXHDN47, BXHDN42, BXHDN41, BXHDN51, BXHDN52, BXHDN49, BXHDN48, BXHDN46, BXHDN59, BXHDN57, BXHDN54, BXHDN53, BXHDN50, BXHDN60, BXHDN56, BXHDN55, BXHDN63, BXHDN61, BXHDN58, BXHDN62, XINTR, XNMI, XIGNEN, XFERRN, XCPUCLK, XCPUSLPN, XSTPCLKN, XA20MN, XINIT, XSMIN, XREQN0, XREQN1, XREQN2, BXAD31, BXAD30, BXAD29,	

65

Preliminary V.10 Oct.07,1999

BXAD28, BXAD27, BXAD26, BXAD25, BXAD24, BXCBEN3,
BXAD23, BXAD22, BXAD21, BXAD20, BXAD19, BXAD18, BXAD17,
BXAD16, BXCBEN2, BXFRAMEN, BXIRDYN
, BXTRDYN, BXDEVSELN, BXPLOCKN, BXSTOPN, BXPAR,
BXCBEN1, BXAD15, BXAD14, BXAD13, BXAD12, BXAD11,
BXAD10, BXAD9, BXAD8, BXCBEN0, BXAD7, BXAD6, BXAD5,
BXAD4, BXAD3, BXAD2, BXAD1, BXAD0, XSDATAO, XACSYNC,
XACCLK, BXGPIO0, BXGPIO1, BXGPIO2, XTHERMN

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

7 Register Summary / Description – Core Logic

7.1 Device 0, Function 0 (Host-to-PCI Bridge)

7.1.1 Configuration S	Space Header
-----------------------	--------------

Register Address	Register Name	Default Value	Access Type
00~01h	Vendor ID	1039h	RO
02~03h	Device ID	0630h	RO
04~05h	PCI Command Register	0005h	RO
			R/W
06~07h	PCI Status Register	0210h	RO
			WC (*)
08h	Revision ID	00h	RO
09h	Programming Interface	00h	RO
0Ah	Sub-Class Code	00h	RO
0Bh	Base Class Code	06h	RO
0Ch	Cache Line Size	00h	RO
0Dh	Master Latency timer	FFh	R/W
0Eh	Header Type	80h	RO
0Fh	BIST	00h	RO
10~13h	Graphic Window Base Address	0000000h	RO
			R/W
14~33h	Reserved	00h	RO
34h	Capability Pointer	C0h	RO

WC stands for Write Clear. If the register's access type is WC, that means every write cycle issued to the register can only reset (Write Clear from 1 to 0) the specific bit in the register, but can not set it (write 1 into the corresponding bit). The corresponding bit of the register will be reset when writing "1" to that bit. For instance, writing value

 0100_0000_0000b to the register will clear bit 14 and the other bits keep the same value.

67

Preliminary V.10 Oct.07,1999

Register Address	Register Name	Default Value	Access Type
50h	Host Interface Control 1	00h	R/W
51h	Host Interface Control 2	00h	R/W
52h	DRAM MISC Control 1	00h	R/W
53h	DRAM MISC Control 2	00h	R/W
54h	DRAM Timing Control 1	00h	R/W
55h	DRAM Timing Control 2	00h	R/W
56h	DRAM MISC Control 3	00h	R/W
57h	SDRAM/VCM Initialization	00h	R/W
58h	DRAM Buffer Pre-driver Slew Rating	00h	R/W
59h~5Ah	DRAM Buffer Strength and Current Rating	00h	R/W
5Bh	PCI Buffer Strength and Current Rating	00h	R/W
5Ch~5Fh	Reserved	00h	R/W
60h~62h	DRAM Type Registers of DIMM 0/1/2	00h	R/W
63h	DRAM Status Register(Bit-x = DIMM-x)	OOh	R/W
64h	FBC Control Register	00h	R/W
65h	DIMMs Switch Control	00h	R/W
66h~67h	Reserved	00h	R/W
69h~68h	ACPI I/O Space Base Address Register	0000h	R/W
6Ah	SMRAM Access Control	00h	R/W
6Bh	Self Refresh Command Output Timing Control	00h	R/W
6Ch	DRAM Self-Refresh control for Power Management	00h	R/W

68

7.1.2 Registers for Host & DRAM

Preliminary V.10 Oct.07,1999

Register Address	Register Name	Default Value	Access Type
70h~73h	Shadow RAM attribute & Read/Write Control	00000000h	R/W
74h~76h	Reserved	00h	RO
77h	Characteristics of PCI-Hole area	00h	R/W
78h~79h	Allocation of PCI-Hole area #1	0000h	R/W
7Ah~7Bh	Allocation of PCI-Hole area #2	0000h	R/W

7.1.3 Shadow RAM & PCI-Hole Area

7.1.4 Hardware-Trap Control

Register Address	Register N	Name	Default Value	Access Type
7Ch	VGA-Bridge H Control	lardware-Trap	00h	R/W
7Dh	South-Bridge H Control	ardware-Trap	00h	R/W
7Eh~7Fh	North-Bridge H Control	lardware-Trap	00h	R/W

7.1.5 Host Bridge & PCI Arbiter Characteristics

Register Address	Register	Name	<	Default Value	Access Type
80h	Target Bridge Characteristics	to	DRAM	OOh	R/W

Register Address	Register Name	Default Value	Access Type
81h	PCI Discard Timer for Delay Transaction	FFh	R/W
82h	PCI Target Bridge Bus Characteristics	00h	R/W
83h	CPU to PCI Characteristics	00h	R/W
84h~85h	PCI Grant Timer	FFFFh	R/W
86h	CPU Idle Timer for PCI	FFh	R/W

69

Preliminary V.10 Oct.07,1999

87h	Host Bridge & PCI Master Priority Timer	FFh	R/W
88h~89h	PCI Discard Timer For PCI Hold	0000h	R/W

7.1.6 Clock Control

Register Address	Register Name	Default Value	Access Type
8Ch (💛	SDRCLK/SDWCLK Control	2Ah	R/W
8Dh	SDWCLK Control	AAh	R/W
8Eh	CPU clock & SDRAM Clock Relationship	00h	R/W
8Fh	FBCRCLK/FBCWCLK Control	2Ah	R/W

7.1.7 GART and Page Table Registers

Register Address	Register Name	Default Value	Access Type
90h~93h	GART Base Address	00000000h	R/W
			RO
94h	Graphic Window Control	00h	R/W
95h~96h	Reserved	200h	RO
97h	Page Table Cache Control	00h	R/W
98h	Page Table Cache Invalidation Control	OOh	R/W
7.1.8 Integrated	VGA Control		\rightarrow

7.1.8 Integrated VGA Control

Register Address	Register Name	Default Value	Access Type
9Ch	Integrated VGA Control	00h	R/W

7.1.9 A.G.P.

Register Address	Register Name	Default Value	Access Type
A0h~A3h	DRAM Priority Timer Control Register	0000000	R/W
A4h~A7h	General Purpose Register		

70

Preliminary V.10 Oct.07,1999

A8h~Abh	General Purpose Register		
ACh~AFh	General Purpose Register		
C0h~C3h	A.G.P. Capability Identify Register	00200002h	RO
C4h~C7h	A.G.P. Status Register	1F000203h	RO
C8h~CBh	A.G.P. Command Register	00000000h	R/W

7.2 Device 2, Function 0 (Virtual PCI-to-PCI Bridge)

Register Address	Register Name	Default Value	Access Type
00-01h	Vendor ID	1039h	RO
02-03h	Device ID	0001h	RO
04-05h	PCI Command Register	0000h	RO
			R/W
06-07h	PCI Status Register	0000h	RO
08h	Revision ID	00h	RO
09h	Programming Interface	00h	RO
0Ah	Sub-Class Code	04h	RO
0Bh	Base Class Code	06h	RO
0Ch	Cache Line Size	00h	RO
0Dh	Master Latency timer	(RO
0Eh	Header Type	01h	RO
0Fh	BIST	00h	RO
19h	Secondary Bus Number	00h	R/W
1Ah	Subordinate Bus Number	00h	R/W
1Bh	Secondary Master Latency Timer	00h	R/W
1Ch	I/O Base	F0h	R/W
			RO
1Dh	I/O Limit	00h	R/W
			RO

71

Preliminary V.10 Oct.07,1999

1Eh	Secondary PCI-PCI Status	0000h	R/W
			RO
20~21h	Non-prefetchable Memory Base	FFF0h	R/W
	Address		RO
22~23h	Non-prefetchable Memory Limit	0000h	R/W
\bigcirc	Address		RO
24~25h	Prefetchable Memory Base Address	FFF0h	R/W
\langle			RO
26~27h	Prefetchable Memory Limit Address	0000h	R/W
			RO
28~3Dh	Reserved		
3Eh	PCI to PCI Bridge Control	0000h	RW
			RO

7.3 Register Description -- Core logic

The SiS630 has three programmer visible registers located in the I/O space. These registers are listed in the following table.

I/O Space Address	Configuration Register Function
0CF8h	CONFIG_ADDRESS register (only valid for DWord access)
0CFCh	CONFIG_DATA register (only valid if enable bit is set in the CONFIG_ADDRESS register)

7.3.1 Host Bridge Registers (Function 0)

7.3.2 Configuration Space Header

Register 00h Vendor ID

Default Value: 1039h

Access: Read Only

The register identifies the manufacturer of the device. SiS is allocated as 1039h by PCI SIG.

Bit	Access	Description
15:0	RO	Vendor Identification Number

Preliminary V.10 Oct.07,1999

Register 02h Device ID

Default Value: 0630h

Access: Read Only

The device identifier is allocated as 0630h by Silicon Integrated Systems Corp.

Bit	Access	Description
15:0	RO	Device Identification Number

Register 04h Command

Default Value: 0005h

Access: Read/Write, Read Only

The Command register provides coarse control over a device's ability to generate and respond to PCI cycles.

Bit	Access	Description
15:3	RO	Reserved
2	RO	Bus Master
		Default value is 1. That means you cannot disable bus master function of the host bridge.
1	R/W	Memory Space
		The bit controls the response to memory space accesses. When the bit is disabled, the host bridge ignores all access from PCI masters.
		0: Disable
		1: Enable
0	RO	I/O Space
		Default value is 1. The host bridge only respond to the addresses 0CF8h and 0CFCh in the I/O space and the I/O transaction must be generated by the host bridge itself.

Register 06h Status

Default Value: 0210h

Access: Read Only, Write Clear

The Status register is used to record status information for PCI bus related events. Reads to this register behave normally. Writes are slightly different in that? each bit in this register can only be reset(Write Clear from 1 to 0), but not set. The corresponding bit of the register will be reset when writing "1" to that bit. For instance, to write value

0100_0000_0000_0000b to the register will clear bit 14 and not affect any other bits.

Bit	Access	Description

Preliminary V.10 Oct.07,199973Silicon Integrated Systems Corporation

15:14	RO	Reserved
_		This bit is always 0, SiS630 does not support parity checking on the PCI bus.
13	WC	Received Master Abort
		SiS630 sets this bit whenever its transaction is terminated with master abort. Writing a 1 to it clears this bit.
12	wc	Received Target Abort.
		SiS630 sets this bit whenever it terminates a transaction with target abort. Writing a 1 to it clears this bit.
11	RO	Reserved
10:9	RO	DEVSEL# Timing DEVT.
		These two bits define the timing to assert DEVSEL#. SiS630 always asserts DEVSEL# within two clocks after the assertion of FRAME#.
8:5	RO	Reserved
4	RO	CAP_LIST
		The value of "1" for this bit specifies SiS630's configuration space implements a list of capabilities.
3:0	RO	Reserved

Register 08h Revision ID

Default Value: 01h Access: Read Only

The Revision ID is 01h for A1 Revision.

Bit	Access	Description
7:0	RO	Revision Identification Number

Register 09h Programming Interface

Default Value: 00h

Access: Read Only

The default value is 00h since no specific register-level programming interface is provided.

Bit	Access	Description
7:0	RO	Programming Interface

74

Register 0Ah Sub Class Code

Default Value: 00h

Preliminary V.10 Oct.07,1999

Access: Read Only

The Sub Class Code is 00h for host bridge.

Bit	Access	Description
7:0	RO	Sub Class Code

Register 0Bh Base Class Code

Default Value: 06h

Access: Read Only

The value of 06h in this field identifies a bridge device.

Bit	Access	Description
7:0	RO Base Class Code	

Register 0Ch Cache Line Size

Default Value: 00h

Access: Read Only

The value of this register is always 00h since the host bridge won't generate the Memory Write and Invalidate command.

Bit	Access	Description
7:0	RO	Cache Line Size

Register 0Dh Master Latency Timer (MLT)

Default Value: FFh

Access: Read/Write

The MLT is used in conjunction with PGT (Register84h) and CIT (Register 86h) to provide a fair and efficient system arbitration mechanism. The value of MLT guarantees the minimum system bandwidth for CPU when CPU and PCI masters are all craving for system resources (system memory or PCI bus).

Bit	Access	Description
7:0	R/W	Initial Value for Master Latency Timer

Register 0Eh Header Type

Default Value: 80h

Access: Read Only

The value of 80h implies that SiS630 is a multiple function device.

Bit	Access	Description
7:0	RO	Header Type

Preliminary V.10 Oct.07,1999

Register 0Fh BIST

Default Value: 00h

Access: Read Only

The value is 00h since we don't support Build-in Self Test.

Bit	Access	Description
7:0	RO	BIST

Register 10h Graphic Window Base Address (GWBA)

Default Value: 0000000h

Access: Read/Write, Read Only

The register defines the starting address of the graphic window for A.G.P. The Graphic Window Control Register (Register 94h) controls accessibility and effectiveness of this register.

Bit	Access	\bigvee		5		Desc	riptior	า			
31:22	R/W	Define	A[31	:22] of	Grap	hic wi	ndow	base	addre	SS	
	RO	The a size(E	ccessi Bits[6:4	bility o], Reg	f bits[3 ister 9	81:22] 94h).	are coi	ntrolle	d by gr	aphic	window
		Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24	Bit23	Bit22
		R/W	R/W	R/W	/R/W	R/W	R/W	R/W	R/W	R/W	R/W
		R/W	R/W	R/Ŵ	R/W	R/W	R/W	R/W	R/W	R/W	0
		R/W	R/W	R/W	R/W	/R/W	R/W	R/W	R/W	0	0
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	0	0	0 3
		R/W	R/W	R/W	R/W	R/W	∕R/₩	0	0	0	06
		R/W	R/W	R/W	R/W	R/W	Ò) ((0	0	0 12
		R/W	R/W	R/W	R/W	0	\bigcirc	// 0	0	0	0 25
21:0	RO	Reser	ved ar	nd rea	d as O	00000	h	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\square		

Register 34h Capability Pointer (CAPPTR)

Default Value: C0h

Access: Read Only

The value of C0h indicates that the A.G.P. standard register block is started from Register C0h.

Bit	Access	Description
7:0	RO	Capability Pointer
		Pointer to the Start of A.G.P. standard register block.

Preliminary V.10 Oct.07,1999 76	Silicon Integrated Systems Corporation
---------------------------------	--

7.3.3 Host Control Registers

Register 50h Host Bus Interface Control I

Default Value 00h

Access Read/Write

This register defines the functions supported by the Host interface.

Bit	Access	Description
7	R/W	Host Defer Function When this bit is enabled, host block will defer CPU to PCI non- post cycle and issue a Defer Reply cycle later to increase host bus usage efficiency. 0: Disable 1: Enable
6:5	R/W	Reserved
4	R/W	Host Read/Write Reorder When this bit is enabled, DRAM read cycle may exceed DRAM write cycle in DRAM side for increasing performance. 0: Disable 1: Enable
3	R/W	CPU & PCI Masters Concurrently Access Memory Function When this bit is enabled, CPU access memory cycles and PCI masters access memory cycles can be concurrently issued onto host bus and PCI bus, respectively, and then the memory access cycles will be rearranged by SiS630 to memory sequentially. In this case, the utilization of the buses will be optimized. When this bit is disabled, either CPU or PCI masters starts memory access cycle will block the other one's cycle until the current cycle is finished. 0: Disable 1: Enable

2	R/W	CPU & PCI Masters Concurrently Access PCI Bus Function
	R	When this bit is enabled, CPU access PCI bus cycle and PCI masters access memory cycles can be concurrently issued onto host bus and PCI bus, respectively. By doing this, these cycles will be forwarded to PCI bus and memory bus at the same time. This bit is valid only bit 3 is set. When this bit is disabled, either one of these two kinds of cycles will block the other until the current cycle is finished.
		1; Enable
1	R/W	CPU Pipeline Function
		When this bit is 0, only one pending cycle is allowed at one time. When this bit is 1, there might be more than two pending cycles at one time depends on the CPU behaviour.
		0: no pipeline
		1: pipeline enable
0	R/W	Reserved

Register 51h Host Bus Interface Control II

Default Value 00h

Access Read/Write

This register defines the functions supported by the Host interface.

Bit	Access	Description
7:2	R/W	Reserved
1	R/W	Host-to-PCI Cycle Timing Control
		When set to 1, the Host-to-PCI bridge will start the transaction of Host-to-PCI cycle once the cycle appears on the host bus. When set to 0, the start of the Host-to-PCI translation will be delayed by one CPU clock.
		0: Delay 1 CPU clock
		1: Without Delay
0	R/W	Reserved

7.3.4 DRAM Control Registers

Register 52h DRAM MISC Control 1

Default Value 00h

Preliminary V.10 Oct.07,1999

Access Read/Write

The register defines timing for Refresh cycles.

Bit	Access	Description
7:6	R/W	DRAM Refresh Queue Depth
		These two bits control the depth of refresh queue. To minimize the performance penalty caused by refresh cycles, the concept of refresh queue is introduced. Refresh request is arbitrated with other DRAM request, if a refresh request does not get served, it enters the refresh queue. The priority of refresh request is promoted to highest when the refresh queue is full.
	\sum	Bits[7:6] Depth
		00 0 01 4
		10 8
		11 12
5:4	R/W	DRAM Refresh Period Control
		These two bits are used to determine how often will the refresh request occur. It is timed with a counter based on PCI clock.
		00: 15.6us
		01: 7.8us
		10: 3.9us
		11: Reserved
3	R/W	Starting Point Control for Ahead Refresh
		This bit controls how long should the DRAM arbiter wait before issuing the first ahead refresh request when the bus is idle. For further reducing the performance penalty caused by refresh cycles, SiS630 provides ahead refresh function. When the bus is idle, if no DRAM request is issued during a specific time, the DRAM arbiter will issue refresh request to utilize the bus. In the following 10T, if no other request is issued, another ahead refresh request will be issued. And so on. The maximum number of ahead refresh cycles can be issued is 32.
		0: 10T
		1: 40T

2	R/W	Ahead Refresh Function Control
		This bit enables the ahead refresh function.
		0: Disable
		1: Enable
1	R/W	DRAM Refresh Test Mode
		This bit is used to test internal refresh circuit. In test mode, refresh request will be issued per 0.5us. For normal operation, it must be programmed with 0.
		0: Normal Mode
		1: Test Mode
0	R/W	Refresh Cycle Enable
		When disabled, the normal refresh cycle issued from SiS630 will be prohibited. This function is used by BIOS to perform SDRAM / VCM initialization, during which period SDRAM / VCM can still be refreshed by programming register 57h bit 5. For normal operation, this bit should be programmed with 1.
		0: Disable
		1: Enable

Register 53h DRAM MISC Control 2

Default Value 00h

Access Read/Write

This register controls the queue depth used in DRAM controller.

Bit	Access	Description
7:6	R/W	Reserved
5	R/W	CPU-to-MEM Cycle Pipelined Control
		0: Normal
		1: Slower
4	R/W	Host / AGP Command Queue Depth
		This bit defines the depth of command queue in DRAM arbiter.
		Bit[4] Depth
		0 2
		1 1

80

3:1	R/W	Foreground Queue Depth
		Bits[3:1] defines the depth of foreground queue in memory controller.
		Bits[3:1] Depth
		000 6
	$\wedge (R)$	001 5
	(0)	010 4
		011 3
		100 2
		101 1
		Others : Reserved
0	R/W	Background Queue Depth
		Bit 0 defines the depth of background queue in memory
		controller. 0: 2-level
		1: 1-level

Register 54h DRAM Timing Control 1

Default Value 00h

Access Read/Write

This register controls the timing for SDRAM.

Bit	Access		Des	cription
7:6	R/W	SDRAM RAS	Active Time (tR	AS)
		Bits[7:6] defi	nes SDRAM ACT	to PRE command period
		Bits[7:6]	Pulse Width	
		00	6T	
		01	7T	
		10	5T	
		11	4T	

5:4	R/W	SDRAM RAS# Precharge Time (tRP)	
		Bits[5:4] defines SDRAM PRE to ACT command period	
		Bits[5:4] Pulse width	
		00 3T	
		01 2T	
	$ \land \{ \land \lor \}$	10 4T	
	$\left(\begin{array}{c} 0 \end{array} \right)$	11 Reserved	
3:2	R/W	SDRAM RAS to CAS Delay (tRCD)	
	$\sum \sum$	Bits[3:2] defines SDRAM ACT to Read/Write command period	od
		Bits[3:2] Pulse Width	
		00 3T	
		01 2T	
		10 4T	
		11 Reserved	
1	R/W	SDRAM Refresh Cycle Time (tRC)	
		Bit 1 defines SDRAM REF to REF/ACT command period	
		0: tRC = tRAS + tRP	
		1: tRC = tRAS + tRP + 1T	
0	R/W	DRAM Refresh Command to Different Rank Control	
		When this bit is enabled, refresh commands to different DR ranks initiated by SiS630 will be staggered one clock ap such that simultaneous-switching noise can be reduced. Wi disabled, SiS630 will issue refresh commands to differ DRAM ranks simultaneously.	AM art, hen rent
		0: Simultaneous	
		1: Staggered one clock apart	

Register 55h DRAM Timing Control 2

Default Value	00h
Access Read	d/Write
This register cor	ntrols the timing for VCM and SDRAM.

Bit A	locess	Description
-------	--------	-------------

82

Preliminary V.10 Oct.07,1999

7	R/W	Invalidate VCM Table
		When this bit is enabled, VCM table will be invalidated. BIOS should disable this bit after it was enabled. This bit is used during DRAM initialization sequence.
	\frown	0: Disable
		1: Enable
6	R/W	VCM ACT to Prefetch Command Delay Time (tAPD)
		This bit defines VCM ACT to Prefetch command period.
		0: 2T
		1: 3T
5:4	R/W	VCM ACT to ACT/REF Delay (tRC)
		These two bits define VCM ACT to ACT/REF command period.
		00: 10T
		01: 9T
		10: 8T
		11: Reserved
3	R/W	VCM REF to REF/ACT Delay (tRCF)
		This bit defines VCM REF to REF/ACT command period.
		0: 10T
		1: 9T
2	R/W	Write Recovery Time (tWR)
		This bit defines the Data-in to PRE command period, tWR.
		0: 1T
		1: 2T
1	R/W	SDRAM ACT to ACT Delay (tRRD)
		Bit 1 defines SDRAM ACT(one) to ACT(another) command
		period.
		0: 2T
		1: 3T

0	R/W	MDOE# Enable Control
		When enabled, SiS630 can drive output data to DRAM. BIOS should turn on this bit before SDRAM / VCM initialization sequence.
		0: Disable
	$\left(\right)$	1: Enable
		\bigtriangleup

Register 56h	DRAM MISC Control 3
Default Value	-00h / ()

Access	Read/Write	
Bit	Access	Description
7	R/W	Memory Command Output Timing Control
		This bit is used to control the timing to drive memory command onto memory bus. When heavy loading memory is used, signal propagation delay may be more than 1 clock. In this case, enabling this bit will force all memory command delay 1 clock except self refresh command and the reference clocks are adjustable clocks defined in register 8Ch and 8Dh.
		0: Normal
		1: Delay 1T
6	R/W	Lead-off Time Control for DRAM Background Command
		When set to 0, background commands are issued 1 clock behind memory address (MA) been? issued. When set to 1, background command and MA are issued at the same time. 0: Delay 1T 1: Normal
5	R/W	Lead-off Time Control for DRAM Read/Write Cycles
Ŭ		When set to 0, memory read/write command is issued 1 clock behind memory address (MA) ?been issued. When set to 1, read/write command and MA are issued at the same time. 0: Delay 1T
		1: Normal
4	R/W	VCM ACT to RSTA Command Delay Control
		When set to 1, the ACT to RSTA timing constraint will be delayed one more clock. 0: Normal
		1: Delay 1 Clock

Preliminary V.10 Oct.07,1999

3	R/W	Reserved
2	R/W	One Page/Channel Control
		When set to 1, only one SDRAM page or one VCM channel will be activated (opened) during DRAM access.
		0: Normal
	A(R)	1: Only One Page/Channel
1	R/W	Foreground and Background Command Out-of-Order
		When set to 0, background commands may go ahead than foreground commands for increasing DRAM utilization. When set to 1, background and foreground commands operate in sequence. 0: Out-of-Order 1: In-Order
0	R/W	Read / Write Combine Function Control
		When set to 0, contiguous single R/W and double read cycles may be combined into a burst cycle. When set to 1, this function is disabled.
		1: Disable

Register 57h SDRAM/VCM Initialization Control

Default Value 00h

Access Read/Write

This register controls SDRAM / VCM initialization process and timing.

Bit	Access	Description
7	R/W	Precharge Command
		When this bit is set, SiS630 will issue the precharge command to SDRAM / VCM. This bit is automatically cleared after the precharge command is completed.
		0: Disable
		1: Enable

6	R/W	Mode Register Set Command
		When this bit is set, SiS630 will issue mode register setting command to SDRAM or SCLR Command to VCM. This bit is automatically cleared after the mode register setting command is completed.
		0: Disable
	$ \land [\lor]$	1: Enable
5	R/W	Refresh Command
		When this bit is set, SiS630 will issue refresh command to SDRAM / VCM. This bit is automatically cleared after the refresh command is completed.
		0. Disable
		1. Enable
4	R/W	VCM Set Channel Control Register Command
		When this bit is set, SiS630 will issue SCCR command to VCM. This bit is automatically cleared after the refresh command is completed.
		0: Disable
		1: Enable
3	R/W	Reserved
2	R/W	Do No Operation Command Control
		When this bit is set to 1, precharge command set by R57b7 will be turned into No Operation (NOP) command. When this bit is set to 0, precharge command operates normally.
		0: Normal
		1: Precharge command turn into NOP Command
1	R/W	VCM Command Truth Table Select
		This bit selects the version of VCM command truth table that will be used in memory controller.
		0: NEC version
		1: JEDEC version

0	R/W	SDRAM /VCM CAS# Latency (CL) Setting	
		This bit contains the information for SDRAM initialization procedure.	
		0: 2T	
		1: 3T	

Register 58h Memory Buffer Pre-driver Slew Rating

Default Value 00h

Access Read/Write

This register controls the pre-driver slew rate of DRAM related signals.

Bit	Access	Description	
7	R/W	VDQM[7:0] / VMD[63:0] Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
6	R/W	VCS# / VBA1 / VMA[11:10] Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
5	R/W	CKE Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
4	R/W	SB[5:0]# Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
3	R/W	CSA[5:0]# Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
2	R/W	DQM[7:0] Pre-driver Slew Rating	
		0: Slow	
		1: Fast	
1	R/W	MD[63:0] Pre-driver Slew Rating	
		0: Slow	
		1: Fast	

87

Preliminary V.10 Oct.07,1999

0	R/W	SRAS# / SCAS# / WE# / MA[14:0] Pre-driver Slew Rating
		0: Slow
		1: Fast

Register 59h Memory Buffer Strength and Current Rating

Default Value 00h Access Read/Write

This register controls the buffer strength of DRAM related signals.

Bit	Access	Description
7:6	R/W	VDQM[7:0] / VMD[63:0] Driving Rating
		00: Weak
		01: Normal
		10: Strong
		11: Strongest
5:4	R/W	VCS# / VBA1 / VMA[11:10] Driving Rating
		00: Weak
		01: Normal
		10: Strong
	 	11: Strongest
3:2	R/W	CKE Driving Rating
		00: Weak
		01: Normal
		10: Strong
	 	11: Strongest
1:0	R/W	CSB[5:0]# Driving Rating
		00: Weak
		01: Normal
		10: Strong
		11: Strongest

Register 5Ah Memory Buffer Strength and Current Rating

Default Value 00h

Access Read/Write

This register controls the buffer strength of DRAM related signals.

Preliminary V.10 Oct.07,199988Silicon Integrated Systems Corporation

Bit	Access	Description
7:6	R/W	CSA[5:0]# Driving Rating
		00: Weak
		01: Normal
		10: Strong
	$ \land (\land) \land)$	11: Strongest
5:4	R/W	DQM[7:0] Driving Rating
		00: Weak
	$\sim \sim \sim$	01: Normal
		10: Strong
		11: Strongest
3:2	R/W	MD[63:0] Driving Rating
		00: Weak
		01: Normal
		10: Strong
		11: Strongest
1:0	R/W	SRAS# / SCAS# / WE# / MA[14:0] Driving Rating
		00: Weak
		01: Normal
		10: Strong
		11: Strongest

Register 5Bh PCI Buffer Strength and Current Rating

Default Value 00h

Access Read/Write

This register controls the buffer strength of PCI bus related signals.

Bit	Access	Description	
7:2	R/W	Reserved	
1	R/W	AD[31:0] Current Rating	
		This bit controls the buffer strength of AD[31:0] on PCI bus.	
		0: Weak	
		1: Strong	

Preliminary V.10 Oct.07,1999

0	R/W	PCI Control Signals Current Rating	
		This bit controls the buffer strength of FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, PAR, C/BE[3:0]# and GNT[2:0]#.	
		0: Weak	
		1: Strong	
		<u></u>	

Registe	r 60h/61h	62h for DIMM x=02	DRAM Type Registers
---------	-----------	-------------------	---------------------

Default Value 00h

Access	Read/Write / /		
Bit	Access	Descri	iption
7	R/W	DRAM Mode Selection	
		0: SDRAM	
		1: VCM	
6	R/W	Reserved	
5	R/W	DRAM Configuration Selection	1
		0: Single side	
		1: Double side	<u>^</u>
4	R/W	Reserved	$\langle \rangle$
3:0	R/W	DRAM Type Selection	Δ
			2/
		SDRAM (NBAxNRAxNCA)	$\langle \zeta \rangle$
		0000: 1x11x8(8M)	0001: 1x13x8(32M)
		0010: 2x12x8(32M)	0011: 2x13x8(64M)
		0100: 1x11x9(16M)	0101: 1x13x9(64M)
		0110: 2x12x9(64M)	0111: 2x13x9(128M)
		1000: 1x11x10(32M)	1001: 1x13x10(128M)
		1010: 2x12x10(128M)	1011: 2x13x10(256M)
		1100: 2x11x8(16M)	1101: 1x13x11(256M)
		1110: 2x12x11(256M)	1111: 2x13x11(512M)
		VCM (NBAxNRAxNCAxNSA)	
		0000: 1x13x6x2(32M)	0001: 1x13x7x2(64M)
		0010: 1x13x8x2(128M)	Others : Reserved

90 Silicon Integra

Silicon Integrated Systems Corporation

Preliminary V.10 Oct.07,1999

Register 63h DRAM Status Register (bit-x =DIMM-x)

Default Value 00h

Access Read/Write

Bit	Access	Description	
7	R/W	Shared Memory Control	
	$\left(\right)$	0: Disable	
	$ \land \land \land \land$	1: Enable	
6:4	R/W	Shared Memory Size on DIMM0	
		Bits[6:4] Size (Total Share Memory size for 128-bit mode)	
		000 2M 4M	
		001 4M 8M	
		010 8M 16M	
		011 16M 32M	
		100 32M 64M	
		101 64M Not Supported	
		Others : Reserved	
3	R/W	Reserved	
2	R/W	DRAM DIMM2 Status	
		0: Absent	
		1: Installed	
1	R/W	DRAM DIMM1 Status	
		0: Absent	
		1: Installed	
0	R/W	DRAM DIMM0 Status	
		0: Absent	
		1: Installed	

Register 64h Frame Buffer Cache (FBC) Control Register

Default Value 00h

Access Read/Write

Bit Access Description

91

Preliminary V.10 Oct.07,1999

7	R/W	FBC Sizing Control	
		This bit is used by BIOS d Before FBC sizing sequence, sequence is finished, BIOS sh	uring FBC initialization sequence. this bit is set to 1. After FBC sizing ould set this bit to 0.
		0: Disable	
		1: Enable	
6	R/W	Force Two Banks Control	
		After initialization sequence, in bank number is different from [1.	f FBC is populated and its internal DIMM0, then this bit should be set to
		0: Disable	
		1. Enable	
5	R/W	Graphics Memory Data Bus	Width Control
		This bit controls graphics mer populated, it should be program can be programmed with 1.	mory data bus width. If FBC is not mmed with 0. If FBC is populated, it
		0: 64-bits	
		1: 128-bits	
4	R/W	FBC Status	
		0: Absent	
		1: Installed	$\left(\right)$
3:0	R/W	FBC Type Selection	
		FBC mode is the same as DIN	/M0. Bits[3:0] defines FBC type.
			\sim
			0001: 1×10×8(414)
		0000. 1x9x0(210)	0011: 2x12x8(22M)
		0010. 1x11x0(01VI)	0011. 2x12x8(3210)
		0100: 1x11x9(16M)	0101: 1x11x10(32M)
		0110: 2X11X8(16M)	0111: 1X12X8(16M)
		Others : Reserved	
)
		0000: 1x13x6x2(32M)	
		Others : Reserved	

92

Preliminary V.10 Oct.07,1999

Register 65h DIMM Location for SMA

Default	Value [.]	00h
Delaun	value.	0011

Access:	Read/Write

Bit	Access	Description
7:2	R/W	Reserved
1:0	R/W	DIMM Location for SMA
		The Share memory used by GUI can be located at any bank which is determined by BIOS during DRAM Detection Sequence. Please refer to BIOS Programming Guide for detail.

Power Management

Register 69~68h ACPI I/Ø Space Base Address Register

Default Value 0000h

Access Read/Write

Bit	Access	Description
15:5	R/W	A[15:5] for ACPI I/O Space base Address
		This register provides A[15:5] for the start address of the ACPI I/O space.
4:1	R/W	Reserved
0	R/W	Validity Bit If this bit is set to 1, the base address contained in Bit[15:5]is in valid. Otherwise the base address defined in Bit[15:5] is ignored. 0: Invalid 1: Valid
Register 6Ah SMRAM Access Control Register		

Register 6Ah SMRAM Access Control Register

Default Value 00h

Read/Write Access

Dit Access Description

7:5	R/W	SMRAM Area	Re-mapping Cont	rol
		This field cont the system me bit is enabled	rols how the addres emory address whe or CPU is in the sy	ss in the host bus is mapped to en the SMRAM access control vstem management mode.
	\frown	Bits[7:5]	Host Address	System Memory Address
	(Ω)	000	E0000h~E7FFh	E0000h~E7FFFh (32K)
	()	010	E0000h~E7FFh	A0000h~A7FFFh (32K)
	\bigcirc	100	E0000h~E7FFFh	B0000h~B7FFFh (32K)
	$\langle \rangle$	110	A0000h~AFFFFh	A0000h~AFFFFh (64K)
		001	B0000h~BFFFFh	B0000h~BFFFFh (64K)
		111	A0000h~BFFFFh	A0000h~BFFFFh (128K)
4	R/W	SMRAM Acce	ss Control	
		When this bit is SMIACT# is n SMRAM initial SMRAM area	is enabled, SMRAN ot asserted, this fu lization by BIOS. W can only be acces	I area can be used even when nction is mainly used for Ihen this bit is disabled, sed during the SMI handler.
		0: Disable 🔨	////	
		1: Enable	$\times//$	\rightarrow
3:2	R/W	Reserved		<u></u>
1:0	R/W	For Internal T	esting Use	

Register 6Bh Self Refresh Command Output Timing Control

Default Value 00h

Access Read/Write

Bit	Access	Description
7:1	R/W	Reserved
0	R/W	Self Refresh Command Output Timing Control
		When this bit is enabled, self refresh command will be delayed 1 clock.
		0: Normal
		1: Delay 1T

Register 6Ch DRAM Self-Refresh Control for Power Management

94

Default Value 00h

Access Read/Write

Preliminary V.10 Oct.07,1999

Bit	Access	Description
7	R/W	ACPI S3 States Support
		0: Disable
	\frown	1: Enable
6	R/W	ACPI S2 States Support
	(0)	0: Disable
		1; Enable
5	R/W	CKE Output Enable Control
		When enabled, SiS630 drives CKE. When disabled, SiS630 floats its CKE output.
		0: Disable
		1: Enable
4	R/W	CKE Selection
		This bit is controlled by BIOS during power management mode and is valid only when CKE Output Enable Control bit was enabled. When set to 1, SiS630 always drives CKE to low When set to 0, SiS630 drives CKE to low only when it enters self-refresh mode (S2 or S3 state and stop grant cycle issued)
		0: Normal Mode
		1: Force Low
3:1	R/W	Early CKE Delay Adjustment
		These bits control the timing for CKE. Various delay options are provided to ensure that CKE can meet SDRAM setup time and hold time specification when CKE is driven out.
		Bit[3:1] Descriptions
		000 Delay 1ns
		001 Delay 2ns
		010 Delay 3ns
		011 Delay 4ns
		100 Delay 5ns
		101 Delay 6ns
		110 Delay 7ns
		111 Delay 8ns

95

This register controls the ACPI sleep states supported by SiS630.

Preliminary V.10 Oct.07,1999

0	R/W	Early CKE Delay 1T Control
		When this bit is enabled, CKE is driven out from flip-flop. It is used when system operates under low frequency and CKE delay adjustment method defined in Bits[3:1] can not meet setup time and hold time requirement.
		0: Normal
	$ \land \lor $	1: Delay 1T

7.3.5 Shadow RAM Area

Register 70h Shadow RAM Read Attribute Control

This register defines the read accessibility of each shadow RAM region

Bit	Access	Description
15	R/W	Shadow RAM Enable for PCI Master Access
		When this bit is enabled, accesses from PCI masters toward shadow RAM area is allowed.
		0: Disable
		1: Enable
14:13	R/W	Reserved
12	R/W	Read Accessibility of Shadow Region F0000h~FFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
11	R/W	Read Accessibility of Shadow Region EC000h~EFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
10	R/W	Read Accessibility of Shadow Region E8000h~EBFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
9	R/W	Read Accessibility of Shadow Region E4000h~E7FFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.

8	R/W	Read Accessibility of Shadow Region E0000h~E3FFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
7	R/W	Read Accessibility of Shadow Region DC000h~DFFFFh
	β	When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
6	R/W	Read Accessibility of Shadow Region D8000h~DBFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
5	R/W	Read Accessibility of Shadow Region D4000h~D7FFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
4	R/W	Read Accessibility of Shadow Region D0000h~D3FFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
3	R/W	Read Accessibility of Shadow Region CC000h~CFFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
2	R/W	Read Accessibility of Shadow Region C8000h~CBFFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
1	R/W	Read Accessibility of Shadow Region C4000h~C7FFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.
0	R/W	Read Accessibility of Shadow Region C0000h~C3FFFh
		When this bit is set to 1, the data of the read accesses toward the corresponding region are returned from system memory. When this bit is set to 0, the data are returned from PCI bus.

Register 72h Shadow RAM Write Attribute Control

Preliminary V.10 Oct.07,1999

Bit	Access	Description		
15:13	R/W	Reserved		
12	R/W	Write Accessibility of Shadow Region F0000h~FFFFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
11	R/W	Write Accessibility of Shadow Region EC000h~EFFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
10	R/W	Write Accessibility of Shadow Region E8000h~EBFFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
9	R/W	Write Accessibility of Shadow Region E4000h~E7FFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
8	R/W	Write Accessibility of Shadow Region E0000h~E3FFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
7	R/W	Write Accessibility of Shadow Region DC000h~DFFFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
6	R/W	Write Accessibility of Shadow Region D8000h~DBFFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
5	R/W	Write Accessibility of Shadow Region D4000h~D7FFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
4	R/W	Write Accessibility of Shadow Region D0000h~D3FFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		

Preliminary V.10 Oct.07,1999

98

3	R/W	Write Accessibility of Shadow Region CC000h~CFFFFh When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
2	R/W	Write Accessibility of Shadow Region C8000h~CBFFFh		
	β	When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
1	R/W	Write Accessibility of Shadow Region C4000h~C7FFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		
0	R/W	Write Accessibility of Shadow Region C0000h~C3FFFh		
		When this bit is set to 1, the data of the write accesses toward the corresponding region are forwarded to system memory. When this bit is set to 0, the data are forwarded from PCI bus.		

7.3.6 PCI Hole Area

Register 77h Characteristics of PCI-Hole Area

Default Value 00h

Access Read/Write

This register controls the PCI Hole area support. When a PCI hole area is enabled, a cycle with the address located within the PCI hole area will be forwarded to PCI bus.

Bit	Access	Description	
7:3	R/W	Reserved	
2	R/W	PCI-Hole Area I Enable	
		0: Disable	
		1: Enable	
1	R/W	Reserved	
0	R/W	PCI-Hole Area II Enable	
		0: Disable	
		1: Enable	

Register 78h Allocation of PCI-Hole Area #1

Default Value 0000h Access Read/Write

Preliminary V.10 Oct.07,1999

Bit	Access	Description		
15:13	R/W	Size of PCI-Hole Area I (within 512 Mbytes)		
		Bits[15:13]	Size	
		000	64KB	
	(R)	001	128KB	
	$\langle \mathcal{O} \rangle \rangle$	010	256KB	
		011	512KB	
		100	1MB	
		101	2MB	
		110	4MB	
		111	8MB	
12:0	R/W	Base Address	of PCI-Hole Area I	
		This field spe Hole area.	cifies A[28:16] for the base address of the PCI-	

Register 78h and 79h define the size and the base address of the first PCI-Hole area.

Register 7Ah	Allo	ocation of PCI-Hole Area #2
Default Value	00h	
Access R	Read/Write	

Access	Read/Write			
Bit	Access		\langle	Description
15:13	R/W	Size of PCI-H	ole Area	II (within 512 Mbytes)
		Bits[15:13]	<u>Size</u>	
		000	64KB	
		001	128KB	
		010	256KB	
		011	512KB	
		100	1MB	
		101	2MB	
		110	4MB	
		111	8MB	
12:0	R/W	Base Address This field spe Hole area.	s of PCI-H ecifies A[2	Hole Area II 28:16] for the base address of the PCI-

100

Preliminary V.10 Oct.07,1999

7.3.7 Hardware-Trap Control

Register 7Ch VGA-Bridge Hardware-Trap Control

Default Value 00h

•	
Access	Read/Write

100000	ntoad, min	
7:0	R/W	VGA-Bridge Hardware-Trap Control
		These bits control VGA-Bridge Hardware-Trap status. In read mode, these bits store the Hardware-Trap result; in write mode, these bits specify the Hardware-Trap value. Bit[7:0]: MD[39:32]

Register 7Dh South-Bridge Hardware-Trap Control

Default Value Access	e 00h Read/Wr	ite
7:0	R/W	South-Bridge Hardware-Trap Control
		These bits control South-Bridge Hardware-Trap status. In read mode, these bits store the Hardware-Trap result; in write mode, these bits specify the Hardware-Trap value. Bit[7:0]: MD[47:40]

Register 7Eh North-Bridge Hardware-Trap Control

Default Value 00h Access Read/Write

AULESS I	veau/white	
7:0	R/W	North-Bridge Hardware-Trap Control
		These bits control North-Bridge Hardware-Trap status. In read mode, these bits store the Hardware-Trap result; in write mode, these bits specify the Hardware-Trap value.
		Bit[7:0]: MD[55:48]

Register 7Fh North-Bridge Hardware-Trap Control II

Default Value Access	e 00h Read/Wr	ite
7:0	R/W	North-Bridge Hardware-Trap Control
		These bits control North-Bridge Hardware-Trap status. In read mode, these bits store the Hardware-Trap result; in write mode, these bits specify the Hardware-Trap value.
		Bit[7:0]: MD[63:56]

Preliminary V.10 Oct.07,1999

Register 80h Target Bridge to DRAM Characteristics

Default Value 00h

Access Read/Write

This register controls the characteristics for PCI target bridge to access DRAM.

Bit	Access	Description
7:5	R/W	Address Boundary Alignment for PCI Bursting
		This field controls the alignment of address boundaries. For SiS630, a master-generated PCI burst cycle can never ?across any address boundary defined by this field. If a cycle is trying to ?across an address boundary for a memory burst transaction, SiS630 will terminate this transaction with disconnection immediately. Bits[7:5] Boundary Alignment
		000 256 Bytes
		001 512 Bytes
		010 1K Bytes
		011 2K Bytes
		100 4K Bytes
		Others Reserved
4:1	R/W	Reserved
0	R/W	PCI Master Delay Transaction Enable
		This bit controls whether or not SiS630 enable PCI masters delay transactions. PCI Discard Time for Delay Transaction (Register 81h) can only take effect when this bit is enabled.
		0: Disable
		1: Enable

Register 81 PCI Discard Timer for Delay Transaction

Default Value: FFh

Access: Read/Write

The timer is used to prevent PCI master from seizing PCI bus too long when PCI master starts a delay transaction. When the timer expires, SiS630 will flush CPU-to-PCI FIFO to abort the current PCI transaction.

Bit Access Description

102

Preliminary V.10 Oct.07,1999

7:0	R/W	PCI Discard Timer for Delay transaction				
		This timer is used to guarantee PCI read transaction is completed in the timer. If not, the read data is discarded.				
		Unit: CPU clock				

Register 82h Target Bridge Characteristics

Default Value 00h

Access Read/Write

This register controls the characteristics for PCI Target Bridge.

Bit	Access	Description				
7	R/W	Reserved				
6	R/W	PCI Master Write Cycle Following Read Cycle Pipeline Control When this bit is disabled, any PCI master write cycle won't be issued to the addressed target until PCI read FIFO is empty. In this case, there are wait states asserted between the target executes two consecutive PCI read cycle and PCI write cycle. When this bit is enabled, PCI write cycles will be generated to the addressed target right after the previous PCI read cycle, independent of the PCI read FIFO status. 0: Disable				
		1: Enable				
5	R/W	PCI Memory Read Line or Memory Read Multiple Command Prefetch Enable This bit controls whether or not SiS630 prefetch data for Memory Read Line or Memory Read Multiple command. 0: Disable				
		1: Enable				
4	R/W	 PCI Memory Read Command Prefetch Enable This bit controls whether or not SiS630 prefetch data for Memory Read command. 0: Disable 1: Enable 				

3:2	R/W	Initial Latency Control
		This field controls the target initial latency of the target bridge. If SiS630 is unable to assert TRDY# for a transaction within the target initial latency defined by this field, SiS630 asserts STOP# to retry this cycle.
		00: Disable
	$ \land \land$	01: 16 PCI Clocks
	$\left(\begin{array}{c} 0 \end{array} \right)$	10: 24 PCI Clocks
		11: 32 PCI Clocks
1	R/W	Subsequent Latency Control
		 When this bit is enabled, SiS630 terminates a transaction with STOP# if it fails to assert TRDY# for the subsequent block within 8 clocks. 0: Disable 1: Enable
0	R/W	PCI Memory Read Multiple Lines Control
		This bit is only valid whenever PCI master memory read prefetch function is enabled, which function is controlled by Register 82h bits[5:4]. When this bit is 0, one more pending memory read prefetch cycle will be issued by SiS630 for PCI masters; When this bit is 1, two more pending memory read prefetch cycles can be generated.
		0: 1 more pending cycle
		1: 2 more pending cycles

Register 83h CPU to PCI Characteristics and Arbitration Option/

Default Value	e 00h				
Access	Read/Wri	te			
Bit	Access	Description			
7	R/W	Tri-state Control of Secondary IDE Channel			
		0: Enable Secondary IDE Channel Signals (default)			
		1: Tri-state Secondary IDE Channel Signals			
6	R/W	Tri-state Control of Primary IDE Channel			
		0: Enable Primary IDE Channel Signals (default)			
		1: Tri-state Primary IDE Channel Signals			

Preliminary V.10 Oct.07,1999

5	R/W	PGT & PDT Test Mode			
		0: Disable			
		1: Enable			
4	R/W	Lock Control			
	R	When this bit is enabled, SiS630 converts a 64-bit memory cycle on host bus to 2 locked 32-bit memory read cycles on PCI bus. SiS630 also issues locked cycles on PCI bus on behalf of CPU. When this bit is disabled, SiS630 never asserts Lock# on PCI bus.			
		0: Disable			
		1: Enable			
3	R/W	CPU Involved Arbitration on PCI			
		PGT (Register 84h), CIT (Register 86h) and MLT (Register 0Dh) can only take effect when this bit is enabled. When this bit is enabled, SiS630 doesn't block CPU from operation longer than the period defined by PGT to serve PCI masters, and minimum access time for CPU is guaranteed by MLT.			
		0: Disable			
		1: Enable			
2	R/W	Non-Post Cycle Retry Behavior Control			
		When this bit is 1, if retry occurs from any kind of CPU to PCI non-post cycles, SiS630 won't back off CPU immediately, but tries to issue one more retry cycle to try to complete the cycle successfully on PCI bus. When this bit is 0, retry from any non-post CPU to PCI cycle results in CPU back off.			
		1: Try one more time			
		0: Backoff CPU			
1	R/W	Memory Burst Control			
		This bit controls whether or not the host bridge generates memory burst cycles.			
		0: Disable			
		1: Enable			

0	R/W	Memory Post Write Control				
		When this bit is enabled, all CPU to PCI memory write cycles are posted.				
		0: Disable				
	\frown	1: Enable				

Register 84 PCI Grant Timer

Default Value: FFFFh

Read/Write Access:

The timer is used to prevent PCI masters from seizing the PCI bus too long. When the timer expires, PCI arbiter forces the master that is currently occupying PCI bus to relinquish PCI bus by removing its grant.

Bit	Access	Description				
15:0	R/W	Initial Value of PCI Grant Timer				
		The setting of this register should consider the overall system configuration and the value of MLT(Register 1Dh). For a system that has many PCI master devices, the value should be higher. For a system with fewer master devices, the value should be smaller.				
		Unit: PCI clock				
Register 86h CPU Idle Timer						

Register 86h CPU Idle Timer

Default Value: FFh

Access:	Read/Wri	te
Bit	Access	Description
7:0	R/W	Initial Value of CPU Idle Timer

Register 87h Host Bridge & PCI Master Priority Timer

Default Value: FFh

Access: Read/Write

SiS630 supports the concurrency between CPU to PCI accesses and PCI to system memory accesses. During the period of concurrency, this timer is used to balance the PCI bandwidth between CPU and PCI masters.

Bit	Access	Description			
7:0	R/W	Host Bridge & PCI Master Priority Timer			

106

Register 88h PCI Discard Timer for PCI Hold

Default Value: 0000h

Preliminary V.10 Oct.07,1999

Access:	Read/Wri	te
Bit	Access	Description
15:0	R/W	PCI Discard Timer for PCI Hold
		This timer is used to keep PCI hold when PCI read is retried due to the CPU-to-PCI post write FIFO is not empty.
		Unit: CPU clock

CPU/PCI Clocks DLL Control Registers

Register 8Ch SDRCLK/SDWCLK Control Register

Default Value: 2Ah

Access: Read/Write

To improve the setup time of MD for read/write DRAM, SiS630 introduces two clocks, SDRCLK and SDWCLK, that have some phase differences from SDCLK, which is the clock that applies to SDRAM. Adjusting these two clocks lets the target to have more setup time budget. However, it decreases the hold time.

Bit	Access	Description					
7:4	R/W	SDRCLK Control					
		This field controls the phase of SDRCLK that lags behind SDCLK.					
		<u>Bit[7:4]</u>	Descriptions	Bit[7:4]	Descriptions		
		1111	+6.5ns	0111	+2.5ns		
		1110	+6.0ns	0110	+2.0ns		
		1101	+5.5ns	0101)	+1.5ns		
		1100	+5.0ns	0100	+1.0ns		
		1011	+4.5ns	0011	+0.5ns		
		1010	+4.0ns	0010	+0.0ns (default)		
		1001	+3.5ns	0001	-0.5ns		
		1000	+3.0ns	0000	-1.0ns		

3:0	R/W SDWCLK Control for CS# This field controls the phase of SDWCLK used for CS# signals that lags ahead SDCLK.						
		<u>Bit[7:4]</u>	Descriptions	<u>Bit[7:4]</u>	Descriptions		
		1111	-2.5ns	0111	+1.5ns		
	\wedge R	1110	-2.0ns	0110	+2.0ns		
	(0)	1101	-1.5ns	0101	+2.5ns		
		Q 1100	-1.0ns	0100	+3.0ns		
		1011	-0.5ns	0011	+3.5ns		
		1010	0.0ns(default)	0010	+4.0ns		
		1001	+0.5ns	0001	+4.5ns		
		1000	+1.0ns	0000	+5.0ns		

Register 8Dh SDWCLK Control Register

Default Value: AAh

Access:	Read/Wr	ite			
Bit	Access			Description	
7:4	R/W	SDWCLK Co	ontrol for MA	/ SRAS# / SC	AS# / RAMW#
		This field co / SCAS# / R	ntrols the pha AMW# signa	ase of SDWCLk is that lags ahe	K used for MA / SRAS# ad SDCLK.
		<u>Bit[7:4]</u>	<u>Descriptio</u>	ns Bit[7:4]	Descriptions
		1111	-2.5ns	0111	+1.5ns
		1110	-2.0ns	0110	+2.0ns
		1101	-1.5ns	0101	+2.5ns
		1100	-1.0ns	0100	+3.0ns
		1011	-0.5ns	0011	+3.5ns
		1010	0.0ns(def	ault) 0010	+4.0ns
		1001	+0.5ns	0001	+4.5ns
		1000	+1.0ns	0000	+5.0ns

108

Preliminary V.10 Oct.07,1999

3:0	R/W	SDWCLK Con This field cont	trol for DQM /	MD of SDWCL к	K used for DQM / MD
		Bit[7:4]	Descriptions	Bit[7:4]	Descriptions
		1111	-2.5ns	0111	+1.5ns
	\wedge (R)	1110	-2.0ns	0110	+2.0ns
	(0)	1101	-1.5ns	0101	+2.5ns
		Q 1100	-1.0ns	0100	+3.0ns
	$\sim (2)$	1011	-0.5ns	0011	+3.5ns
		1010	0.0ns(default)	0010	+4.0ns
		1001	+0.5ns	0001	+4.5ns
		1000	+1.0ns	0000	+5.0ns

Register 8Eh CPU Clock & SDRAM Clock Relationship

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
7:2	R/W	Reserved
1	R/W	Frequency Relationship of CPU Clock and SDRAM clock.
		This bit will take effect only if SDRAM Asynchronous Mode, which is controlled by Register 8E bit 0, is enabled.
		0: CPU clock frequency is higher than SDRAM clock frequency
		1: CPU clock frequency is lower than SDRAM clock frequency
0	R/W	SDRAM Synchronous Mode
		0: Enable
		1: Disable

Register 8Fh FBCRCLK/FBCWCLK Control Register

Default Value: 2Ah

Access:	Read/Writ	e
Bit	Access	Description

109

Preliminary V.10 Oct.07,1999

7:4	R/W	FBCRCLK (Control		
		This field of SDCLK.	controls the phase	e of FBCR	CLK that lags behind
		<u>Bit[7:4]</u>	Descriptions	<u>Bit[7:4]</u>	Descriptions
		1111	+6.5ns	0111	+2.5ns
	\wedge (R)	1110	+6.0ns	0110	+2.0ns
	(0)	1101	+5.5ns	0101	+1.5ns
		Q 1100	+5.0ns	0100	+1.0ns
	$\sim (2)$) 1011	+4.5ns	0011	+0.5ns
		1010	+4.0ns	0010	+0.0ns (default)
		1001	+3.5ns	0001	-0.5ns
		1000	+3.0ns	0000	-1.0ns
3:0	R/W	FBCWCLK	Control		
		This field of SDCLK.	controls the phase	e of FBCV	/CLK that lags ahead
		<u>Bit[7:4]</u>	Descriptions	<u>Bit[7:4]</u>	Descriptions
		1111	-2.5ns	0111	+1.5ns
		1110	-2.0ns	0110	+2.0ns
		1101	-1.5ns	0101	+2.5ns
		1100	-1.0ns	0100	+3.0ns
		1011	-0.5ns	0011	+3.5ns
		1010	0.0ns(default)	0010	+4.0ns
		1001	+0.5ns	0001	+4.5ns
		1000	+1.0ns	0000	+5.0ns

7.3.8 A.G.P. GART and Page Table Control Registers

Register 90h GART Base Address for Re-mapping

Default Value	e: 0000000	h
Access:	Read/Writ	e
Bit	Access	Description

110

Preliminary V.10 Oct.07,1999

31:12	R/W	A[31:12] for GART Base Address
		This register provides the start address of the Graphics Address Re-mapping Table Base Locates in main memory.
		(Please note that the address provides via GART Base is 4KB aligned)
11:0	R/O	Reserved

Register 94h Graphic Window Control

Default Value: 00h

Access: Read/Write

This register specifies the size of the graphic window and indicates that whether the Graphic Window Base Address Register and Re-mapping GART Base Address Register contain valid information or not.

Bit	Access		Description
7	R/W	Reserved	
6:4	R/W	Graphic Windov	w Size
		This field defined accessibility of by this field.	nes the size of the graphic window. The GWBA register (Register 10h) is also controlled
		Bits[6:4]	Size
		000	4M
		001	8M
		010	16M
		011	32M
		100	64M
		101	128M
		110	256M
		111	Reserved
3:2	R/W	Reserved	

1	R/W	Graphic Window Base Address (Register 10h) Validation
		The value of "1" for this bit indicates that the Graphic Window Base Address specified in GWBA Register(Register 10h) is
		invalid.
	\bigcirc	0: Invalid
	$ \land \land \land \land$	1: Valid
0	R/W	GART Base Address for Re-mapping (Register 90h) Validation The value of "1" for this bit indicates that the Re-mapping GART Base Address specified in Register 90h is valid. Otherwise, the address specified in Register 90h is invalid.
		0: Invalid 1: Valid

Register 97h Page Table Cache Control

Default Value: 00h

Access: Read/Write

Page Table Cache is used to speedup the address translation process from graphic address to system memory address. It stores recently used GART entries in the core logic to prevent traffics toward system memory during address translation process. This register controls the characteristic of the page table cache and the address translation mechanism.

Bit	Access	Description
7:3	R/W	Reserved
2	R/W	GART-Write Invalidate Page Table Cache Control This bit controls SiS630 to avoid using stalled page table cache. When this bit is enabled, SiS630 automatically detects write accesses toward all GART entries and it invalidates the entire page table cache immediately once it observes such an event. If disabled, memory write cycle hits page table entry won't invalidate the table. 0: Disable
		1: Enable
1	R/W	Reserved

0	R/W	Page Table Cache Enable
		When this bit is enabled, page table cache will be used for accelerating the address translation process. When this bit is disabled, no GART entries are cached in the page table cache and any address translation is done through memory accesses.
		0: Disable
	ΔV	1: Enable

Register 98h Page Table Cache Invalidation Control

Default Value: 00h

Access: Read/Write

This register controls the invalidation of page table cache. The invalidation process can apply to the whole page table cache.

Bit	Access	Description
7:2	R/W	Reserved
1	R/W	Invalidate Page Table Cache
		Invalidate all page table cache entries when set 1 to this bit. This bit is auto cleared after the invalidation process completed.
0	R/W	Reserved

Register 9Ch Integrated VGA Control

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
7:3	R/W	Reserved
2	R/W	VGA Configuration Access Control
		When this bit set to 0, VGA configuration access can be read and written. When set to 1, VGA configuration can not be accessed.
		0: Enable
		1: Disable
1	R/W	CPU to Integrated VGA Memory Posted Write Control
		0: Disable
		1: Enable

Preliminary V.10 Oct.07,1999

0	R/W	Monochrome Device Adapter(MDA) Existence Control
		0: Not exist
		1: Exist

7.3.9 DRAM Priority Timer Control Register

Register A0h CPU/PCI-GUI Privilege Timer

Default Value: 0000h

Access: Read/Write

SiS630 maintains the privilege of DRAM usage between CPU/PCI and GUI. When both CPU/PCI and GUI are craving for the resource of system memory, this set of timers provides the adjustment of DRAM bandwidth between these two agents. The operation of the set of timers is explained below.

If GUI data transfer has higher privilege over CPU/PCI, GUI high privilege timer decreases every clock when GUI accesses toward system memory is undergoing. If CPU/PCI privilege is higher than GUI, CPU/PCI high privilege timer decreases every clock when CPU/PCI accesses system memory. The privilege relationship between CPU/PCI and GUI is exchanged after the timer expired. CPU/PCI accesses do not affect any one of these two timers if CPU/PCI does not have higher privilege than GUI. In the same way, GUI low priority accesses do not affect timers if GUI device does not have higher privilege than CPU/PCI.

Bit	Access	Description
15:8	R/W	Initial Value for GUI High Privilege Timer
		The timer controls how long GUI data transfer has higher privilege over CPU/PCI for DRAM accesses.
		Unit: DRAM clock * 4
7:0	R/W	Initial Value for CPU/PCI high Privilege Timer
		The timer controls how long the CPU/PCI has higher privilege over GUI data transfer for DRAM accesses.

Register A2h CPU/PCI-GUI Privilege Timer Control

Default Value: 00h

Access: Read/Write

Bit	Access	Description		
7:6	R/W	CPU/PCI-GUI Privilege Timer Control		
		<u>Bits[7:6]</u>	<u>Privilege</u>	
		00	CPU/PCI High Privilege	
		01	GUI High Privilege	
		1x	Enable CPU/PCI-GUI Privilege Timer	

114

Preliminary V.10 Oct.07,1999

5:2	R/W	Reserved
1	R/W	Enhance 3D Performance Control
		In order to enhance 3D performance, when one of 3D request acquires the DRAM bus, arbiter will mask all other 3D requests until present transaction is finished.
	()	0: Disable
	\land	1: Enable
0	R/W	Rising AGP Request priority to shorten CPU High Request Waiting time
	\sim	When CPU high priority request is bounded by AGP requests, arbiter will mask the requests that between CPU high priority request and AGP requests until CPU request isn't bound by AGP requests.
		0: Disable
		1: Enable

Register A3h GUI Grant Timer

Default Value: 00h

Access:	Read/Wr	ite	(//)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Bit	Access	Description			
7:4	R/W	Reserved		/	
3:0	R/W	Initial Value of GUI Grant Timer			
		The timer de when GUI ge	etermines the meters the DRAM a	naximum transact nd it's a GUI mult	ions will be done i-transaction.
		Bit[3:0]	Transactions	Bit[3:0] T	ransactions
		0000	1	1000	9
		0001	2	1001	10
		0010	3	1010	11
		0011	4	1011	12
		0100	5	1100	13
		0101	6	1101	14
		0110	7	1110	15
		0111	8	1111	16

115

Preliminary V.10 Oct.07,1999

7.3.10 A.G.P. Control Registers

Register C0h A.G.P. Capability Identify Register (ACAPID)

Regiotor ee		
Default Value	e: 00200002	2h
Access:	Read Onl	у
Bit	Access	Description
31:24	RO	Reserved
23:20	RO	A.G.P. revision Major
		Default value is "0010b" to indicate that SiS630 conforms to the major revision 2 of A.G.P. interface specification.
19:16	RO	A.G.P. revision Minor Default value is "0000b" to indicate that SiS630 conforms to the minor revision 0 of A.G.P. interface specification.
15:8	RO	Next Capability Default value is "00h" to indicate the final item.
7:0	RO	A.G.P. Capability ID Default value is "02h" to indicate the list item as pertaining to A.G.P. registers.

Register C4h A.G.P. Status Register

Default Value: 1F000203h

Access.	Read On	
Bit	Access	Description
31:24	RO	RQ Field The RQ field contains the maximum number of AGP command requests SiS630 can manage. Default value is "1Fh" to indicate that the maximum number of A.G.P. command requests SiS630 can manage is 32.
23:10	RO	Reserved
9	RO	SBA Default value is 1 to indicate that SiS630 supports side band addressing.
8:3	RO	Reserved

116

Preliminary V.10 Oct.07,1999

2:0	RO	Data Rate
		The RATE field indicates the data transfer rates supported by this device.
		Default value is "111b" to indicate SiS630 supports both 1X, 2X and 4X mode.

Register C8h A.G.P. Command Register

Default Valu	e: 0000000	0h	
Access:	Read/Wr	ite 🔿 🔪	
Bit	Access		Description
31:10	R/W	Reserved	
9	R/W	SBA_ENABLE. When set, the	side band address mechanism is enabled.
8	R/W	AGP_ENABLE. Setting the bit. When cleared, Please note that	allows the target to accept A.G.P. operations. the target ignores incoming A.G.P. operations. at the target must be enabled before the master.
7:3	R/W	Reserved	
2:0	R/W	Data Rate One(and only of indicate the des same bit mus DATA_RATE fi	one) bit in the DATA_RATE field must be set to sired data transfer rate. <bit 0:="" 1:="" 1x,="" 2x,.="" bit="" the<br="">st be set on both master and target. The eld applies to AD and SBA buses.</bit>
		Bits[1:0]	Data Rate
		001	1X Mode
		010	2X Mode
		100	4X Mode
		Others	Reserved

7.4 Virtual PCI-to-PCI Bridge Registers (Device 2)

Register 00h Vendor ID

Default Value: 1039h

Access: Read Only

The register identifies the manufacturer of the device. SiS is allocated as 1039h by PCI SIG.

Bit	Access			Description
Preliminary	V.10 Oct.07,	1999	117	Silicon Integrated Systems Corporation

15:0	RO	Vendor Identification Number
------	----	------------------------------

Register 02h Device ID

Default Value: 0001h

Access: Read Only

The device identifier is allocated as 0001h by Silicon Integrated Systems Corp.

Bit	Access	Description
15:0	RO	Device Identification Number

Register 04h Command

Default Value: 00h

Access: Read/Write, Read Only

The Command register provides coarse control over a device's ability to generate and respond to PCI cycles.

Bit	Access	Description
15:9	RO	Reserved
8:6	RO	Reserved
		Default value is 000b
5	R/W	VGA Palette Snoop Enable :
		Controls the behaviour in the case of CPU access destined to VGA compatible address. The bit affects the destinations of I/O writes issued by the CPU with address 3C6, 3C8, 3C9.
		0: Disable
		1: Enable
4:3	RO	Reserved
2	R/W	Bus Master Enable
		Controls the bridge's ability to operate as a master on the primary interface when forwarding memory or I/O transactions from the secondary interface to the primary interface on behalf of a master on the secondary interface.
		0: Disable
		1: Enable

118

Preliminary V.10 Oct.07,1999

1	R/W	Memory Space Enable
		Controls the forwarding of memory accesses from CPU to A.G.P. When this bit is disabled, the bridge won't forward any memory accesses to A.G.P. When it is enabled, the bridge forwards CPU memory cycles toward A.G.P. according to standard PCI-to-PCI bridge forwarding rule.
	$\wedge (\mathbb{R})$	0: Disable
	(0)	1: Enable
0	R/W	I/O Space Enable
		Controls the forwarding of I/O accesses from CPU to A.G.P. When the bit is disabled, the bridge won't forward any I/O accesses to A.G.P. When this bit is enabled, the bridge forwards CPU I/O cycles toward A.G.P. according to standard PCI-to-PCI bridge forwarding rule.
		0: Disable
		1: Eňable

Register 06h Status

Default Value: 00h

Access: Read Only

This register is reserved since the status information of the primary bus is stored in the status register of Device 0.

Bit	Access		Description
15:0	RO	Reserved	

Register 08h Revision ID

Default Value: 00h

Access: Read Only

The Revision ID is 00h for our first Revision.

Bit	Access	Description
7:0	RO	Revision Identification Number

119

Register 09h Programming Interface

Default Value: 00h Access: Read Only The default value is 00h since no specific register-level programming interface is provided.

Bit Access

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

Description

7:0	RO	Programming Interface
-----	----	-----------------------

Register 0Ah Sub Class Code

Default Value: 04h Access: Read Only

The Sub Class Code is 04h for PCI-to-PCI Bridge.

Bit	Access	Description
7:0	RO	Sub Class Code

Register 0Bh Base Class Code

Default Value: 06h

Access: Read Only

The value of 06h in this field identifies a bridge device.

Bit	Access	Description
7:0	RO	Base Class Code

Register 0Ch Cache Line Size

Default Value: 00h

Access: Read Only

The value of this register is always 00h since the Host Bridge won't generate the Memory Write and Invalidate command.

Bit	Access		Description
7:0	RO	Cache Line Size	
Register 0D Default Value)h Master l e: 00h	_atency Timer (MLT)	

Register 0Dh Master Latency Timer (MLT)

Access:	Read On	у ////
Bit	Access	Description
7:0	RO	Initial Value for Master Latency Timer
		Unit: A.G.P. clock

Register 0Eh Header Type

Default Value: 01h

Access: Read Only

The value of 06h identifies PCI-to-PCI Bridge header is being used.

Bit A	Access	Description
7:0	RO	Header Type

120

Preliminary V.10 Oct.07,1999

Register 0Fh BIST

Default Value: 00h

Access: Read Only

The value is 00h since we don't support Build-in Self-Test.

Bit	Access	Description
7:0	RO	BIST

Register 19h Secondary Bus Number (SBUSN)

Default Value: 00h

Access: Read/Write

This register identifies the bus number assigned to the second bus side of the "virtual" PCIto-PCI Bridge. This field is programmed by the PCI configuration software to allow mapping of configuration cycles to AGP.

Bit	Access	Description
7:0	R/W	Secondary Bus Number

Register 1Ah Subordinate Bus Number (SUBUSN)

Default Value: 00h

Access: Read/Write

This register is used to record the number of the highest numbered PCI bus that is behind A.G.P.

Bit	Access	Description
7:0	R/W	Subordinate Bus Number
		Default value is 00h.

Register 1Bh Secondary Master Latency Timer (SMLT)

Default Value: 00h

 Access:
 Read Only

 Bit
 Access
 Description

 7:0
 RO
 Reserved

Register 1Ch I/O Base

Default Value: F0h

Access: Read/Write, Read Only

The I/O Base register defines the bottom address of an address range that is used by SiS630 to determine the timing to forward I/O transactions from CPU to A.G.P.

Bit	Access	Description

121

Preliminary V.10 Oct.07,1999

7:4	R/W	I/O Address Base A[15:12]	
		Bits[7:4] controls the CPU to A.G.P. I/O access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement.	
		$IO_BASE \le address \le IO_LIMIT$	
3:0	RO	Reserved	

Register 1Dh 1/O Limit

Default Value: 00h

Access: Read/Write, Read Only

The I/O Limit register defines the top address of an address range that is used by SiS630 to determine the timing to forward I/O transactions from CPU to A.G.P.

Bit	Access	Description
7:4	R/W	I/O Address Limit A[15:12]
		Bits[7:4] control the CPU to A.G.P. I/O access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement.
		IO_BASE ≤ address ≤ 1O_LIMIT
3:0	RO	Reserved

Register 1Eh Secondary PCI-PCI Status (SSTS)

Default Value: 0000h

Access: Read/Write, Read Only

The Secondary Status register is similar in function and bit definition to the Status register of device 0 function 0 of SiS630.

Bit	Access	Description
15:14	RO	Reserved
13	WC	Receiver Master Abort
		When SiS630 terminates a cycle on A.G.P. with master abort, this bit is set to 1. This bit can be cleared by writing a 1 to it.
12:0	RO	Reserved

Register 20h Non-prefetchable Memory Base Address (MBASE)

Default Value: FFF0h

Access: Read/Write, Read Only

The register defines the base address of a non-prefetchable memory address range that is used by SiS630 to determine the timing to forward memory transactions from CPU to A.G.P.

122

Preliminary V.10 Oct.07,1999

Bit	Access	Description
15:4	R/W	Memory Address Base A[31:20].
		Bits[15:4] control the CPU to A.G.P. memory access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement.
		$MBASE \leq address \leq MLIMIT$
3:0	RO	Reserved

Register 22h Non-prefetchable Memory Limit Address (MLIMIT)

Default Value: 0000h

Access: Read/Write, Read Only

This register defines the top address of a non-prefetchable memory address range that is used by SiS630 to determine the timing to forward memory transactions from CPU to A.G.P.

Bit	Access	Description
15:4	R/W	Memory Address Limit A[31:20].
		Bits[15:4] control the CPU to A.G.P. memory access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement. MBASE \leq address \leq MLIMIT
3:0	RO	Reserved

Register 24h Prefetchable Memory Base Address (PMBASE)

Default Value: FFF0h

Access: Read/Write, Read Only

This register defines the base address of a prefetchable memory address range that is used by SiS630 to determine the timing to forward memory transactions from CPU to A.G.P.

Bit	Access	Description	
15:4	R/W	Memory Address Base A[31:20].	
		Bits[15:4] control the CPU to A.G.P. memory access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement.	
		$PMBASE \leq address \leq PMLIMIT$	
3:0	RO	Reserved	

Register 26h Prefetchable Memory Limit Address (PMLIMIT)

Default Value: 0000h

Access: Read/Write, Read Only

Preliminary V.10 Oct.07,1999	123	Silicon Integrated Systems Corporation
------------------------------	-----	--

This register defines the top address of a prefetchable memory address range that is used by SiS630 to determine the timing to forward memory transactions from CPU to A.G.P.

Bit	Access	Description
15:4	R/W	Memory Address Limit A[31:20].
	AR.	Bits[15:4] control the CPU to A.G.P. memory access. SiS630 forwards I/O cycle initiated by CPU to A.G.P. if the address of the cycle meets the following requirement. PMBASE ≤ address ≤ PMLIMIT
3:0	RO	Reserved
	$\langle \rangle$	

Register 3Eh PCI to PCI Bridge Control (BCTRL)

Default Value: 0000h

Access: Read/Write, Read Only

The Bridge Control register provides control extensions to the Command register.

Bit	Access	Description
15:4	RO	Reserved.
3	R/W	VGA Enable
		This bit controls the forwarding of transactions initiated by CPU. When this bit is enabled, SiS630 forwards CPU-initiated cycles with the following address to A.G.P.
		Memory Address: 0A0000h ~ 0BFFFFh
		I/O Address: 3B0h ~ 3BBh, 3C0 ~ 3DFh
		0 : Disable
		1 : Enable
2	R/W	ISA Enable
		When Enabled, if I/O addressing the last 768 bytes in each 1KB Block (that is A9 or A8 = 1), this cycle forwards to Primary PCI even if the address is within the range defined by the IOBASE and IOLIMIT.
		0 : Disable
		1 : Enable
1:0	RO	Reserved

PCI IDE Configuration Space Register 8

Device	IDSEL	Function Number
IDE	AD11	0001b

Register 00h Vendor ID

Default Value: 1039h

Access: Read Only

The register identifies the manufacturer of the device. SiS is allocated as 1039h by PCI SIG.

Bit	Access	$ \bigcirc \land $	Description
15:0	RO		Vendor Identification Number

Register 02h **Device ID**

Default Value: 5513h Access:

Read Only

The device identifier is allocated as 5513h by Silicon Integrated Systems Corp.

Bit	Access	Description
15:0	RO	Device Identification Number

Register 04h Command

Default Value: 0000h

Access: Read/Write, Read Only

The Command register provides coarse control over a device ability to generate and respond to PCI cycles.

Bit	Access	Description
15:3	RO	Reserved
2	R/W	Bus Master
		When set, the Bus master function is enabled. It is disabled by default.
1	R/W	Memory Space
		The bit controls the response to memory space accesses. This bit should be programmed as "0".
0	R/W	I/O Space
		When enabled, the built-in IDE will respond to any access of the IDE legacy ports in the compatibility mode, or to any access of the IDE relocated ports in the native mode. Also, any access to the PCI bus master IDE registers are allowed. This bit is zero (disabled) on reset.

125

Preliminary V.10 Oct.07,1999

Register 06h Status

Default Value: 0000h

Read/Write, Read Only, Write Clear Access:

The Status register is used to record status information for PCI bus related events. Reads to this register behave normally. Writes are slightly different in that bits can be reset, but not set. A bit is reset whenever the register is written, and the data in the corresponding bit location is a 1. For instance, to clear bit 14 and not affect any other bits, write the value 0100_0000_0000 to the register.

Bit	Access	Description
15:14	RO	Reserved
		These bits are hardware to zero.
13	wc	Master Abort Asserted
		This bit is set when a PCI bus master IDE transaction is terminated by master abort. While this bit is set, IDE will issue an interrupt request. This bit can be cleared by writing a 1 to it.
12	WC	Received Target Abort
		The bit is set whenever PCI bus master IDE transaction is terminated with target abort.
11	RO	Signaled Target Abort
		The bit will be asserted when IDE terminates a transaction with target abort.
10:9	RO	DEVSEL# Timing DEVT
		These two bits define the timing of asserting DEVSEL#. The built-in IDE always asserts DEVSEL# in fast timing, and thus the two bits are hardwired to 0 per PCI Spec.
8	RO	Reserved, Read as "0".
7:0	RO	Reserved
		Default value is 00h
Register 08	h Revision ID	

Register 08h Revision ID

Default Value	: D0h	
Access:	Read Only	
Bit	Access	Description
7.0		

Register 09h **Programming Interface**

Default Value: 00h

Read Only, Read/Write Access:

The default value is 00h since no specific register-level programming interface is provided.

126

Preliminary V.10 Oct.07,1999

Bit	Access	Description
7	RO	Master IDE Device
		This bit is hardwired to one to indicate that the built-in IDE is capable of supporting bus master function.
6:4	RO	Reserved
3	RO	Secondary IDE Programmable Indicator When the bit is programmed as "1", it means that the primary
		channel can be programmed to operate in compatible or native mode. When the bit is programmed as "0", the mode is fixed and is determined by the value of bit 2. This bit should be programmed as "1" during the BIOS boot up procedures.
2	R/W	Secondary IDE Operating Mode
	<	This bit defines the mode that the secondary IDE channel is operating in. Zero corresponds to 'compatibility' while one means native mode. By default, this bit is 0 and is programmable.
1	RO	Primary IDE Programmable Indicator
		When the bit is programmed as "1", it means that the primary channel can be programmed to operate in compatible or native mode. When the bit is programmed as "0', the mode is fixed and is determined by the value of bit 0. This bit should be programmed as "1" during the BIOS boot up procedures.
0	R/W	Primary IDE Operating Mode
		This bit defines the mode that the primary IDE channel is operating in. Zero corresponds to 'compatibility' while one means native mode. By default, this bit is 0 and is programmable.
Register 0A	h Sub Class	Code

Register 0Ah Sub Class Code

Default Valu	e: 01h			
Access:	Read Only			
Bit	Access		Description	
7:0	RO	Sub Class Code		

Register 0Bh Base Class Code

Default Valu	e: 01h	
Access:	Read Only	
Bit	Access	Description
7:0	RO	Base Class Code

127

Register 0Ch Cache Line Size

Default Value: 00h

Preliminary V.10 Oct.07,1999

Access:	Read Only	
Bit	Access	Description
7:0	RO	Cache Line Size

Register 0Dh Latency Timer

Default Valu	ue: 00h		
Access:	Read/Writ	e,	
Bit	Access	Description	
7:0	R/W	Initial Value for Latency Timer	
		The default value is 0.	
		Unit: PCI clock	

Register 0Eh Header Type

Default Value: 80h

7:0	RO	Header Type
Bit	Access	Description
Access.	Read Only	

Register 0Fh BIST

Default Value: 00h

Access:	Read Only		
Bit	Access	Description	
7:0	RO	BIST	

Register 10h~13h Primary Channel Command Block Base Address Register

Register 14h~17h Primary Channel Control Block Base Address Register

Register 18h~1Bh Secondary Channel Command Block Base Address Register

Register 1Ch~1Fh Secondary Channel Control Block Base Address Register

In the native mode, above four registers define the IDE base address for each of the two IDE devices in both the primary and secondary channels respectively. In the compatible mode, the four registers can still be programmed and read out, but it does not affect the IDE address decoding.

Register 20h~23h Bus Master IDE Control Register Base Address

Register Access	
Bus Master IDE Command Register (Primary)	
Reserved	
Bus Master IDE Status Register(Primary)	
Reserved	
Bus Master IDE PRD (*) Table Pointer (Primary)	

128

Preliminary V.10 Oct.07,1999

08h	Bus Master IDE Command Register (Secondary)	
09h	Reserved	
0Ah	Bus Master IDE Status Register (Secondary)	
0Bh	Reserved	
0C-0Fh	Bus Master IDE PRD (*) Table Pointer (Secondary)	

*PRD: Physical Region Descriptor Register 24h~2Bh Reserved

Register 2C~2Dh Subsystem Vendor ID

Default Value: 0000h Access: Read/Write

This register can be written once and is used to identify vendor of the subsystem.

Register 2Eh~2Fh Subsystem ID

Default Value: 0000h Access: Read/Write

This register can be written once and is used to identify subsystem ID.

Register 30h~3Bh Reserved

Register 3ChInterrupt LineDefault value:00h

Access: Read/Write

Register 3Dh Interrupt Pin

Default value: 00h Access: RO

This register is used to tell the drivers or operation systems that which interrupt pin the IDE controller uses. The value of this register is read only and depends on the IDE controller's operating mode. If either IDE channel operates in Native mode, then this register will be read as "1", else it will be read as "0" to indicate no interrupt pin is used.

Register 3Eh~3Fh Reserved

Register 40h	IDE Primary Channel/Master Drive Data Recovery Time Control		
Default Value	: 00h		
Access:	Read/Write		
Bit	Access	Description	

129

Preliminary V.10 Oct.07,1999

7	R/W	Test mode for internal use only		
		0: Normal mode		
		1: Test mode		
		This test mode for recovery and active timer counter.		
6	R/W	Test mode for internal use only		
	$\left(\right)$	0: Normal mode		
		1: Test mode		
		This test mode for prefetch byte counter.		
5:4	RO	Reserved		
3:0	R/W 2	Recovery Time		
		0000: 12 PCICLK 0001: 1 PCICLK		
		0010: 2 PCICLK 0011: 3 PCICLK		
	<	0100: 4 PCICLK 0101: 5 PCICLK		
		0110: 6 PCICLK 0111: 7 PCICLK		
		1000: 8 PCICLK 1001: 9 PCICLK		
		1010: 10 PCICLK 1011: 11 PCICLK		
		1100: 13 PCICLK 1101: 14 PCICLK		

			TTTT. 13 FOICER
Register 41h	IDE Prima	ary Channel/Master Drive	Data Active Time Control
Default Value:	00h		
Access:	Read/Write		

Default Value:	00h
Access:	Read/Write

ALLESS.	iteau/wi		
Bit	Access	Description	
7	R/W	Ultra DMA Mode Control	
		0: Disable	
		1: Enable	
6:4	R/W	Ultra DMA 33/66 cycle time Select	
		000: Reserved	
		001: Cycle time of 2 CLK clocks for data out	
		010: Cycle time of 3 CLK clocks for data out	
		011: Cycle time of 4 CLK clocks for data out	
		100: Cycle time of 5 CLK clocks for data out	
		101: Cycle time of 6 CLK clocks for data out	
		110: Cycle time of 7 CLK clocks for data out	
		111: Cycle time of 8 CLK clocks for data out	
		Note : 2 CLK = 1 PCICLK	
3	RO	Reserved	

130

Preliminary V.10 Oct.07,1999

2:0	R/W	Data Active Time Control		
		000: 8 PCICLK	001: 1 PCICLK	
		010: 2 PCICLK	011: 3 PCICLK	
		100: 4 PCICLK	101: 5 PCICLK	
		110: 6 PCICLK	111: 12 PCICLK	
	(\circ)			

Register 42h	DE Primary Channel/Slave Drive Data Recovery Time Control
Default Value:	

Access: Read/Write

Bit	Access		Description
7:4	RO	Reserved	
3:0	R/W	Recovery Time	
		0000: 12 RCICLK	0001: 1 PCICLK
		0010: 2 PCICLK	0011: 3 PCICLK
		0100: 4 PCICLK	0101: 5 PCICLK
		0110: 6 PCICLK	0111: 7 PCICLK
		1000: 8 PCICLK	1001: 9 PCICLK
		1010: 10 PCICLK	1011: 11 PCICLK
		1100: 13 PCICLK	1101: 14 PCICLK
		1110: 15 PCICLK	1/11: 15 PCICLK

Register 43h IDE Primary Channel/Slave Drive Data Active Time Control

Default Valu	e: 00h	\sim	
Access:	Read/Wri	te	
Bit	Access		Description
7	R/W	Ultra DMA Mode Control	\sim
		0: Disable	
		1: Enable	

6:4	R/W	Ultra DMA 33/66 cycle time Select		
		000: Reserved		
		001: Cycle time of 2 CLK clocks for data out		
		010: Cycle time of 3 CLK clocks for data out		
		011: Cycle time of 4 CLK clocks for data out		
	(Ω)	100: Cycle time of 5 CLK clocks for data out		
		101: Cycle time of 6 CLK clocks for data out		
		110: Cycle time of 7 CLK clocks for data out		
		111: Cycle time of 8 CLK clocks for data out		
	× ()	Note : 2 CLK = 1 PCICLK		
3	RO	Reserved		
2:0	R/W	Data Active Time Control		
		000: 8 PCIELK 001: 1 PCIELK		
		010: 2 PCIELK 011: 3 PCIELK		
		100: 4 PCICLK 101: 5 PCICLK		
		110: 6 PCICLK 111: 12 PCICLK		

Register 44h	IDE Secondary	Channel/Master Drive Data Recovery Time Control
Default Value	00h	

Delault valu	e. 0011		$\langle \rangle \rangle \langle \rangle$
Access:	Read/Wri	te	
Bit	Access	~	Description
7:4	RO	Reserved	$\langle / / \rangle$
3:0	R/W	Recovery Time	
		0000: 12 PCICLK	0001: 1 PCICLK
		0010: 2 PCICLK	0011: 3 PCICLK
		0100: 4 PCICLK	0101: 5 PCICLK
		0110: 6 PCICLK	0111: 7 PCICLK
		1000: 8 PCICLK	1001: 9 PCICLK
		1010: 10 PCICLK	1011: 11 PCICLK
		1100: 13 PCICLK	1101: 14 PCICLK
		1110: 15 PCICLK	1111: 15 PCICLK

Register 45h IDE Secondary Channel/Master Drive Data Active Time Control

Default Value:	00h
A	Dood/M/rito

Bit Access Description	Access:	Read/writ	6
	Bit	Access	Description

Preliminary V.10 Oct.07,1999

7	R/W	Ultra DMA Mode Control		
		0: Disable		
		1: Enable		
6:4	R/W	Ultra DMA 33/66 cycle time Select		
		000: Reserved		
	$\left(\right)$	001: Cycle time of 2 CLK clocks for data out		
		010: Cycle time of 3 CLK clocks for data out		
		011: Cycle time of 4 CLK clocks for data out		
		100: Cycle time of 5 CLK clocks for data out		
	\sim (\bigcirc	101: Cycle time of 6 CLK clocks for data out		
		110: Cycle time of 7 CLK clocks for data out		
		111: Cycle time of 8 CLK clocks for data out		
		Note : 2 CLK = 1 PCICLK		
3	RO	Reserved		
2:0	R/W	Data Active Time Control		
		000: 8 PCICLK 001: 1 PCICLK		
		010: 2 PCICLK 011: 3 PCICLK		
		100: 4 PCICLK 101: 5 PCICLK		
		110: 6 PCICLK111: 12 PCICLK		

Register 46hIDE Secondary Channel/Slave Drive Data Recovery Time ControlDefault Value:00h

Access:	Read/Write	Э	
Bit	Access		Description
7:4	RO	Reserved	
3:0	R/W	Recovery Time	
		0000: 12 PCICLK	0001: 1 PCICLK
		0010: 2 PCICLK	0011: 3 PCICLK
		0100: 4 PCICLK	0101: 5 PCICLK
		0110: 6 PCICLK	0111: 7 PCICLK
		1000: 8 PCICLK	1001: 9 PCICLK
		1010: 10 PCICLK	1011: 11 PCICLK
		1100: 13 PCICLK	1101: 14 PCICLK
		1110: 15 PCICLK	1111: 15 PCICLK

Register 47hIDE Secondary Channel/Slave Drive Data Active Time ControlDefault Value:00h

Preliminary V.10 Oct.07,1999 133 Silicon Integrated Systems Corporation

Access:	Read/Wr	ite		
Bit	Access	Description		
7	R/W	Ultra DMA Mode Control		
		0: Disable		
		1: Enable		
6:4	R/W	Ultra DMA 33/66 cycle time Select		
	$ \land \land$	000: Reserved		
	$\left(\begin{array}{c} 0 \end{array} \right) $	001: Cycle time of 2 CLK clocks for data out		
		010: Cycle time of 3 CLK clocks for data out		
	\sim	011: Cycle time of 4 CLK clocks for data out		
		100: Cycle time of 5 CLK clocks for data out		
		101: Cycle time of 6 CLK clocks for data out		
		110: Cycle time of 7 CLK clocks for data out		
		111: Cycle time of 8 CLK clocks for data out		
		Note 2 CLK = 1 PCICLK		
3	RO	Reserved		
2:0	R/W	Data Active Time Control		
		000: 8 PCICLK 001: 1 PCICLK		
		010: 2 PCICLK 011:3 PCICLK		
		100: 4 PCICLK /101: 5 PCICLK		
		110: 6 PCICLK //111212 PCICLK		
Register 48h IDE Status Register				
Default Valu	e: 00h			
Access: Read/Write		e G/b		
D:4	A	Deserivitie		

Register 48h	IDE Status Register	
Default Value:	00h	
Access:	Read/Write	

Bit	Access	Description
7:6	RO	Reserved
5	RO	Channel 1 Cable Type Status (via CBLIDB signal)
		0: 80 pins cable type
		1: 40 pins cable type
4	RO	Channel 0 Cable Type Status (via CBLIDA signal)
		0: 80 pins cable type
		1: 40 pins cable type

3:2	R/W	PCI Read Request Threshold Setting
		00: PCI Request asserted when FIFO is 62.5% full during prefetch cycles.
		01: PCI Request asserted when FIFO is 50.0% full during prefetch cycles.
	$\sim \mathbb{R}$	10: PCI Request asserted when FIFO is 25.0% full during prefetch cycles.
	$\langle 0 \rangle$	11: PCI Request asserted when FIFO is 12.5% full during prefetch cycles.
1:0	R/W	PCI Write Request Threshold Setting
		00: PCI Request asserted when FIFO is 12.5% full during prefetch cycles.
		01: PCI Request asserted when FIFO is 25.0% full during prefetch cycles.
		10: PCI Request asserted when FIFO is 50.0% full during prefetch cycles.
		11: PCI Request asserted when FIFO is 62.5% full during prefetch cycles.

Reaister 4Ah	IDE General Contro	I Register 0	
		i i togiotoi o	

		preietor oyciea.
Register 49	h Reserve	ed
Register 4A	n IDE Ge	neral Control Register 0
Default Valu	e: 00h	
Access:	Read/Writ	e (//)
Bit	Access	Description
7	R/W	Bus Master generates PCI burst cycles Control
		0: Disable
		1: Enable
6	R/W	Reserved
5	R/W	Fast post-write control
		0: Disabled
		1: Enabled (Recommended)
4	R/W	Test Mode for internal use only
		0: Normal Mode
		1: Test Mode
		When this bit is set 1, the IRQ of HD drive would pass direct to 8259. On the others hand, IDE would gate IRQ until IDE FIFO is empty under abnormal operation.
3	R/W	Reserved
Preliminary	V.10 Oct.07,	1999 135 Silicon Integrated Systems Corporation

2	R/W	IDE Channel 1 Enable Bit
		0: Disabled
		1: Enabled
1	R/W	IDE Channel 0 Enable Bit
		0: Disabled
	$\sim \{ \mathcal{R} \}$	_ 1: Enabled
0	R/W	Reserved

Register 4Bh IDE General Control register 1

Default Value: 00h

Bit	Access	Description
7	R/W	Enable Postwrite of the Slave Drive in Channel 1
		0: Disabled
		1. Enabled
6	R/W	Enable Postwrite of the Master Drive in Channel 1
		0: Disabled
		1: Enabled
5	R/W	Enable Postwrite of the Slave Drive in Channel 0
		0: Disabled
		1: Enabled
4	R/W	Enable Postwrite of the Master Drive in Channel 0
		0: Disabled
		1: Enabled
3	R/W	Enable Prefetch of the Slave Drive in Channel 1
		0: Disabled
		1: Enabled
2	R/W	Enable Prefetch of the Master Drive in Channel 1
		0: Disabled
		1: Enabled
1	R/W	Enable Prefetch of the Slave Drive in Channel 0
		0: Disabled
		1: Enabled
0	R/W	Enable Prefetch of the Master Drive in Channel 0
		0: Disabled
		1: Enabled

Preliminary V.10 Oct.07,1999136Silicon Integrated Systems Corporation

respectively.)

Register 4Ch~4Dh Prefetch Count of Primary Channel

Default Value: 0000h

Access:	Read/Write

/ 1000000.	Ttoud, W	
Bit	Access	Description
15:0	R/W	Prefetch Count of Primary Channel
		The Count (in bytes) of IDE prefetch. The maximum value can be programmed is 512. (Default value is 512)
(

Register 4Eh~4Fh Prefetch Count of Secondary Channel

Default Valu	e: 0000h		
Access:	Read/W	rite 🖉 🕗 👌	
Bit	Access	Description	on
15:0	R/W	Prefetch Count of Secondary Char	nnel
		The Count (in bytes) of IDE prefetch programmed is 512. (Default value is	. The maximum value can be s 512)

Register 50h~51h Reserved

Default Value: 0000h

Access:	Read/Wr	rite		
Bit	Access		Description	
15:0	R/W	Reserved	* /</td <td></td>	

Register 52h IDE Miscellaneous Control Register

Default Value: 00h

766633.	Iteau/Wil		
Bit	Access	Description	
7:5	RO	Reserved	
4	R/W	IDE I/O Buffer Driving Strength Control	
		0: strong	
		1: weak	
3	R/W	Reserved	
2	R/W	Control of IDE Programmable Indicator (Reg. 09 bit 1 and 3)	
		0: IDE register 09 bit 1 and 3 would be read as " 1 $\stackrel{\sim}{}$	
		1: IDE register 09 bit 1 and 3 would be read as "0", and register 09 bit 0 and 2 would be read as "0". It means IDE controller can only operate in Compatibility mode.	

Preliminary V.10 Oct.07,1999

1	R/W	Test Mode for internal use only	
		0 : Normal Mode	
		1 : Test Mode	
	$\sim \mathbb{R}$	If this bit is set as 1, IDE controller would reset IDE FIFO pointer when 8 bit command is forward to HDs driver. This bit would work on the condition that the transferring byte count of OS is not equal to the byte count received by HDs driver.	
0	(R/W)	Test mode for Internal use only	
		0: The value of register 3D bit 0 would depend on both channels' operating mode.	
		1: The value of register 3D bit 0 would be read as "0".	

8.1 Offset Registers for PCI Bus Master IDE Control Registers

The PCI Bus master IDE Registers use 16 bytes of I/O Space. These registers can be accessed through I/O R/W to the address defined in the Bus Master IDE control register Base Address in the PCI IDE Configuration space. The base address is also defined in Register 20h~23h of PCI IDE configuration space.

Register 00h Bus Master Primary IDE Command Register

Default Value	e: 00h	
Access:	Read/Write	
Bit	Access	Description
7:4	RO	Reserved. Return 0 on reads.
6:5	R/W	Read or Write Control This bit defines the R/W control of the bus master transfer. When set to zero, PCI bus master reads are conducted. When set to one, PCI bus master writes are conducted.
2:1	RO	Reserved
0	R/W	Start/Stop Bus Master
		The SiS Chip built-in IDE Controller enables its bus master operation whenever it detects this bit changing from a zero to a one. The operation can be halted by writing zero to this bit.

Register 01h Reserved

Register 02h	Bus Mast	er Primary IDE Status Register
Default Value	: 00h	
Access:	Read/Write)
Bit	Access	Description

138

Preliminary V.10 Oct.07,1999

7	RO	Simplex Only
		This bit is hardwired to zero to indicate that both bus master channels can be operated at a time.
6	R/W	Drive 1 DMA Capable
	\bigcirc	This R/W bit can be set by BIOS or driver to indicate that drive 1 for this channel is capable of DMA transfers.
5	R/W	Drive 0 DMA Capable
		This R/W bit can be set by BIOS or driver to indicate that drive 0 for this channel is capable of DMA transfers.
4:3	RO	Reserved. Return 0 on reads
2	R/W	Interrupt. The bit is set by the rising edge of the IDE interrupt line to indicate that all data transferred from the drive is visible in the system memory. Writing a '1' to this bit can reset it.
1	RO	Error This bit is set when the IDE controller encounters an error during data transferring to/from memory.
0	R/W	Bus Master IDE Device Active
		This bit is set when the start bit in the command register is set. It can be cleared when the last transfer of a region is performed, or the start bit is reset.

Register 03h Reserved

Register 04h~07h Bus Master Primary IDE PRD Table Pointer Register

This 32-bit register contains address pointing to the starting address of the PRD table.

Default Value: 0000000h

Access:	Read/Wri	te
Bit	Access	Description
31:2	R/W	Base Address of the PRD Table
1:0	R/W	Reserved

*PRD: Physical Region Descriptor

Register 08h Bus Master Secondary IDE Command Register

Default Value	e: 00h	
Access:	Read/Write	
Bit	Access	Description
7:4	RO	Reserved. Return 0 on reads.

139

Preliminary V.10 Oct.07,1999

3	R/W	Read or Write Control.
		This bit defines the R/W control of the bus master transfer. When set to "0", PCI bus master reads are conducted. When set to "1", PCI bus master writes are conducted.
2:1	RO	Reserved
0	R/W	Start/Stop Bus Master
		The SiS chip built-in IDE Controller enables its bus master operation whenever it detects this bit changing from a zero to a one. The operation can be halted by writing a zero to this bit.

Register 09h Reserved

Register 0Ah Bus Master Secondary IDE Status Register 00h

Default Value:

Read/Write Access:

Bit	Access	Description	
7	RO	Simplex Only	
		This bit is hardwired to zero to indicate that both bus master channels can be operated at a time.	
6	R/W	Drive 1 DMA Capable	
		This R/W bit can be set by BIOS or driver to indicate that drive 1 for this channel is capable of DMA transfers.	
5	R/W	Drive 0 DMA Capable	
		This R/W bit can be set by BIOS or driver to indicate that drive 0 for this channel is capable of DMA transfers.	
4:3	RO	Reserved. Return 0 on reads	
2	R/W	Interrupt	
		The bit is set by the rising edge of the IDE interrupt line to indicate that all data transferred from the drive is visible in the system memory. Writing a '1' to this bit can reset it.	
1	RO	Error	
		This bit is set when the IDE controller encounters an error during data transferring to/from memory.	
0	R/W	Bus Master IDE Device Active	
		This bit is set when the start bit in the command register is set. It can be cleared when the last transfer of a region is performed, or the start bit is reset.	

Register 0Bh Reserved

Preliminary V.10 Oct.07,1999

Register 0Ch~0Fh Bus Master Secondary IDE PRD Table Pointer Register

This 32-bit register contains address pointing to the starting address of the PRD table.

Default Value: 0000000h

Access: Read/Write

Bit	Access	Description
31:2	R/W	Base Address of the PRD Table
1:0		Reserved

*PRD: Physical Region Descriptor

cal Region Descriptor		
	_	
		\bigcirc
		2

141

Preliminary V.10 Oct.07,1999

Register Summary / Description – Graphics 9

9.1 **General Registers**

9.1.1 **Miscellaneous Output Registers**

Register Type: Read/Write з¢С

Read Port:

Write Port: 3C2

Default: -00h

Vertical Sync Polarity

- 0: Select 'positive vertical sync'
- 1: Select 'negative vertical sync'

D6

D0

D7

- Horizontal Sync Polarity
- 0: Select 'positive horizontal sync'
- 1: Select 'negative horizontal sync'

Table 9.1-1 Sync Polarity vs. Vertical Screen Resolution

D7	D6 (EGA	VGA
0	0	200 Lines	Invalid
0	1	350 Lines	400 Lines
1	0	Invalid	350 Lines
1	1	Invalid	480 Lines

Odd/Even Page D5

- 0: Select low page of memory
- 1: Select high page of memory
- D4 Reserved
- **Clock Select** D[3:2]

Ir			
D3		D2	DCLK
0		0	25.175 MHz
0		1	28.322 MHz
1		0	Don't Care
1		1	For internal clock generator.
D1	Dis	play RAM Enable	

Table 0.1.2 Table for Video Cleak Salas

0: Disable processor access to video RAM

1: Enable processor access to video RAM

I/O Address Select

0: Sets addresses for monochrome emulation

Preliminary V.10 Oct.07,1999

1: Sets addresses for color graphics emulation

Feature Control Register

Register Type:	Read/Write
Read Port:	3CA
Write Port:	3BA/3DA
Default:	00h 🔿)
D[7:4]	Reserved (0)
D3	Vertical Sync Select
	0: Normal Vertical Sync output to monitor
	1: [Vertical Sync OR Vertical Display Enable] output to monitor
D[2:0]	Reserved (0)

Input Status Register 0

Register Type:	Read only
Read Port:	3C2
Default:	00h
D7	Vertical Retrace Interrupt Pending
	0: Cleared
	1: Pending
D[6:5]	Reserved
D4	Switch Sense
D[3:0]	Reserved
Input Status R	egister 1
Register Type:	Read only
Read Port:	3BA/3DA
Default:	00h
D[7·6]	Poconvod

Input Status Register 1 anistar Tunas Daad anl

Register Type:	Read only	
Read Port:	3BA/3DA	
Default:	00h	
D[7:6]	Reserved	
D[5:4]	Diagnostic	

Table 9.1-3 Table for Video Read-back Through Diagnostic Bit (I)

Color Plane Enable Register		Input Status Register 1	
D5	D4	D5	D4
0	0	Red	Blue
0	1	Secondary Red	Secondary Green
1	0	Secondary Blue	Green
1	1	Unused	Unused

Table 9.1-4 Table for Video Read-back Through Diagnostic Bit (II)

Preliminary V.10 Oct.07,1999 143 Silicon Integrated Systems Corporation

Color Plane Enable Register		Input Stat	us Register 1	
D5		D4	D5	D4
	0	0	P2	P0
	0	1	P5	P4
	1	0	P3	P1
	1 ((> > 1	P7	P6

D3 Vertical Trace

$(\bigcirc ./.)$	
0: Inactive	
	\bigcirc
1: Active	$\backslash \langle$

Reserved

D[2:1]

D0

- **Display Enable Not** 0: Display period
 - 1: Retrace period

VGA Enable Register

Register Type: Read/Write Read/Write Port: 3C3 Default: 00h VGA Enable D0 0: Disable 1: Enable

Segment Selection Register 0

Register Type: Read/Write Read/Write Port: 3CD Default: 00h D[7:0] Segment Selection Write Bit[7:0]

Segment Selection Register 1

Register Type: Read/Write Read/Write Port: 3CB Default: 00h Segment Selection Read Bit[7:0] D[7:0]

144

9.2 **CRT Controller Registers**

CRT Controller Index Register

Register Type: Read/Write Read/Write Port: 3B4/3D4

Preliminary V.10 Oct.07,1999

Default:	00h
D[7:0]	CRT Controller Index
	- 00h ~ 18h for standard VGA

- 19h ~ 26h for SiS extended CRT registers

Index (3B4/3D4)	CRT Controller Registers (3B5/3D5)
(00h))	Horizontal Total
01h	Horizontal Display Enable End
02h	Horizontal Blank Start
03h	Horizontal Blank End
04h	Horizontal Retrace Start
05h	Horizontal Retrace End
06h	Vertical Total
07h	Overflow Register
08h	Preset Row Scan
09h	Max Scan Line/Text Character Height
0Ah	Text Cursor Start
0Bh	Text Cursor End
0Ch	Screen Start Address High
0Dh	Screen Start Address Low
0Eh	Text Cursor Location High
0Fh	Text Cursor Location Low
10h	Vertical Retrace Start
11h	Vertical Retrace End
12h	Vertical Display Enable End
13h	Screen Offset
14h	Underline Location
15h	Vertical Blank Start
16h	Vertical Blank End
17h	Mode Control
18h	Line Compare
1Bh	CRT horizontal counter read-back
1Ch	CRT vertical counter read back
1Dh	CRT overflow counter read back
22h	Graphics Data Latch Read-back Register

Table 9.2-1 Table of CRT Controller Registers

Preliminary V.10 Oct.07,1999

24h	Attribute Controller Toggle Read-back Register
26h	Attribute Controller Index Read-back Register

CR0: Horizontal Total

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 00hDefault:00hD[7:0]Horizontal Total Bit[7:0]

CR1: Horizontal Display Enable End

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 01hDefault:00hD[7:0]Horizontal Display Enable End Bit[7:0]

CR2: Horizontal Blank Start

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 02hDefault:00hD[7:0]Horizontal Blank Start Bit[7:0]

CR3: Horizontal Blank End

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 03h
Default:	00h
D7	Reserved
D[6:5]	Display Skew Control Bit[1:0]
	00: No skew
	01: Skew 1 character
	10: Skew 2 characters
	11: Skew 3 characters
D[4:0]	Horizontal Blank End Bit[4:0]

CR4: Horizontal Retrace Start

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 04hDefault:00hD[7:0]Horizontal Retrace Start Bit[7:0]

146

CR5: Horizontal Retrace End

Register Type: Read/Write

Preliminary V.10 Oct.07,1999

Read/Write Por	t: 3B5/3D5, Index 05h
Default:	00h
D7	Horizontal Blank End Bit[5]
D[6:5]	Horizontal Retrace Delay Bit[1:0]
	00: Skew 0 character clock
	01: Skew 1 character clock
/	10: Skew 2 character clocks
	11: Skew 3 character clocks
D[4:0]	Horizontal Retrace End Bit[4:0]

CR6: Vertical Total

Register Type:	Read/Write	
Read/Write Por	t: 3B5/3D5, Index 06	h
Default:	00h	
D[7:0]	Vertical Total Bit[7:0]	2

CR7: Overflow Register

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 07h
Default:	00h
D7	Vertical Retrace Start Bit[9]
D6	Vertical Display Enable End Bit[9]
D5	Vertical Total Bit[9]
D4	Line Compare Bit[8]
D3	Vertical Blank Start Bit[8]
D2	Vertical Retrace Start Bit[8]
D1	Vertical Display Enable End Bit[8]
D0	Vertical Total Bit[8]

CR8: Preset Row Scan

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 08h
Default:	00h
D7	Reserved
D[6:5]	Byte Panning Control Bit[1:0]
D[4:0]	Preset Row Scan Bit[4:0]

CR9: Maximum Scan Line/Text Character Height

147

Register Type: Read/Write Read/Write Port: 3B5/3D5, Index 09h Default: 00h

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

D7	Double Scan
	0: Disable
	1: Enable 400 lines display
D6	Line Compare Bit[9]
D5	Vertical Blank Start Bit[9]
D[4:0]	Character Cell Height Bit[4:0]

CRA: Text Cursor Start

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 0Ah
Default:	00h
D[7:6]	Reserved
D5	Text Cursor Off
	0: Text Cursor On
	1: Text Cursor Off
D[4:0]	Text Cursor Start Bit[4:0]
	\checkmark ($\langle \rangle$)

CRB: Text Cursor End

D[4:0]	Text Cursor Start Bit[4:0]
CRB: Text Cu	rsor End
Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 0Bh
Default:	00h
D7	Reserved
D[6:5]	Text Cursor Skew
	00: No skew
	01: Skew one character clock
	10: Skew two character clocks
	11: Skew three character clocks
D[4:0]	Text Cursor End Bit[4:0]

CRC: Screen Start Address High

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 0Ch
Default:	00h
D[7:0]	Screen Start Address Bit[15:8]

CRD: Screen Start Address Low

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 0Dh
Default:	00h
D[7:0]	Screen Start Address Bit[7:0]

148

Preliminary V.10 Oct.07,1999

CRE: Text Cursor Location High

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 0EhDefault:00hD[7:0]Text Cursor Location Bit[15:8]

CRF: Text Cursor Location Low

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 0FhDefault:00hD[7:0]Text Cursor Location Bit[7:0]

CR10: Vertical Retrace Start

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 10hDefault:00hD[7:0]Vertical Retrace Start Bit[7:0]

CR11: Vertical Retrace End

Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 11h
Default:	00h
D7	Write Protect for CR0 to CR7
	0: Disable Write Protect
	1: Enable Write Protect
D6	Alternate Refresh Rate
	0: Selects three refresh cycles per scanline
	1: Selects five refresh cycles per scanline
D5	Vertical Interrupt Enable
	0: Enable
	1: Disable
D4	Vertical Interrupt Clear
	0: Clear
	1: Not Clear
D[3:0]	Vertical Retrace End Bit[3:0]
CR12: Vertical	Display Enable End
Register Type:	Read/Write
Read/Write Por	t: 3B5/3D5, Index 12h
Default:	00h
D[7:0]	Vertical Display Enable End Bit[7:0]
Preliminary V.:	10 Oct.07,1999 149 Silicon Integrated Systems Corporation

CR13: Screen Offset

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 13hDefault:00hD[7:0]Screen Offset Bit[7:0]

CR14: Underline Location Register

Register Type: Read/Write Read/Write Port: 3B5/3D5, Index 14h Default: 00h D7 Reserved Double-word Mode Enable D6 0: Disable 1: Enable D5 Count by 4 0: Disable 1: Enable D[4:0] Underline Location Bit[4:0]

CR15: Vertical Blank Start

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 15hDefault:00hD[7:0]Vertical Blank Start Bit[7:0]

CR16: Vertical Blank End

Register Type:Read/WriteRead/Write Port:3B5/3D5, Index 16hDefault:00hD[7:0]Vertical Blank End Bit[7:0]

CR17: Mode Control Register

Register Type: Read/Write

Read/Write Port: 3B5/3D5, Index 17h

Default: 00h

- D7 Hardware Reset
 - 0: Disable horizontal and vertical retrace outputs
 - 1: Enable horizontal and vertical retrace outputs
- D6 Word/Byte Address Mode
 - 0: Set the memory address mode to word
 - 1: Set the memory address mode to byte

150

Preliminary V.10 Oct.07,1999

D5	Address Wrap
	0: Disable the full 256K of memory
	1: Enable the full 256K of memory
D4	Reserved
D3	Count by Two
	0: Byte refresh
	1. Word refresh
D2 /	Horizontal Retrace Select
	0: Normal
	1: Double Scan
D1	RA1 replace MA14
	0: Enable
	1: Disable
D0	RA0 replace MA13
	0: Enable
	1: Disable
CR18: Line C	ompare Register
Register Type:	Read/Write
Read/Write Po	rt: 3B5/3D5, Index 18h
Default:	00h
D[7:0]	Line Compare Bit[7:0]
CR1B: CRT H	orizontal Counter Read Back
Register Type:	Read Only
Read/Write Po	rt: 3B5/3D5, Index 1Bh
Default:	xxh
D[7:0]	CRT horizontal counter bit[7:0]
CR1C: CRT Ve	ertical Counter Read Back
Register Type:	Read Only
Read/Write Po	rt: 3B5/3D5, Index 1Ch
Default:	xxh
D[7:0]	CRT vertical counter bit[7:0]
CR1D: CRT O	verflow Counter Read Back
Register Type:	Read Only
Read/Write Po	rt: 3B5/3D5, Index 1Dh
Default:	xxh
D[7:5]	Reserved
D4	CRT horizontal counter bit 8

151

Preliminary V.10 Oct.07,1999

D3 Reserved

D[2:0] CRT vertical counter bit[10:8]

Note: The horizontal and vertical counter value will be latched when read register CR20. So the three registers value should be read after read CR20.

CR1E: Extended Signature Read-Back Register 2

Register Type:Read OnlyRead/Write Port:3B5/3D5, Index 1EhDefault:xxhD[7:0]Signature read-back bit[23:16]

CR20: CRT Counter Trigger Port

Register Type: Read Only Read/Write Port: 3B5/3D5, Index 20h Default: xxh D[7:0] Reserved

CR24: Attribute Controller Toggle Read-back Register

Register Type:	Read Only
Read/Write Por	t: 3B5/3D5, Index 24h
Default:	xxh
D7	Attribute Controller Toggle
D[6:0]	Reserved

CR26: Attribute Controller Index Read-back Register

Register Type:	Read Only	
Read/Write Por	t: 3B5/3D5, Index 26h	
Default:	xxh	
D[7:6]	Reserved	
D5	Video Enable	
D[4:0]	Attribute Controller Index bit[8:4]	

152

9.3 Sequencer Registers

Sequencer Index Register

Register Type:	Read/Write
Read/Write Por	t: 3C4
Default:	00h
D[7:6]	Reserved
D[5:0]	Sequencer Index Bit[5:0]

Preliminary V.10 Oct.07,1999

Index (3C4)	Sequencer Register (3C5)
00	Reset Register
01	Clock Mode
02	Color Plane Write Enable
.03	Character Generator Select
(04)	Memory Mode
SR0: Reset Register	
Register Type: Read/Write/	

Table 9.3-1 Table of Sequencer Registers

SR0: Reset R	egister
--------------	---------

Du	8/9 Dot Clock
	Reserved 8/0 Dat Clock
	1: Data shifter loaded every 2nd Character Clock
	0: Disable
D2	Shifter Load 16 (while D4=0)
	1: Video Clock is divided by 2 to generate Dot Clock
	0: Disable
D3	Dot Clock Divide by 2 enable
	1: Data shifter loaded every 4th Character Clock
	0: Disable
D4	Shifter Load 32 enable
	1: Display Off
	0: Display On
D[7.0]	Screen Off
	UUN Reserved
Read/Write P	ort: 3C5, Index 01h
Register Type	
SR1: Clock	
	1: Normal
	0: Reset
DO	Asynchronous reset
	1: Normal
DI	Synchronous reset
D[7:2]	Reserved V
Default:	00h
Read/Write P	ort: 3C5, Index 00h
Register Type	. Reau/White

- 0: Dot Clock is divided by 9 to generate Character Clock
- 1: Dot Clock is divided by 8 to generate Character Clock

SR2: Color Plane Write Enable Register

Register Type:	Read/Write
Read/Write Por	t: 3C5, Index 02h
Default:	00h 🔿)
D[7:4]	Reserved
D3	Plane 3 write enable
	0: Disable
	1. Enable
D2	Plane 2 write enable
	0: Disable
	1: Enable
D1	Plane 1 write enable
	0: Disable
	1: Enable
D0	Plane 0 write enable
	0: Disable
	1: Enable

SR3: Character Generator Select Register

Register Type:	Read/Write
Read/Write Por	t: 3C5, Index 03h
Default:	00h
D[7:6]	Reserved
D5	Character generator table B select Bit[2]
D4	Character generator table A select Bit[2]
D[3:2]	Character generator table B select Bit[1:0]
D[1:0]	Character generator table A select Bit[1:0]
	Table 9.3-2 Table of Selecting Active Character Generator

D5	D3	D2	Used when text attribute bit 3 is 1		
D4	D1	D0	Used when text attribute bit 3 is 0		
0	0	0	Character Table 1		
0	0	1	Character Table 2		
0	1	0	Character Table 3		
0	1	1	Character Table 4		
1	0	0	Character Table 5 (VGA only)		
1	0	1	Character Table 6 (VGA only)		

154

Preliminary V.10 Oct.07,1999

1	1	0	Character Table 7 (VGA only)	
1	1	1	Character Table 8 (VGA only)	

SR4: Memory Mode Register

Register Type: Read/Write Read/Write Port: 3C5, Index 04h Default: 00h Reserved D[7:4] D3 Chain-4 Mode enable 0: Disable 1: Enable D2 Odd/Even Mode enable 0: Enable 1: Disable D1 Extended Memory 0: Select 64K 1: Select 256K

D0 Reserved

9.4 Graphics Controller Registers

Graphics Controller Index Register

Register Type	e: Read/Write	
Read/Write P	ort: 3CE	
Default:	00h	\sim
D[7:4]	Reserved	<
D[3:0]	Graphics Controller Index Bit[3:0)]
		. .

Table 9.4-1 Table of Graphics Controller Registers

Index (3CE)	Graphics Controller Register (3CF)	
00	Set/Reset Register	
01	Set/Reset Enable Register	
02	Color Compare Register	
03	Data Rotate & Function Select	
04	Read Plane Select Register	
05	Mode Register	
06	Miscellaneous Register	
07	Color Don't Care Register	
08	Bit Mask Register	

Preliminary V.10 Oct.07,1999

GR0: Set/Reset Register

Register Type: Read/Write				
t: 3CF, Index 00h				
00h				
Reserved				
Set/Reset Map for plane 3				
Set/Reset Map for plane 2				
Set/Reset Map for plane 1				
Set/Reset Map for plane 0				

GR1: Set/Reset Enable Register

Register Type:	Read/Write				
Read/Write Por	t: 3CF, Index 01h				
Default:	00h				
D[7:4]	Reserved				
D3	Enable Set/Reset for plane 3				
	0: Disable				
	1: Enable				
D2	Enable Set/Reset for plane 2				
	0: Disable				
	1: Enable				
D1	Enable Set/Reset for plane 1				
	0: Disable				
	1: Enable				
D0	Enable Set/Reset for plane 0				
	0: Disable				
	1: Enable				
GR2: Color Co	ompare Register				
Register Type:	Read/Write				

GR2: Color Compare Register

Register Type:	Read/Write
Read/Write Por	: 3CF, Index 02h
Default:	00h
D[7:4]	Reserved
D3	Color Compare Map for plane 3
D2	Color Compare Map for plane 2
D1	Color Compare Map for plane 1
D0	Color Compare Map for plane 0

GR3: Data Rotate/Function Select Register

156

Register Type: Read/Write

Preliminary V.10 Oct.07,1999

Read/Write Por	t: 3CF, Index 03h
Default:	00h
D[7:5]	Reserved
D[4:3]	Function Select

Table 9.4-2 Table of Function Select

D4	D3 (2)	Function	
0	0	write data unmodified	
0		write data AND processor latches	
1		write data OR processor latches	
1	1 (write data XOR processor latches	

D[2:0]

Rotate Count Table 9.4-3 Table of Rotate Count

D2		D0	Right Rotation
0	0	0	none
0	0	1	1 bits
0	1	0	2 bits
0	1	1	3 bits
1	0		4 bits
1	0		5 bits
1	1		6 bits
1	1		7 bits

157

GR4: Read Plane Select Register

Register Type:	Read/Write
Read/Write Por	t: 3CF, Index 04h
Default:	00h
D[7:2]	Reserved
D[1:0]	Read Plane Select bit 1, 0
	00: Plane 0
	01: Plane 1
	10: Plane 2
	11: Plane 3

GR5: Mode Register

Register Type:Read/WriteRead/Write Port:3CF, Index 05hDefault:00hD7Reserved

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

D6	256-color Mode
	0: Disable
	1: Enable
D5	Shift Register Mode
	0: Configure shift register to be EGA compatible
	1: Configure shift register to be CGA compatible
D4	Odd/Even Addressing Mode enable
	0: Disable
(1: Enable
D3	Read Mode
	0: Map Select Read
	1: Color Compare Read
D2	Reserved
D[1:0]	Write mode

Table 9.4-4 Table for Write Mode

D1	D0	Mode Selected	
0	0	Write Mode 0: Direct processor write (Data Rotate, Set/Reset may apply).	
0	1	Write Mode 17 Use content of latches as write data.	
1	0	Write Mode 2: Color Plane n(0-3) is filled with the value of bit m in the processor write data.	
1	1	Value of bit m in the processor write data. Write Mode 3: Color Plane n(0-3) is filled with 8 bits of the color value contained in the Set/Reset Register for that plane. The Enable Set/Reset Register is not effective. Processor data will be AND with Bit Mask Register content to form new bit mask pattern. (data rotate may apply).	
GR6: Miscellaner	us Register		

GR6: Miscellaneous Register

	•	
Register Type: R	ead/Write	
Read/Write Port:	3CF, Index 06h	
Default: 00	h	
D[7:4] Re	eserved	
D[3:2] M	emory Address Sele	ct
	Table 9.4-5 Ta	ble of Memory Address Select
50	D2	Address Bang

D3	D2	Address Range	
0	0	A0000 to BFFFF	
0	1	A0000 to AFFFF	

158

Preliminary V.10 Oct.07,1999

1	0	B0000 to B7FFF
1	1	B8000 to BFFFF
D1	Chain Odd And Even	Maps
	0: Disable	
	1: Enable	
D0	Graphics Mode Enable	9
\frown	0: Select alphanumer	ic mode
	1: Select graphics mo	de
GR7: Color Do	n't Care Register	
Register Type:	Read/Write	
Read/Write Port	: 3CF, Index 0/h	
Default:	00h	/ ^
D[7:4]		3
D3	Plane 3 Don't Care	
	0: Disable color comp	arison
D .0	1: Enable color comp	arison
D2	Plane 2 Don't Care	
	0: Disable color comp	arison
54	1: Enable color comp	arison
D1	Plane 1 Don't Care	. ~/////~
	0: Disable color comp	arison
Do	1: Enable color comp	arison
DU	Plane U Don't Care	
	U: Disable color comp	arison
	1: Enable color comp	arison
GR8: Bit Mask	Register	
Register Type:	Read/Write	
Read/Write Port	: 3CF. Index 08h	\sim
Default:	00h	
D[7:0]	Bit Mask Enable Bit[7:	0]
	ſ	-

159

9.5 Attribute Controller and Video DAC Registers

Attribute Controller Index Register

Register Type:	Read/Write	
Read Port:	3C0	
Write Port:	3C0	
Default:	00h	

Preliminary V.10 Oct.07,1999

D[7:6]	Reserved			
D5	Palette Address Source	Palette Address Source		
	0: From CPU			
	1: From CRT			
D[4:0]	D[4:0] Attribute Controller Index Bit[4:0] (00h-14h)			
	Index (3C0)	Attribute Controller Register (3C0)		
	OOh 🔿	Color Palette Register 0		
	01h	Color Palette Register 1		
		Color Palette Register 2		
	03h	Color Palette Register 3		
	04h	Color Palette Register 4		
	05h	Color Palette Register 5		
	06h	Color Palette Register 6		
	07h	Color Palette Register 7		
	08h	Color Palette Register 8		
	<u>09h</u>	Color Palette Register 9		
	0Ah	Color Palette Register 10		
	0Bh	Color Palette Register 11		
	0Ch	Color Palette Register 12		
	0Dh	Color Palette Register 13		
	0Eh	Color Palette Register 14		
0Fh		Color Palette Register 15		
10h		Mode Control Register		
11h		Screen Border Color		
12h		Color Plane Enable Register		
	13h Pixel Panning Register			
	14h	Color Select Register (VGA)		

160

AR0~ARF: Palette Registers

Read/Write
3C1, Index 00h ~ 0Fh
3C0, Index 00h ~ 0Fh
00h
Reserved
Palette Entries

Preliminary V.10 Oct.07,1999

AR10: Mode Control Register

Register Type:	Read/Write		
Read Port:	3C1, Index 10h		
Write Port:	3C0, Index 10h		
Default:	00h		
D7	P4, P5 Source Select		
Bit[5:4]	0: AR0-F Bit[5:4] are used as the source for the Lookup Table Address 1: AR14 Bit[1:0] are used as the source for the Lookup Table Address Bit[5:4]		
D6	Pixel Double Clock Select		
	0: The pixels are clocked at every clock cycle		
	1: The pixels are clocked at every other clock cycle		
D5	PEL Panning Compatibility with Line Compare		
	0: Disable		
	1: Enable		
D4	Reserved		
D3	Background Intensity or Blink enable (while the Character Attribute D7=1)		
	0: Background Intensity attribute enable		
	1: Background Blink attribute enable		
D2	Line Graphics enable		
	0: The ninth bit of nine-bit-wide character cell will be the same as the		
backgr	round.		
	1: The ninth bit of nine-bit-wide character cell will be made be the same as the eighth bit for character codes in the range C0h through DFh.		
DI	Display Type		
	4. The contents of the Attribute byte are treated as COOI attribute.		
ottribut	T: The contents of the Attribute byte are treated as MDA-compatible		
	Graphics/Text Mode		
DU	0: The Attribute Controller will function in text mode		
	1: The Attribute Controller will function in graphics mode		
	The Autobale Controlled will fulled of the graphics mode.		
AR11: Screen	Border Color		
Register Type:	Read/Write		
Read Port:	3C1, Index 11h		
Write Port:	3C0. Index 11h		

161

Default:00hD[7:6]ReservedD[5:0]Palette Entry

Preliminary V.10 Oct.07,1999

AR12: Color Plane Enable Register

Register Type:	Read/Write
Read Port:	3C1, Index 12h
Write Port:	3C0, Index 12h
Default:	00h
D[7:6]	Reserved
D[5:4]	Display Status MUX Bit[1:0]
	These bits select two of the eight bits color outputs to be available in the status register. The output color combinations available on the status bits are as follows:

Table 9.5-2 Table for Video Read-back Through Diagnostic Bit (I)

Color Plane Enable Register		Input Status Register 1 (Refer to 7.1.4)	
D5	D4	D5	D4
0	0	Red	Blue
0	1	Secondary Red	Secondary Green
1	0	Secondary Blue	Green
1	1	Unused	Unused

Table 9.5-3 Table for Video Read-back Through Diagnostic Bit (II)

Color Plane E	nable Register	Input Status Regist	er 1 (Refer to 7.1.4)
D5	D4	D5	D4
0	0	P2	P0
0	1	× P5	P4
1	0	P3	P1
1	1	P7	P6

D[3:0] Enable Color Plane Bit[3:0]

AR13: Pixel Panning Register

Register Type:	Read/Write
Read Port:	3C1, Index 13h
Write Port:	3C0, Index 13h
Default:	00h
D[7:4]	Reserved
D[3:0]	Pixel Pan Bit[3:0]

This field specifies the number of pixels the display data will be shifted to the left. This field is interpreted as indicated in the following table:

Table 9.5-4 Table of Pixel Panning

D3 D2 D1 D0 Monochrome VGA Mode 13 All Others							
	D3	D2	D1	D0	Monochrome Text	VGA Mode 13	All Others

162

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

0	0	0	0	8	0	0
0	0	0	1	0	Invalid	1
0	0	1	0	1	1	2
0	0	1	1	2	Invalid	3
0	1	0	0	3	2	4
0	1	$\left(0 \right)$	1	4	Invalid	5
0	1	> \ 1) V	 0	5	3	6
0	1	1	1	6	Invalid	7
1	0	$\langle 0 \rangle$		7	Invalid	Invalid
1	0	Č (⊂		Invalid	Invalid	Invalid
1	0	1	0 /	Invalid	Invalid	Invalid
1	0	1	$1 \land$	Invalid	Invalid	Invalid
1	1	0	0	Invalid	Invalid	Invalid
1	1	0	1 <	Invalid	Invalid	Invalid
1	1	1	0		Invalid	Invalid
1	1	1	1	Invalid	Invalid	Invalid
AR14: (Color Se	elect Re	gister			

AR14: Color Select Register

	-
Register Type:	Read/Write
Read Port:	3C1, Index 14h
Write Port:	3C0, Index 14h
Default:	00h
D[7:4]	Reserved
D[3:2]	Color Bit[7:6]
	These two bits are concatenated with the six bits from the Palette Register to
	form the address into the LUT and to drive P[7;6].
D[1:0]	Color Bit[5:4]

If AR10 D7 is programmed to a '1', these two bits replace the corresponding two bits from the Palette Register to form the address into the LUT and to drive P[5:4]. If AR10 D7 is programmed to a '0', these two bits are ignored.

163

9.6 **Color Registers**

DAC Status Register

Read Only
3C7
00h
Reserved

Preliminary V.10 Oct.07,1999

D[1:0] DAC State Bit[1:0] 00: Write Operation in progress 11: Read Operation in progress

DAC Index Register (Read Mode)

Register Type:	Write Only
Write Port:	3¢7 ()
Default:	00h
D[7:0]	DAC Index Bit[7:0]
	$ / / (\alpha) $

DAC Index Register (Write Mode)

Register Type:Read/WriteRead/Write Port:3C8Default:00hD[7:0]DAC Index Bit[7:0]

DAC Data Register

Register Type: Read/Write

Read/Write Port: 3C9

Default: 00h

When SR7 D2 = 1

D[7:6] Reserved D[5:0] DAC Data [5:0]

Before writing to this register, 3C8h is written with the DAC index. Then three values, corresponding to the Red, Green, and Blue values for the DAC entry are written. After the third value is written, the values are transferred to the LUT and the DAC index is incremented in case new values for the next DAC index are to be written.

Before reading from this register, 3C7h is written with the DAC index. Then three values, corresponding to the Red, Green, and Blue value for the DAC entry may be read from this DAC index. After the third value is read, the DAC index is incremented in case the value for the next DAC index to be read.

When SR7 D2 = 0

D[7:0] DAC Data [7:0]

When SR7 D2 = 0, the 24-bit LUT is enabled. This LUT can translate the R, G, B values into new R, G, B values independently. This LUT can be used for performing GAMMA correction function. The programming procedure is same as standard LUT when SR7 D2 = 1.

164

PEL Mask Register

Register Type:Read/WriteRead/Write Port:3C6Default:00hD[7:0]Pixel Mask Bit[7:0]

Preliminary V.10 Oct.07,1999

This field is the Pixel Mask for the palette DAC. If a bit in this field is programmed to '0', the corresponding bit in the pixel data will be ignored in looking up an entry in the LUT.

9.7 Extended Registers

 Register Type:
 Read/Write

 Read/Write Port:
 3C4

 Default:
 00h

 D[7:6]
 Reserved

 D[5:0]
 Extended Register Index Bit[5:0] (05h ~ 3Fh)

Table 9.7-1 Table of Extended Registers

Index (3C4)	Extended Enhanced Register (3C5)
05h	Extended Password/Identification Register
06h	Extended graphics mode register
07h	RAMDAC control register
08h	CRT threshold register I
09h	CRT threshold register II
0Ah	Extended vertical overflow register
0Bh	Extended horizontal overflow register I
0Ch	Extended horizontal overflow register II
0Dh	Extended CRT starting address register
0Eh	Extended CRT pitch register
0Fh	CRT misc. control register
10h	Display line width register
11h	DDC register
12h	Reserved
13h	Reserved
14h	Reserved
15h	Reserved
16h	Reserved
17h	Reserved
18h	Reserved
19h	Reserved
1Ah	Reserved
1Bh	Reserved

165

Preliminary V.10 Oct.07,1999

1Ch	Reserved
1Dh	Segment Selection Overflow Register
1Eh	Module enable register
1Fh	Power management register
20h	GUI address decoder setting register
21h(())	GUI HostBus state machine setting register
22h	GUI HostBus controller timing register
23h	GUI HostBus timer register I
24h	Reserved
25h () /	Reserved
26h	Turbo Queue base address register
27h	Turbo Queue control register
28h	Reserved
29h	Reserved
2Ah	Reserved
2Bh	Extended DCLK clock generator register I
2Ch	Extended DCLK clock generator register II
2Dh	Extended DCLK clock generator register III
2Eh	Extended ECLK clock generator register I
2Fh	Extended ECLK clock generator register II
30h	Extended ECLK clock generator register III
31h	Extended clock generator misc. register
32h	Extended clock source selection register
33h	Reserved
34h	Interrupt status register
35h	Interrupt enable register
36h	Interrupt reset register
37h	Reserved
38h	Power on trapping register I
39h	Power on trapping register II
3Ah	Power on trapping register III
3Bh	Reserved
3Ch	Synchronous reset register
3Dh	Testing enabling register
3Eh	Reserved

166

Preliminary V.10 Oct.07,1999

3Fh	Reserved

9.8 VIDEO/TV Extended Registers

The following list is the registers of sis630 relocate I/O:

The index port of SiS630 video playback registers is RIO +02h. The data port of SiS 630 video playback registers is RIO +03h. The index port of SiS 630 digital video interface registers is RIO +04h. The data port of SiS 630 digital video interface registers is RIO +05h. The index port of SiS 301 TV encoder registers is RIO +10h. The data port of SiS 301 TV encoder registers is RIO +10h. The index port of SiS 301 TV encoder registers is RIO +11h. The index port of SiS 301 macrovisontm registers is RIO +12h. The data port of SiS 301 macrovisontm registers is RIO +13h. The index port of SiS 301 VGA2 registers is RIO +0014h. The data port of SiS 301 VGA2 registers is RIO +0015h. The SiS 301 palette address port register is RIO +0016h. The SiS 301 palette data port register is RIO +0017h. "RIO" is the configuration space base address register cnfg18 d[15:0] value.

Video Playback Index Register

Register Type: Read/Write Read/Write Port: RIO+02 Default: 00h D[7:0] Video playback register index Bit[7:0] (00h ~ 65h)

Index (RIO+02)	Video Playback Register (RIO+03)
00h	Password/Identification Register
01h	Video Window Horizontal Display Start Low Register
02h	Video Window Horizontal Display End Low Register
03h	Video Window Horizontal Display Start/End High Register
04h	Video Window Vertical Display Start Low Register
05h	Video Window Vertical Display End Low Register
06h	Video Window Vertical Display Start/End High Register
07h	Video Display/Y Plane Frame Buffer Starting Address Low Register
08h	Video Display/Y Plane Frame Buffer Starting Address
Preliminary V.10 Oct.07.1999	167 Silicon Integrated Systems Corporation

Table 9.8-1 Table of Video Playback Registe	rş
---	----

	Middle Register
09h	Video Display/Y Plane Frame Buffer Starting Address High Register
0Ah	Video U Plane Frame Buffer Starting Address Low Register
0Bh	Video U Plane Frame Buffer Starting Address Middle Register
OCh	Video U Plane Frame Buffer Starting Address High Register
ODh	Video V Plane Frame Buffer Starting Address Low Register
OEh	Video V Plane Frame Buffer Starting Address Middle Register
0Fh	Video V Plane Frame Buffer Starting Address High Register
10h	Video Display/Y Plane Frame Buffer Pitch Low Register
11h	Nideo UV Plane Frame Buffer Pitch Low Register
12h	Video Display/Y Plane/UV Plane Frame Buffer Pitch High Register
13h	Video Display/Y Plane Frame Buffer Preset Low Register
14h	Video Display/Y Plane Frame Buffer Preset Middle Register
15h	Video UV Plane Frame Buffer Preset Low Register
16h	Video UV Plane Frame Buffer Preset Middle Register
17h	Video Display/Y Plane/UV Plane Frame Buffer Preset High Register
18h	Video Horizontal Post Scaling Factor Fraction Low Register
19h	Video Horizontal Post Scaling Factor Fraction High Register
1Ah	Video Vertical Scaling Factor Fraction Low Register
1Bh	Video Vertical Scaling Factor Fraction High Register
1Ch	Video Horizontal/Vertical Scaling Control Register
1Dh	Video Playback Threshold Low Value Register
1Eh	Video Playback Threshold High Value Register
1Fh	Video Playback Line Buffer Maximum Size Register
20h	Video Overlay Color Key Red Minimum Value Register
21h	Video Overlay Color Key Green Minimum Value Register
22h	Video Overlay Color Key Blue Minimum Value Register
23h	Video Overlay Color Key Red Maximum Value Register
Preliminary V.10 Oct.07,1999	168 Silicon Integrated Systems Corporation

Preliminary V.10 Oct.07,1999

24h	Video Overlay Color Key Green Maximum Value Register
25h	Video Overlay Color Key Blue Maximum Value Register
26h	Video Chroma Key Red/Y Minimum Value Register
27h	Video Chroma Key Green/U Minimum Value Register
28h	Video Chroma Key Blue/V Minimum Value Register
29h(()	Video Chroma Key Red/Y Maximum Value Register
2Ah	Video Chroma Key Green/U Maximum Value Register
2Bh	Video Chroma Key Blue/V Maximum Value Register
2Ch	Video Contrast Enhancement Mean Value Sampling Rate Factor Register
2Dh	Video Brightness Value Register
2Eh	Video Contrast Enhancement Control Register
2Fh 🗸	Video Key Overlay Operation Mode Register
30h	Video Control Miscellaneous Register 0
31h	Video Control Miscellaneous Register 1
32h	Video Control Miscellaneous Register Register 2
33h	Subpicture Frame Buffer Starting Address Low Register
34h	Subpicture Frame Buffer Starting Address Middle Register
35h	Subpicture Frame Buffer Starting Address/Preset High Register
36h	Subpicture Frame Buffer Preset Low Register
37h	Subpicture Frame Buffer Preset Middle Register
38h	Subpicture Frame Buffer Pitch Register
39h	Subpicture Horizontal Scaling Factor Fraction Low Register
3Ah	Subpicture Horizontal Scaling Factor Fraction High Register
3Bh	Subpicture Vertical Scaling Factor Fraction Low Register
3Ch	Subpicture Vertical Scaling Factor Fraction High Register
3Dh	Subpicture Horizontal/Vertical Scaling Factor Integer Register
3Eh	Subpicture Threshold Value Register
3Fh	Subpicture FIFO Maximum Size Register
40h	Subpicture Color Palette Color0 Low Register
41h	Subpicture Color Palette Color0 High Register
42h	Subpicture Color Palette Color1 Low Register

169

Preliminary V.10 Oct.07,1999

43h	Subpicture Color Palette Color1 High Register
44h	Subpicture Color Palette Color2 Low Register
45h	Subpicture Color Palette Color2 High Register
46h	Subpicture Color Palette Color3 Low Register
47h	Subpicture Color Palette Color3 High Register
48h(())	Subpicture Color Palette Color4 Low Register
49h	Subpicture Color Palette Color4 High Register
4Ah	Subpicture Color Palette Color5 Low Register
4Bh	Subpicture Color Palette Color5 High Register
4Ch () /	Subpicture Color Palette Color6 Low Register
4Dh	Subpicture Color Palette Color6 High Register
4Eh	Subpicture Color Palette Color7 Low Register
4Fh	Subpicture Color Palette Color7 High Register
50h	Subpicture Color Palette Color8 Low Register
51h	Subpicture Color Palette Color8 High Register
52h	Subpicture Color Palette Color9 Low Register
53h	Subpicture Color Palette Color9 High Register
54h	Subpicture Color Palette ColorA Low Register
55h	Subpicture Color Palette ColorA High Register
56h	Subpicture Color Palette ColorB Low Register
57h	Subpicture Color Palette ColorB High Register
58h	Subpicture Color Palette ColorC Low Register
59h	Subpicture Color Palette ColorC High Register
5Ah	Subpicture Color Palette ColorD Low Register
5Bh	Subpicture Color Palette ColorD High Register
5Ch	Subpicture Color Palette ColorE Low Register
5Dh	Subpicture Color Palette ColorE High Register
5Eh	Subpicture Color Palette ColorF Low Register
5Fh	Subpicture Color Palette ColorF High Register
60h	MPEG Auto-Flipping Control Read-Back Register 0
61h	MPEG Auto-Flipping Control Read-Back Register 1
62h	MPEG Auto-Flipping Control Read-Back Register 2
63h	MPEG Auto-Flipping Control Read-Back Register 3
64h	MPEG Auto-Flipping Field Display Vertical Scaling Factor Fraction Low Register

Preliminary V.10 Oct.07,1999

65h	MPEG Auto-Flipping Field Display Vertical Scaling Factor Fraction High Register
-----	--

Digital Video Interface Register

 Register Type:
 Read/Write

 Read/Write Port:
 RIO+04

 Default:
 00h

 D[5:0]
 Digital Video Interface Register Index Bit[7:0] (00h ~ 28h)

Table 9.8-2 Table of digital video interface registers

Index (RIO+04)	Digital Video Interface Register (RIO+05)
00h	Function Control Register
01h	Mode Selection and FIFO Threshold High
02h	Mode Selection, PCI Bus Clock and FIFO Threshold Low
03h	FIFO Stop Operation
04h	Access Memory Starting Address High
05h	Access Memory Starting Address Median
06h	Access Memory Starting Address Low
07h	Access Memory Line Offset
08h	CRT2 Horizontal Total
09h	Overflow Register
0Ah	CRT2 Horizontal Display Enable End
0Bh	CRT2 Horizontal Retrace Start
0Ch	Overflow Register
0Dh	CRT2 Horizontal Retrace End
0Eh	CRT2 Vertical Total
0Fh	CRT2 Vertical Display Enable End
10h	CRT2 Vertical Retrace Start
11h	CRT2 Vertical Retrace End and Enable CRC Check and Overflow Register
12h	Hardware Cursor Test Mode and Overflow Register
13h	Software Command Reset, Panel Link Delay Compensation, Power Saving
14h	Panel Link Horizontal Retrace Start
15h	Panel Link Horizontal Retrace End/Skew
16h	Panel Link Horizontal Display Enable Start
17h	Panel Link Horizontal Display Enable End

Preliminary V.10 Oct.07,1999

18h	Panel Link Vertical Retrace Start
19h	Panel Link Vertical Retrace End/Misc.
1Ah	Panel Link Control Signal and Vertical Retrace Start
1Bh	Panel Link Vertical Display Enable Start
1Ch	Panel Link Vertical Display Enable End
1Dh	Panel Link Control Signal / High Bits of Vertical Display Control
1Eh	Panel Link Vertical Scaling Factor
1Fh	Panel Link DDA Operational Number In Each Horizontal Line
20h 🗸 🖉	Overflow Register
21h	Panel Link Vertical Accumulator Length
22h	Panel Link Horizontal Scaling Factor High
23h	Panel Link Horizontal Scaling Factor Low
24h	CRT2 Enable Write Register
25h	CRT2 Vertical/Retrace /Display Enable
26h	CRT2 Horizontal Counter Read Back
27h	CRT2 Vertical Counter Read Back
28h	CRT2 Horizontal Display Enable and Counter Overflow Read Back

9.9 PCI Configuration Registers

CNFG00: Configuration Register 00h

Register Type:	Read
Read Port:	0000h
Default:	03001039h
D[31:16]	Device ID
	SiS630 Device ID is 6300h
D[15:0]	Vendor ID
	SiS Vendor ID is 1039h

CNFG04: Configuration Register 04h

Register Type:	Read/Write
Read Port:	0004h
Default:	02200004h
D[26:25]	DEVSEL* timing (= 01, Read Only)
	00: fast
	01: medium (fixed at this value)

172

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

D23	10: slow Fast back-to-back capable (=0 read only) 0: capable
D21	1: not capable 66 MHz Capable 0: Support 33MHz
D12	 Support 66 MHz (fixed at this value) Capabilities List does not implement a list of capabilities
D9	 implements a list of capabilities Fast back-to-back enable 0: disable
D5	1: enable VGA Palette Snoop 0: Disable
D3	 Enable Bus Master Device is not a bus master (fixed at this value)
D1	1: Device is a bus master Memory Space 0: Disable
D0	1: Enable I/O Space 0: Disable 1: Enable
CNFG08: Con	figuration Register 08h
Register Type:	Read
Read Port:	0008h
Default:	0300000Xh
D[31:8] D[7:0]	Class Code (= 030000h) Revision ID (= 0xh)

CNFG10: Configuration Register 10h

Register Type:	Read/Write
Read Port:	0010h
Default:	0000008h
D[31:0]	32-bit memory base register for 128MB linear frame buffer

173

CNFG14: Configuration Register 14h

Register Type: Read/Write

Preliminary V.10 Oct.07,1999

Read Port:	0014h
Default:	0000000h
D[31:0]	32-bit memory base register for 128KB memory mapped I/O

CNFG18: Configuration Register 18h

Register Type:	Read/Write
Read Port:	0018h
Default:	0000001h
D[31:0]	32-bit I/O base register for 128 I/O space

CNFG2C: Configuration Register 2Ch

Register Type:	Read/Write Once Only
Read Port:	002Ch
Default:	0000000h
D[31:16]	Subsystem ID
D[15:0]	Subsystem Vendor ID

CNFG30: Configuration Register 30h

Register Type:	Read/Write	
Read Port:	0030h	
Default:	000C0000h	
D[31:11]	Expansion ROM Base	Address
D0	ROM Enable Bit	
	0: Disable	
	1: Enable	

CNFG3C: Configuration Register 3Ch

Read/Write
003Ch
00000100h
Interrupt Pin (= 00h, Read Only)
Interrupt Line (= 00h)

9.10 AGP Configuration Registers

Note: All the registers described in this section can be accessed only when AGP is enabled.

174

CNFG34: Configuration Register 34h

Register Type:	Read Only
Read Port:	0034h
Default:	00000050h

Preliminary V.10 Oct.07,1999

D[7:0] Capabilities list offset pointer (Read Only)

CNFG50: Configuration Register 50h

Register Type:	Read Only
Read Port:	0050h
Default:	00105c02h
D[23:20]	Major revision number
D[19:16]	Minor revision number
D[15:8]	Pointer to next item
D[7:0]	Cap_ID: value 02h identifies the list item as pertaining to AGP register

CNFG54: Configuration Register 54h

Do	I. AGP enable
D8	1: AGP enable
	0: sideband address mode disable
D9	1: sideband address mode enable
D[31:24]	Maximum number of AGP requests can be enqueued
Default:	0000000h
Read Port:	0058h
Register Type:	Read/Write
CNFG58: Conf	iguration Register 58h
	r. Support
	4. Support
DU	O: Not support
DO	1: Support
DI	2X mode support
D4	1: Support
	0: Not support
D1	4X mode support
	1: Support
	0: Not support
D9	Side band addressing support
D[31:24]	Maximum number of AGP command requests
Default:	0100003h
Read Port:	0054h

D0

- 0: 2X mode disable
- 1: 1X mode enable
- 0: 1X mode disable

CNFG5C: Configuration Register 5Ch

Register Type:	Read
Read Port:	005Ch
Default:	00000000
D[15:8]	NULL: 00h indicates final item in the capability list

176

Preliminary V.10 Oct.07,1999

10 Register Summary / Description -- Legacy

10.1 Register Summary

10.1.1 Legacy ISA Registers

10.1.1.1 DMA Registers

Address	Access	Register Name
0000h	R/W	DMA1 CH0 Base and Current Address Register
0001h	R/W	DMA1 CH0 Base and Current Count Register
0002h	R/W	DMA1 CH1 Base and Current Address Register
0003h	R/W	DMA1 CH1 Base and Current Count Register
0004h	R/W	DMA1 CH2 Base and Current Address Register
0005h	R/W	DMA1 CH2 Base and Current Count Register
0006h	R/W	DMA1 CH3 Base and Current Address Register
0007h	R/W	DMA1 CH3 Base and Current Count Register
0008h	R/W	DMA1 Status(r) Command(w) Register
0009h	R/W	DMA1 Request Register
000Ah	R/W	DMA1 Command(r) Write Single Mask Bit (w) Register
000Bh	R/W	DMA1 Mode DMA Register
000Ch	WO	DMA1 Clear Byte Pointer
000Dh	WO	DMA1 Master Clear
000Eh	WO	DMA1 Clear Mask Register
000Fh	R/W	DMA1 Write All Mask Bits(w) Mask Status(r) Register
00C0h	R/W	DMA2 CH0 Base and Current Address Register
00C2h	R/W	DMA2 CH0 Base and Current Count Register
00C4h	R/W	DMA2 CH1 Base and Current Address Register
00C6h	R/W	DMA2 CH1 Base and Current Count Register
00C8h	R/W	DMA2 CH2 Base and Current Address Register
00CAh	R/W	DMA2 CH2 Base and Current Count Register
00CCh	R/W	DMA2 CH3 Base and Current Address Register

Preliminary V.10 Oct.07,1999

00CEh	R/W DMA2 CH3 Base and Current Count Register		
00D0h	R/W	DMA2 Status(r) Command(w) Register	
00D2h	R/W	DMA2 Request Register	
00D4h	R/W	DMA2 Command(r) Write Single Mask Bit(w) Register	
00D6h	R/W	DMA2 Mode Register	
00D8h		DMA2 Clear Byte Pointer	
00DAh	WO	DMA2 Master Clear	
00DCh	ŴO)	DMA2 Clear Mask Register	
00DEh	R/W	W DMA2 Write All Mask Bits(w) Mask Status Register(r)	

Address	Access	Register Name
0080h	R/W	Reserved
0081h	R/W	DMA Channel 2 Low Page Register
0082h	R/W	DMA Channel 3 Low Page Register
0083h	R/W	DMA Channel 1 Low Page Register
0084h	R/W	Reserved
0085h	R/W	Reserved
0086h	R/W	Reserved
0087h	R/W	DMA Channel 0 Low Page Register
0088h	R/W	Reserved
0089h	R/W	DMA Channel 6 Low Page Register
008Ah	R/W	DMA Channel 7 Low Page Register
008Bh	R/W	DMA Channel 5 Low Page Register
008Ch	R/W	Reserved
008Dh	R/W	Reserved
008Eh	R/W	Reserved
008Fh	R/W	Reserved

Address	Access	Register Name
00480h	R/W	Reserved

Preliminary V.10 Oct.07,1999

00481h	R/W	DMA Channel 2 High Page Register
00482h	R/W	DMA Channel 3 High Page Register
00483h	R/W	DMA Channel 1 High Page Register
00484h	R/W	Reserved
00485h	R/W	Reserved
00486h	R/W	Reserved
00487h	R/W	DMA Channel 0 High Page Register
00488h	R/W	Reserved
00489h	R/W	DMA Channel 6 High Page Register
0048Ah	R/W	DMA Channel 7 High Page Register
0048Bh	R/W	DMA Channel 5 High Page Register
0048Ch	R/W	Reserved
0048Dh	R/W	Reserved
0048Eh	R/W	Reserved
0048Fh	R/W	Reserved
10 1 1 2 Interru	ot Controller Re	Paisters

10.1.1.2Interrupt Controller Registers

Address	Access	Register Name
0020h	R/W	INT 1 Base Address Register
0021h	R/W	INT 1 Mask Register
00A0h	R/W	INT 2 Base Address Register
00A1h	R/W	INT 2 Mask Register
40.4.4.275mort		\sim

10.1.1.3Timer Registers

Address	Access	Register Name
0040h	R/W	Interval Timer 1 - Counter 0
0041h	R/W	Interval Timer 1 - Counter 1
0042h	R/W	Interval Timer 1 - Counter 2
0043h	WO	Interval Timer 1 - Control Word Register

10.1.1.40ther Registers

Address	Access		Register Name
Preliminary V.1	0 Oct.07,1999	179	Silicon Integrated Systems Corporation

0061h	R/W	NMI Status Register
0070h	WO	CMOS RAM Address and NMI Mask Register
0092h	R/W	INIT and A20 Register
00F0h	WO	Coprocessor Error Register
04D0h	R/W	IRQ Edge/Level Control Register 1
04D1h	R/W	IRQ Edge/Level Control Register 2

180

Preliminary V.10 Oct.07,1999

11 Register Summary / Description – LPC Summary

Address	Access	Register Name
00-01h	RO	Vendor ID
02-03h	RO	Device ID
04-05h	RO	Command Register
06-07h	RO	Status register
08h	RO	Revision ID
09-0Bh	RO	Class Code
0Ch	RO	Cache Line Size
0Dh	RO	Master Latency Timer
0Eh	RO	Header Type
0Fh	RO	Built-in Self Test
10-3Ch	RO	Reserved
40h	R/W	BIOS Control Register
41-44h	R/W	PCI INTA#/B#/C#/D# Remapping Register
45h	R/W	Flash ROM Control Register
46h	R/W	INIT Enable Register
47h	R/W	Keyboard Controller Register
48h	R/W	RTC Control Register
49h	R/W	Individual Distributed DMA Channel Enable Register
4A-4Bh	R/W	Distributed DMA Master Configuration Register
4C-4Fh	RO	Shadow Register of ICW1 to ICW4 of the INT1
50-53h	RO	Shadow Register of ICW1 to ICW4 of the INT2
54-55h	RO	Shadow Register of OCW 2&3 of INT1
56-57h	RO	Shadow Register of OCW 2&3 of the INT2
58h-5Fh	RO	CTC Shadow Registers 1 to 8
60h	RO	Shadow Register for ISA Port 70
61h	R/W	IDEIRQ Remapping Register

181

11.1 LPC Bridge Configuration Registers

Preliminary V.10 Oct.07,1999

62h	R/W	Reserved.
63h	R/W	GPEIRQ Remapping Register
64h	R/W	Priority Timer
65h	R/W	PHOLD# Timer
66h	R/W	Reserved
67h	R/W	Clear SIRQ1 and SIRQ12
68-69h	R/W	Reserved
6Ah	R/W	ACPI/SCI IRQ Remapping Register
6Bh	R/W	Reserved
6Ch	R/W	SMBUS IRQ Remapping Register
6Dh	R/W	Software Watchdog IRQ Remapping Register
6E-6Fh	R/W	Software-Controlled Interrupt Requests
70h	R/W	Serial Interrupt Control Register
71-73h	R/W	Serial Interrupt Enable Register
74-75h	R/W	ACPI Base Address Register

11.2 LPC Bridge Configuration Registers

Device	IDSEL Function Number
LPC Bridge	AD12 0000b

Register 00h~01h Vendor ID

Default Value: 1039h

Access:	Read On	ly 🔪
Bit	Access	Descriptio
45.0	50	Manalan Islan (Gaatian Nivershan

BIt	Access	Description
15:0	RO	Vendor Identification Number
		Default value is 1039h

Register 02h~03h Device ID

Default Value:	0008h
A	Deed Oak

Access:	Read On	У
Bit	Access	Description
15:0	RO	Device Identification Number
		Default value is 0008h

Preliminary V.10 Oct.07,1999

Note: Write a 1 to Reg40 bit 6 will change the Device ID to 0018h.

Register 04h~05h Command Register

Default Value: 000Ch

Access:	Read On	У
Bit	Access	Description
15:4	RO	Reserved.
	$\langle 0 \rangle$	Read as 0
3	RO	Read as 1 to indicate that the device is allowed to monitor special cycles.
2	RO	Read as 1 to indicate that the device is able to become PCI bus master.
1	RO	Response to Memory Space Accesses (default=0)
		This bit is hardwired to1.
0	RO	Response to Memory Space Accesses (default=0)
		This bit is hard wired to 1.
Register 06h~07h Status Default Value: 0200h		
1100000	Pood ()n	

Register 06h~07h Status

Access:	Read On	ly
Bit	Access	Description
15:14	RO	Reserved.
		Read as 0
13	RO	Received Master-Abort
		This bit will be set to 1 when the current transaction is terminated with master-abort. This bit can be cleared to 0 by writing a 1 to it.
12	RO	Received Target-Abort
		This bit will be set to 1 when the current transaction is terminated with target-abort. This bit can be cleared to 0 by writing a 1 to it.
11	RO	Reserved.
		Read as 0.
10:9	RO	DEVSEL# Timing
		The two bits are hardwired to 01 to indicate positive decode with medium timing.

183

Preliminary V.10 Oct.07,1999

8:0	RO	Reserved.
		Read as 0.

Register 08h Revision ID

Default Value: 00h

Access:	Read Onl	у	
Bit	Access	Description	
7:0	RO	Revision Identification Number Default value is 00h indicating the A0 stepping.	

Register 09h~0Bh Class Code

Default Value: 060100h

Access:	Read Only
1,000000.	ricuu Orny

Bit	Access	Description
23:0	RO	Class Code Default value is 060100h.

Register 0Ch Cache Line Size

Default Value: 00h

Access:	Read Only	y	
Bit	Access		Description
7:0	RO	Cache Line Size	

Register 0Dh Master Latency Timer

Default Value: 00h

Access: Read Only

Bit	Access		Description
7:0	RO	Master Latency Timer	

Register 0Eh Header Type

Default	Value:	80h
Dolaan	value.	0011

Access:	Read On	у
Bit	Access	Description
7:0	RO	Header Type
		Default value is 80h

184

Register 0Fh BIST

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

G/B

Default Valu	e [.] 00h	
Access:	Read Onl	ly
Bit	Access	Description
7:0	RO	BIST
		Default value is 00h
Register 10	h~3Ch Res	served. Read as 0.
Register 40	h BIOS Co	ontrol Register
Default Valu	e: 00h	
Access:	Read/Wri	te
Bit	Access	Description
7	R/W	ACPI Enable
		0 : Disable
		1 : Enable
		When enabled, ACPI register at IO space address as defined in ACPI base registers (Reg 74h~75h) can be accessed.
6	R/W	Device ID Selection
		0 : LPC Bridge Device ID is 0008
		1 : LPC Bridge Device ID is 0018
5	R/W	Reserved.
4	R/W	PCI Posted Write Buffer Enable
		0 : Disable (default)
		1 : Enable
3	R/W	Subtractive Decode to Internal registers Enable
		0 : Disable
		1 : Enable
		When this bit is enabled, SiS630 will do subtractive decode on addresses for internal registers.
2	R/W	Reserved.

185

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

1	R/W	BIOS positive Decode Enable
		0 : Disable
		1 : Enable
		When enabled, SiS630 will positively respond to PCI memory cycles toward E segment and F segment. Otherwise, it will respond subtractively.
0	R/W	Extended BIOS Enable. (FFF80000~FFFDFFFF) When enabled, SiS630 will positively respond to PCI cycles toward the Extended segment. Otherwise, it will have no response.

Register 41/42/43/44h PCI INTA#/B#/C#/D# Remapping Register

Default Value: 80/80/80/h							
Access: Read/Write							
Bit	Access		$\left(\right) $	Descrip	tion		
7	R/W	Remapping 0: Enabl	j enable e	\bigotimes			
		1 : Disab	ble	5			
		When ena	bled, PCL/IN ecified below	TA#/B#/C#/[v.)# will be rer	mapped to	the IRQ
6:4	RO	Reserved. Read as 0	<				
3:0	R/W	IRQ Remap	IRQ Remapping Table				
		<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#
		0000	reserved	0110	IRQ6	1100	IRQ12
		0001	reserved	0111	IRQ7	1101	reserved
		0010	reserved	1000	Reserved	1110	IRQ14
		0011	IRQ3	1001	IRQ9	1111	IRQ15
		0100	IRQ4	1010	IRQ10		
		0101	IRQ5	1011	IRQ11		

Note: More than one of INT[A:D]# can be remapped to the same IRQ line, but that IRQ line should be programmed to level-triggered mode.

Table11.1-1 Interrupt Pin Reroute Table				
Function	Interrupt Pin		Function	Interrupt Pin
Preliminary V.10 Oct.07,1999 186			Silicon Integrated	Systems Corporation

GUI	INTA	MAC	INTC
AUDIO	INTB	USB0	INTD
MODEM	INTB	USB1	INTD

Register 45h Flash ROM Control Register

Default Value: 40h

Access:	Read/Wri	
Bit	Access	Description
7:6	R/W	Flash EPROM Control Bit
		If bit 7 is set to '0' after CPURST de-asserted, EPROM can be flashed when bit 6 is set to '1'. Once bit 7 is set to '1', EPROM can not be flashed until the system is reset.
5:0	R/W	Reserved.

Register 46h INIT Enable Register

Default Value: 00h

Access:	Read/Write
AUUUU33.	iteau/write

Bit	Access	Description
7:6	R/W	Hardware reset initiated by software
		When both set to 1, hardware reset will be generated to CPU.
5	R/W	INIT Enable
		0: Drives CPURST during S/W reset and INIT is inactive.
		1 : Drives INIT during S/W reset
4	R/W	Fast Gate 20 Emulation
		0 : Disable
		1 : Enable
3	R/W	Fast Reset Latency Control
		0 : 2us
		1 : 6us
2	R/W	Fast Reset Emulation
		0 : Disable
		1 : Enable

187

Preliminary V.10 Oct.07,1999

1	R/W	A20M# Output Control
		0: Enable the assertion of A20M# if applicable.
		1: Disable the assertion of A20M#, i.e., A20M# will be high at all times.
0	R/W	Enable Keyboard Hardware Reset
	$\Delta(\mathbb{R})$	0 : Disable
	(O)	1 : Enable

Note: Write a 1 to Port 92 bit 0 will cause SiS630 to drive INIT if INIT Enable bit is 1, and Port 92 bit 1 will be set to 1 concurrently to Disable the assertion of A20M#.

Register 47h Keyboard Controller Register

Default Value: 51h

Access:	Read/Wr	ite
Bit	Access	Description
7	R/W	USB Legacy Support Interface Enable
		0 : Disable
		1 : Enable
6	R/W	PS/2 Mouse Lock Enable
		0 : Disable
		1 : Enable
5	R/W	Internal Keyboard Controller Clock Selection
		0 : PCICLK/4
		1:7.159MHz
4	R/W	Keyboard Lock Enable
		0 : Disable
		1 : Enable
3	R/W	Integrated Keyboard Controller Enable
		0 : Disable
		1 : Enable
2	R/W	Integrated PS/2 Mouse Enable
		0 : Disable
		1 : Enable
		This bit is meaningful only when Bit3 is enabled.

188

Preliminary V.10 Oct.07,1999

1	R/W	Keyboard Hot Key Status
		This bit is set when hot key (Ctrl+Alt+Backspace) is pressed and should be cleared at the end of SMI# handler. This bit is meaningful only when internal KBC is enabled.
0	R/W	Keyboard Hot Key Control
	(R)	0 : Disable
	(\mathcal{O})	1 : Enable
		This bit is meaningful only when internal KBC is enabled.

Register 48h RTC Control Register

Default Value: 10h

Access:	Read/Wr	ite
Bit	Access	Description
7	R/W	RTC Extended Bank Enable (EXTEND_EN)
		0 : Disable
		1 : Enable
		When this bit is enabled, the upper 128 bytes of RTC SRAM can be accessed.
6	R/W	Automatic Power Control Registers (APCREG_EN) Enable
		0 : Disable
		1 : Enable
		When this bit is enabled, APC registers can be accessed.
5	R/W	Instant Power-Off Enable (INSTOFF_EN)
		Before enabling this function, the bit1 at APC Register 04h should be enabled. System will be powered off if GPIO2_STS is set.
4	RO	Internal RTC Status
		0 : Disable
		1 : Enable
3:0	R/W	Reserved.

Register 49h Individual Distributed DMA Channel Enable

Default Value: 00h

Access: Read/Write

Bit	Access	Description

189

Preliminary V.10 Oct.07,1999

7	R/W	Channel 7 DDMA Enable
6	R/W	Channel 6 DDMA Enable
5	R/W	Channel 5 DDMA Enable
4	R/W	Reserved.
		This bit must be programmed to 0.
3	R/W	Channel 3 DDMA Enable
2	R/W	Channel 2 DDMA Enable
1	R/W	Channel 1 DDMA Enable
0	R/W	Channel 0 DDMA Enable
		0 : Disable

Register 4A~4Bh Distributed DMA Master Configuration Register

Default Value: 0000h

Access:	Read/Wr	
Bit	Access	Description
15:4	R/W	DDMA slave base address bits[15:4]
		The DMA slave channels must be grouped into a 128 bytes block with 16 bytes per channel. The DMA slave channel 0 will be located at the base address specified here.
3:1	R/W	Reserved.
		This bit must be programmed to 0.
0	R/W	DDMA Function Enable
		0 : Disable (default)
		1 : Enable

Register 4C~4Fh Shadow Register of ICW1 to ICW4 of INT1

Default Value: 0000000h

Access:	Read Onl	у
Bit	Access	Description
7:0	RO	Reflect ICW1 to ICW4 of the master interrupt controller

Register 50~53h Shadow Register of ICW1 to ICW4 of INT2

Default Value: 0000000h Access: Read Only

Preliminary V.10 Oct.07,1999

Bit	Access	Description
7:0	RO	Reflect ICW1 to ICW4 of the slave interrupt controller

Register 54~55h Shadow Register of OCW2 to OCW3 of INT1

Default Value: 0000h

Access. Read Only

Bit	Access	Description
7:0	RO	Reflect OCW2 to OCW3 of the master interrupt controller

Register 54~55h Shadow Register of OCW2 to OCW3 of INT2

Default Value: 0000h

Access:	Read Onl	y / () }
Bit	Access	Description
7:0	RO	Reflect OCW2 to OCW3 of the slave interrupt controller

Register 58h CTC Shadow Register 1

Default Value: 00h

Access:	Read Onl	y /</th
Bit	Access	Description
7:0	RO	Reflect low byte of the initial count number of CTC Counter 0

Register 59h CTC Shadow Register 2

Default Value: 00h

Default Valu	ie: 00h	
Access:	Read Onl	у у
Bit	Access	Description
7:0	RO	Reflect high byte of the initial count number of CTC Counter 0

Register 5Ah CTC Shadow Register 3

Default Value: 00h

٨	Pood Only
Access:	Read Only

Bit	Access	Description
7:0	RO	Reflect low byte of the initial count number of CTC Counter 1

Register 5Bh CTC Shadow Register 4

Default Value: 00h Access: Read Only

///////////////////////////////////////	Read Only		
Bit	Access		Description
Preliminary V.10 Oct.07,1999 191		99 191	Silicon Integrated Systems Corporation

	7:0	RO	Reflect high byte of the initial count number of CTC Counter 1
--	-----	----	--

Register 5Ch CTC Shadow Register 5

Default Value: 00h

Access:	Read Only

Bit	Access	Description
7:0	RO	Reflect low byte of the initial count number of CTC Counter 2

Register 5Dh CTC Shadow Register 6

Default Value): 00h / /	
Access:	Read Onl	y / /
Bit	Access	Description
7:0	RO	Reflect high byte of the initial count number of CTC Counter 2

Register 5Eh CTC Shadow Register 7

Default Value	e: 00h			
Access:	Read Onl	y v v v v v v v v v v v v v v v v v v v		
Bit	Access	Description		
7:0	RO	Reflect Control word (43h) of the built-in CTC		
Register 5Fh CTC Shadow Register 8				

Register 5Fh CTC Shadow Register 8 Default Value: 00b

Default Valu	e: 00h	\vee
Access:	Read On	y
Bit	Access	Description
7:6	RO	Reserved.
5	RO	CTC counter2 Write count pointer status
		CTC counter1 Write count pointer status
		CTC counter0 Write count pointer status
		CTC counter2 Read count pointer status
		CTC counter1 Read count pointer status
		CTC counter0 Read count pointer status
		0 : LSB
		1 : MSB

192

Register 60h Shadow Register for ISA port 70h

Preliminary V.10 Oct.07,1999

Default Valu	e: FFh	
Access:	Read On	ly
Bit	Access	Description
7:0	RO	Reflect the content of ISA port 70h register

Register 61h	IDEIRQ Remapping Register
	och //

Access:	e: sun Read/Wri	ite					
Bit	Access		Description				
7	ŔAŴ	IDEIRQ 0 : En 1 : Dit	DEIRQ Remapping Enable 0 : Enable 1 : Disable (default)				
6:5	R/W	Reserv	ed.				
4	R/W	IDE Cha 0 : Pri 1 : Se	IDE Channel Remapping Selection 0 : Primary IDE channel 1 : Secondary IDE channel				
3:0	R/W	IRQ Re	mapping Ta	ble	1		
		<u>Bits</u>	IRQx#	Bits	IRQx#	<u>Bits</u>	IRQx#
		0000	reserved	0110	/IRQ6	1100	IRQ12
		0001	reserved	0111	IRQ7	1101	reserved
		0010	reserved	1000	reserved	1110	IRQ14
		0011	IRQ3	1001		1111	IRQ15
		0100	IRQ4	1010	IRQ10	\mathcal{D}	
		0101	IRQ5	1011	IRQ11		

Register 62h Reserved.

Default Value: 80h Note: Bit 7 should be programmed to 1.

Register 63h GPEIRQ Remapping Register

Default Value: 80h

Access:	Read/Wri	te
Bit	Access	Description

193

Preliminary V.10 Oct.07,1999

7	R/W	GPEIRQ Remapping Enable 0 : Enable					
		1 : Disable	e (default)				
6:4	R/W	Reserved.	Reserved.				
3:0	R/W	IRQ Remap	ping Table				
	$ \land \land \lor \land$	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#
	$\left(\begin{array}{c} 0 \end{array} \right)$	0000	reserved	0110	IRQ6	1100	IRQ12
		0001	reserved	0111	IRQ7	1101	reserved
		0010	reserved	1000	reserved	1110	IRQ14
		0011	IRQ3	1001	IRQ9	1111	IRQ15
		0100	IRQ4	1010	IRQ10		
		0101	IRQ5	1011	IRQ11		

Register 64h Priority Timer

Default Value: 00h

Access:	Read/Wri	ite V/// 4
Bit	Access	Description
7:0	R/W	Priority Timer
		There are four PCI maser candidates inside the south bridge competing for the PCI bus. They are LPC/DMA master, DDMA, PCI MASTER2 and PCI MASTER3. The local arbiter with rotating scheme is adopted to coordinate their requests to become PCI master. The candidate that issues request to the arbiter with a higher priority is the winner and is eligible to become PCI master when PCI grant is received. The priority timer is used to set a lower limit in terms of PCI clock for the winning candidate to continue its PCI transactions. The timer will start counting as soon as the winning candidate receives the PCI grant. Upon expiration, the winning candidate's priority will become lowest among the four and, if the requests issued by the other masters are outstanding, it will lose the ownership of PCI grant. The maximum allowable value is FFh and the minimum allowable value is 00h.

Register 65h PHOLD# Timer

Default Value:	01h	
	-	

	Read/Writ	Access:
Description	Access	Bit

194

Preliminary V.10 Oct.07,1999

7:0	R/W	PHOLD# Timer
		The PHOLD# timer sets an upper limit in terms of PCI clock for the assertion time of PHOLD# initiated by LPC/DMA Master, DDMA, PCI MASTER2 and PCI MASTER3. The timer starts and continues the counting when south bridge receives PCI grant. Upon expiration, the chip will be forced to de-assert PCI request to system arbiter. The maximum allowable value is FFh and the minimum allowable value is 01h. If a larger value is programmed, the master will be able to complete more PCI transactions by preventing the system arbiter from issuing grant to other PCI master candidates. The PCI bus bandwidth can be fairly shared by all PCI master candidates by properly program this timer.

Register 66h Reserved. Read as 0.

Register 67h Clear SIRQ1 and SIRQ12

Default Value	e: 00h	
Access:	Read/Wr	ite
Bit	Access	Description
7	R/W	ISR bits clear SIRQ1 and SIRQ 12 Latches Enable
		When set to 1, the internal latches for SIRQ1 and SIRQ12 will be cleared when the corresponding ISR bits are set in Interrupt Controller. The latches only take effective when either register 64h bit 7 or bit 6 is set to 1. The latches will always be cleared by a IO read cycle with address=60h.
6:5	R/W	SMC37C673 Super I/O Compatible Mode
		These two bits should be programmed to 1 if a SMC37C673 Super IO chip is connected to SiS630 via serial IRQ line. Bit_6 enables the chipset to latch SIRQ1, while Bit_5 enables the chipset to latch SIRQ12. For all other super IO chips, the two bits should be programmed to 0
4	R/W	Serial IRQ sampled IOCHK phase control
		0: The sampled IOCHK on serial IRQ will be inverted.
		1: The sampled IOCHK on serial IRQ will not be inverted.
		(Recommended)
3:0	R/W	Reserved.

Register 68h Reserved. Read as 0.

Preliminary V.10 Oct.07,1999

Register 69h Reserved. Read as 0.

Register 6Ah ACPI/SCI IRQ Remapping Register

Default Valu	Default Value: 80h						
Access:	Read/Wr	te					
Bit	Access	\bigtriangleup		Descrip	tion		
7	R/W	ACPI/SCI II 0 : Enable 1 : Disabl	ACPI/SCI IRQ Remapping Enable 0 : Enable 1 : Disable (default)				
6:4	R/W	Reserved.					
3:0	R/W	IRQ Rema	ping Table	-			
		<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#
		0000	reserved	0110	IRQ6	1100	IRQ12
		0001 (reserved	0111	IRQ7	1101	reserved
		0010	reserved	1000	reserved	1110	IRQ14
		0011	IRQ3	1001	IRQ9	1111	IRQ15
		0100	IRQ4	1010	IRQ10		
		0101	IRQ5	1011	IRQ11		
Register 6Bh Reserved. Read as 0.							
Register 6C		IRQ Remap	ping Regist	ter Ç			
Access:	Read/Wr	ite				\rightarrow	

Register 6Ch SMBUS IRQ Remapping Register

Access:	Read/Wri	te
Bit	Access	Description
7	R/W	SMBUS IRQ Remapping Enable
		0 : Enable
		1 : Disable (default)
6:5	R/W	Reserved.
4	RO	SMBus IRQ Status
3:0	R/W	IRQ Remapping Table
Preliminary	V.10 Oct.07,	1999 196 Silicon Integrated Systems Corporation

	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#	<u>Bits</u>	IRQx#
	0000	reserved	0110	IRQ6	1100	IRQ12
	0001	reserved	0111	IRQ7	1101	reserved
	0010	reserved	1000	reserved	1110	IRQ14
$\left(\right)$	0011	IRQ3	1001	IRQ9	1111	IRQ15
()	0100	IRQ4	1010	IRQ10		
	0101	IRQ5	1011	IRQ11		

Register 6Dh	Software Watchdog IRQ Remapping Register
Default Value:	80h

Default value	e: 80n 🦳						
Access:	Read/Wr	ite 🦯	1				
Bit	Access		\sim	Desc	ription		
7	R/W	Software V	Vatchdog IR	Q Rema	oping Enabl	е	
		0 : Enable		\geq			
		1 : Disabl	e (default)	$\langle \rangle$			
6:4	R/W	Reserved.		\sim			
3:0	R/W	IRQ Rema	oping Table	25	$ \land $		1
		<u>Bits</u>	IRQx#	Bits	IRQx#	<u>Bits</u>	IRQx#
		0000	reserved	0110	IRQ6	1100	IRQ12
		0001	reserved	0111	IRQ7	1101	reserved
		0010	reserved	1000	Reserved	1110	IRQ14
		0011	IRQ3	1001	IRQ9	1111	IRQ15
		0100	IRQ4	1010	IRQ10		
		0101	IRQ5	1011	IRQ11		

Register 6Eh Software-Controlled Interrupt Request, Channels 7-0

Default Value: 00h

Read/Wr	ite	
Access	Description	
R/W	Interrupt Channel 7	
R/W	Interrupt Channel 6	
R/W	Interrupt Channel 5	
R/W	Interrupt Channel 4	
	Read/Wr Access R/W R/W R/W R/W	Read/WriteAccessDescriptionR/WInterrupt Channel 7R/WInterrupt Channel 6R/WInterrupt Channel 5R/WInterrupt Channel 4

197

Preliminary V.10 Oct.07,1999

3	R/W	Interrupt Channel 3
2	R/W	Interrupt Channel 2
1	R/W	Interrupt Channel 1
0	R/W	Interrupt Channel 0
	$\wedge (\mathbb{R})$	Writing a 1 to these bits will cause the corresponding interrupt requests to be outstanding. The default value to all is 0.
	$\left(\begin{array}{c} 0 \end{array} \right)$	

Register 6Fh	Software-Controlled Interrupt Request, Channels 15-8

Default Value	e: 00h///		
Access:	Read/Wri	te/	
Bit	Access	Description	
7	R/W	Interrupt Channel 15	
6	R/W	Interrupt Channel 14	
5	R/W	Interrupt Channel 13	
4	R/W	Interrupt Channel 12	
3	R/W	Interrupt Channel 11	
2	R/W	Interrupt Channel 10	
1	R/W	Interrupt Channel 9	
0	R/W	Interrupt Channel 8	
		Writing a 1 to these bits will cause the corresponding interrupt requests to be outstanding. The default value to all is 0.	
Register 70h Serial Interrupt Control Register Default Value: 00h			

Register 70h Serial Interrupt Control Register

Access:	Read/Wri	ite
Bit	Access	Description
7	R/W	Serial Interrupt (SIRQ) Control
		0 : Disable (default)
		1 : Enable
6	R/W	Quiet/Continuous Mode
		0 : Continuous (default)
		1 : Quiet

198

Preliminary V.10 Oct.07,1999

5:2	R/W	SIRQ Sample Period
		0000: 17 slots (default)
		0001: 18 slots
		0010: 19 slots
	$ \land \land \land \land$	1111: 32 slots
1:0	R/W	Start Cycle length
		00: 4 PCI clocks (default)
		01: 6 PCI clocks
		10: 8 PCI clocks
		11: Reserved

Register 71h Serial Interrupt Enable Register 1

Default Value: 00h

Access:	Read/Wr	
Bit	Access	Description
7	R/W	INV-SIRQ
6	R/W	Serial SMI# Enable
5	R/W	Serial IOCHCK# Enable
4	R/W	Serial INTD Enable
3	R/W	Serial INTC Enable
2	R/W	Serial INTB Enable
1	R/W	Serial INTA Enable
		0 : Disable (default)
		1 : Enable
0	R/W	Reserved.

Register 72h Serial Interrupt Enable Register 2

Default Value: 00h

Access:	Read/Wri	ite
Bit	Access	Description
7	R/W	Serial IRQ7 Enable
6	R/W	Serial IRQ6 Enable

199

Preliminary V.10 Oct.07,1999

5	R/W	Serial IRQ5 Enable
4	R/W	Serial IRQ4 Enable
3	R/W	Serial IRQ3 Enable
2	R/W	Reserved.
1	R/W	Serial IRQ1 Enable
0	R/W	Reserved. 0 : Disable (default) 1 : Enable

Register 73h Serial Interrupt Enable Register 3 Default Value: 00h

ault value:	00h	$/ \wedge /$
ess:	Read/Write	

Access:	Read/Wr	ite
Bit	Access	Description
7	R/W	Serial IRQ15 Enable
6	R/W	Serial IRQ14 Enable
5	R/W	Serial IRQ13 Enable
4	R/W	Serial IRQ12 Enable
3	R/W	Serial IRQ11 Enable
2	R/W	Serial IRQ10 Enable
1	R/W	Serial IRQ9 Enable
0	R/W	Serial IRQ8 Enable
		0 : Disable (default)
		1 : Enable

Register 74~75h ACPI BASE Register

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
15:8	R/W	ACPI Base Register A[15:8]
7:0	RO	Reserved.
		Read as 0.

200

Preliminary V.10 Oct.07,1999

12 Register Summary / Description –USB Summary

There are two USB Host Controllers embedded in the SiS630 chipset. One is assigned as function2 and the other one is function3. Both of them are designed base on the Open Host Controller Interface Specification for USB Release 1.0a. The HostController of function2 supports a 3-port RootHub and the HostController of function3 supports a 2-port RootHub. Each of these two Host Controller contains a set of Configureation Space, Operational Registers and Legacy Support Registers.

12.1 USB OpenHCI Host Controller Configuration Space

Configuration. Offset	Access	Mnemonic Register
00-01h	RO	VID Vendor ID
02-03h	RO	DID Device ID
04-05h	R/W	CMD Command Register
06-07h	R/W	STS Status register
08h	RO	RID Revision ID
09-0Bh	RO	CD Class Code
0Ch	RO	CL Cache Line Size
0Dh	R/W	MLT Master Latency Timer
0Eh	RO	HT Header Type
0Fh	RO	BIST Built-in Self Test
10-13h	R/W	Base address
13-3Bh	RO	Reserved
3Ch	R/W	INTL Interrupt line
3Dh	RO	INTP Interrupt pin
3Eh	RO	MINGNT Min Gnt
3Fh	RO	MAXLAT Max Latency

12.1.1 USB Configuration Space

12.2 USB OpenHCI Host Controller Operational Registers

The base address of these registers is programmable by the memory base address register (USB PCI configuration register offset 10-13h). These registers should be written as Dword. Bytes write to these registers have unpredictable effects.

The OpenHCI Host Controller (HC) contains a set of on-chip operational registers that are mapped into a non-cacheable portion of the system addressable space. These registers are

Preliminary V.10 Oct.07,1999 201 Silicon Integrated Systems Corporation

used by the Host Controller Driver (HCD). According to the functions of these registers, they are divided into four partitions, specifically for Control and Status, Memory Pointer, Frame Counter and Root Hub. All of the registers should be read and written as Dwords.

Reserved bits may be allocated in future releases of this specification. To ensure interoperability, the Host Controller Driver that does not use a reserved field should not assume that the reserved field contains 0. Furthermore, the Host Controller Driver should always preserve the value(s) of the reserved field. When a R/W register is modified, the Host Controller Driver should first read the register, modify the bits desired, then write the register with the reserved bits still containing the read value. Alternatively, the Host Controller Driver can maintain an in-memory copy of previously written values that can be modified and then written to the Host Controller register. When a write to set/clear register is written, bits written to reserved fields should be 0.

Offset	3100
0	HcRevision
4	HcControl
8	HcCommandStatus
С	HcInterruptStatus
10	HcInterruptEnable
14	HcInterruptDisable
18	HcHCCA
1C	HcPeriodCurrentED
20	HcControlHeadED
24	HcControlCurrentED
28	HcBulkHeadED
2C	HcBulkCurrentED
30	HcDoneHead
34	HcFmInterval
38	HcFmRemaining
3C	HcFmNumber
40	HcPeriodicStart
44	HcLSThreshold
48	HcRhDescriptorA
4C	HcRhDescriptorB
50	HcRhStatus
54	HcRhPortStatus[1]
58	HcRhPortStatus[2]

202

12.2.1 Host Controller Operational Registers

Preliminary V.10 Oct.07,1999

5C	HcRhPortStatus[3] (Only for Function 2)
100	HceControl
104	HceInput
108	HceOutput
10C	HceStatus

12.2.1.1 Control and Status Partition

Register 00h HcRevision Register

Default Value: 00000110h

Access:	Read	
Bit	Access	Description
31:9		Reserved
8	RO	Legacy This read-only field is 1 to indicate that the legacy support registers are present in this HC.
7:0	RO	Revision This read-only field contains the BCD representation of the version of the HCl specification that is implemented by this HC. For example, a value of 11h corresponds to version 1.1. All of the HC implementations that are compliant with current OpenHCl 1.0 specification will have a value of 10h.

Register 04h HcControl Register

Default Value: 0000000h

Access: Read/Write

The HcControl register defines the operating modes for the Host Controller. Only the Host Controller Driver, except Host Controller Functional State and Remote Wakeup Connected modifies most of the fields in this register.

Bit	Access	Description
31:11		Reserved

10	R/O	RemoteWakeupEnable
		This bit is used by HCD to enable or disable the remote wakeup feature upon the detection of upstream resume signalling. When this bit is set and the Resume Detected bit in HC Interrupt Status is set, a remote wakeup is signalled to the host system. Setting this bit has no impact on the generation of hardware interrupt.
	\wedge	Since there is no remote wakeup supported, this bit is ignored.
9	RO	Remote Wakeup Connected This bit indicates whether HC supports remote wakeup signalling or not. If remote wakeup is supported and used by the system, it is the responsibility of system firmware to set this bit during POST. HC clears the bit upon a hardware reset but does not alter it upon software reset. Remote wakeup signalling of the host system is host-bus-specific and is not described in this specification.
		This bit is hard-coded to '0'.
8	R/W	Interrupt Routing This bit determines the routing of interrupts generated by events registered in Hc Interrupt Status. If clear, all interrupts are routed to the normal host bus interrupt mechanism. If set, interrupts are routed to the System Management Interrupt. HCD clears this bit upon hardware reset, but it does not alter this bit upon a software reset. HCD uses this bit as a tag to indicate the ownership of HC.
7:6	R/W	HostControllerFunctionalState for USB 00b: UsbReset 01b: UsbResume 10b: UsbOperational 11b: UsbSuspend A transition to UsbOperational from another state causes SOF generation to begin 1 ms later. HCD may determine whether HC has begun sending SOFs by reading the StartofFrame field of HcInterruptStatus. This field may be changed by HC only in the UsbSuspend state. HC may move from the UsbSuspend state to the UsbResume state after detecting the resume signal from a downstream port. HC enters UsbSuspend after a software reset, whereas it enters UsbReset after a hardware reset. The latter also resets the Root Hub and asserts subsequent reset signal to downstream ports.

5	R/W	BulkListEnable
		This bit is set to enable the processing of the Bulk list in the next Frame. If cleared by HCD, processing of the Bulk list does not occur after the next SOF. HC checks this bit whenever it determines to process the list. When disabled, HCD may modify the list. If HcBulkCurrentED is pointing to a ED to be removed, HCD must advance the pointer by updating HcBulkCurrentED before re-enabling the processing of the list.
4	R/W	ControlListEnable
		This bit is set to enable the processing of the Control list in the next Frame. If cleared by HCD, the processing of the Control list does not occur after the next SOF. HC must check this bit whenever it determines to process the list. When disabled, HCD may modify the list. If HcControlCurrentED is pointing to a ED to be removed, HCD must advance the pointer by updating HcControlCurrentED before re-enabling the processing of the list.
3	R/W	IsochronousEnable
		This bit is used by HCD to enable/disable the processing of isochronous EDs. While processing the periodic list in a Frame, HC checks the status of this bit when it finds an Isochronous ED (F=1). If set (enabled), HC continues processing the EDs. If cleared (disabled), HC halts processing of the periodic list (which now contains only isochronous EDs) and begins processing the Bulk/Control lists. Setting this bit is guaranteed to take effect in the next Frame (not the current Frame).
2	R/W	PeriodicListEnable
		This bit is set to enable the processing of the periodic list in the next Frame. If cleared by HCD, the processing of the periodic list does not occur after the next SOF. HC must check this bit before it starts processing the list.

1:0	R/W	ControlBulkServiceRatio
	$\wedge \mathbb{R}$	This specifies the service ratio between Control and Bulk EDs. Before processing any of the non-periodic lists, HC must compare the ratio specified with its internal count on how many non-empty Control EDs have been processed, in determining whether to continue serving another Control ED or switching to Bulk EDs. The internal count will be retained when crossing the frame boundary. In case of reset, HCD is responsible for restoring this
		Value. CBSR No. of Control EDs Over Bulk EDs Served
	$\sim \sim \sim$)0 1:1
		1 2:1
		2 3:1
		3 / 2 4:1

Register 08h HcCommandStatus Register

Default Value: 0000000h

Access: Read/Write

The HcCommandStatus register is used by the Host Controller to receive commands issued by the Host Controller Driver, as well as reflecting the current status of the Host Controller. To the Host Controller Driver, it appears to be a "write to set" register. The Host Controller must ensure those "written as '1" bits become set in the register while those "written as '0" bits remain unchanged in the register. The Host Controller Driver may issue multiple distinct commands to the Host Controller without concern for corrupting previously issued commands. The Host Controller Driver has normal read access to all bits.

The **SchedulingOverrunCount** field indicates the number of frames with which the Host Controller has detected the scheduling overrun error. This occurs when the Periodic list does not complete before EOF. When a scheduling overrun error is detected, the Host Controller increments the counter and sets the **SchedulingOverrun** field in the HcInterruptStatus register.

Bit	Access	Description
31:18		Reserved
17:16	RO	SchedulingOverrunCount
		These bits are incremented on each scheduling overrun error. It is initialized to 00b and wraps around at 11b. This will be incremented when a scheduling overrun is detected even if Scheduling Overrun in Hc Interrupt Status has already been set. This is used by HCD to monitor any persistent scheduling problems.

206

Preliminary V.10 Oct.07,1999

15:4		Reserved
3	R/W	OwnershipChangeRequest This bit is set by an OS HCD to request a change of control of the HC. When set HC will set the Ownership Change field in HcInterrupt Status. After the changeover, this bit is cleared and remains so until the next request from OS HCD.
2	R/W	 BulkListFilled This bit is used to indicate whether there are any TDs on the Bulk list. It is set by HCD whenever it adds a TD to an ED in the Bulk list. When HC begins to process the head of the Bulk list, it checks BF. As long as BulkListFilled is 0, HC will not start processing the Bulk list. If BulkListFilled is 1, HC will start processing the Bulk list and will set BF to 0. If HC finds a TD on the list, then HC will set BulkListFilled to 1 causing the Bulk list processing to continue. If no TD is found on the Bulk list, and if HCD does not set BulkListFilled, then BulkListFilled will still be 0 when HC completes processing the Bulk list and Bulk list processing will stop.
1	R/W	ControlListFilled This bit is used to indicate whether there are any TDs on the Control list. It is set by HCD whenever it adds a TD to an ED in the Control list. When HC begins to process the head of the Control list, it checks CLF. As long as ControlListFilled is 0, HC will not start processing the Control list. If CF is 1, HC will start processing the Control list and will set ControlListFilled to 0. If HC finds a TD on the list, then HC will set ControlListFilled to 1 causing the Control list processing to continue. If no TD is found on the Control list, and if the HCD does not set ControlListFilled, then ControlListFilled will still be 0 when HC completes processing the Control list and Control list processing will stop
0	R/W	HostControllerReset This bit is set by HCD to initiate a software reset of HC. Regardless of the functional state of HC, it moves to the UsbSuspend state in which most of the operational registers are reset except those stated otherwise; e.g., the InterruptRouting field of HcControl, and no Host bus accesses are allowed. This bit is cleared by HC upon the completion of the reset operation. The reset operation must be completed within 10 μ s. This bit, when set, should not cause a reset to the Root Hub and no subsequent reset signal should be asserted to its downstream ports.

Preliminary V.10 Oct.07,1999

Register 0Ch HcInterruptStatus Register

Default Value: 0000000h Read/Write Access:

This register provides status on various events that cause hardware interrupts. When an event occurs, Host Controller sets the corresponding bit in this register. When a bit is set, a hardware interrupt is generated if the interrupt is enabled in the HcInterruptEnable register and the MasterInterruptEnable bit is set. The Host Controller Driver may clear specific bits in this register by writing 1'to bit positions to be cleared. The Host Controller Driver may not set any of these bits. The Host Controller will never clear the bit.

R/W	Reserved Ownership Change Status This bit is set by HC when HCD sets the Ownership Change Request field in HcCommandStatus. This event, when unmasked, will always generate an System Management Interrupt (SMI#) immediately. Reserved
R/W	Ownership Change Status This bit is set by HC when HCD sets the Ownership Change Request field in HcCommandStatus. This event, when unmasked, will always generate an System Management Interrupt (SMI#) immediately. Reserved
R/W	This bit is set by HC when HCD sets the Ownership Change Request field in HcCommandStatus. This event, when unmasked, will always generate an System Management Interrupt (SMI#) immediately. Reserved
R/W	Reserved
R/W	
1	RootHubStatusChange Status
	This bit is set when the content of HcRhStatus or the content of any of HcRhPortStatus[NumberofDownstreamPort] has changed.
R/W	FrameNumberOverflow Status
	This bit is set when the MSb of HcFmNumber (bit 15) changes value, from 0 to 1 or from 1 to 0, and after HccaFrameNumber has been updated.
RO	UnrecoverableError Status
	This bit is set when HC detects a system error not related to USB. HC should not proceed with any processing nor signaling before the system error has been corrected. HCD clears this bit after HC has been reset.
	This event is not implemented and is hard-coded to '0'.
R/W	ResumeDetected Status
	This bit is set when HC detects that a device on the USB is asserting resume signaling. It is the transition from no resume signaling to resume signaling causing this bit to be set. This bit is not set when HCD sets the UsbResume state.
R/W	StartofFrame Status
	This bit is set by HC at each start of a frame and after the update of HccaFrameNumber. HC also generates a SOF token at the same time.
	R/W RO R/W

Preliminary V.10 Oct.07,1999

1	R/W	WritebackDoneHead Status
		This bit is set immediately after HC has written HcDoneHead to HccaDoneHead. Further updates of the HccaDoneHead will not occur until this bit has been cleared. HCD should only clear this bit after it has saved the content of HccaDoneHead.
0	R/W	SchedulingOverrun Status
		This bit is set when the USB schedule for the current Frame overruns and after the update of HccaFrameNumber. A scheduling overrun will also cause the SchedulingOverrunCount of HcCommandStatus to be incremented.

Register 10h HcInterruptEnable Register

Default Value: 0000000h

Access: Read/Write

Each enable bit in the *HcInterruptEnable* register corresponds to an associated interrupt bit in the *HcInterruptStatus* register. The *HcInterruptEnable* register is used to control those events generate a hardware interrupt. When a bit is set in the *HcInterruptStatus* register AND the corresponding bit in the *HcInterruptEnable* register is set AND the **MasterInterruptEnable** bit is set, then a hardware interrupt is requested on the host bus.

Writing a '1' to a bit in this register sets the corresponding bit, whereas writing a '0' to a bit in this register leaves the corresponding bit unchanged. On read, the current value of this register is returned.

Bit	Access	Description
31	R/W	MasterInterrupt Enable
		A '0' written to this field is ignored by HC. A '1' written to this field enables interrupt generation due to events specified in the other bits of this register. This is used by HCD as a Master Interrupt Enable.
30	R/W	OwnershipChange Enable
		0 : Ignore
		1 : Enable interrupt generation due to Ownership Change.
29:7		Reserved
6	R/W	RootHubStatusChange Enable
		0 : Ignore
		1 : Enable interrupt generation due to Root Hub Status Change.
5	R/W	FrameNumberOverflow Enable
		0 : Ignore
		1 : Enable interrupt generation due to Frame Number Overflow.
Preliminary	V.10 Oct.07,	1999 209 Silicon Integrated Systems Corporation

4	R/W	UnrecoverableError Enable
		This event is not implemented. All writes to this bit will be ignored.
3	R/W	ResumeDetected Enable
		0 : Ignore
		1 : Enable interrupt generation due to Resume Detect.
2	R/W\	StartofFrame Enable
	$(O) \land$	0÷lgnore
		1: Enable interrupt generation due to Start of Frame.
1	R/W	WritebackDoneHead Enable
		0 : Ignore
		1 : Enable interrupt generation due to HcDoneHead Writeback
0	R/W	SchedulingOverrun Enable
		0 : Ignore
		1 : Enable interrupt generation due to Scheduling Overrun.

Register 14h HcInterruptDisable Register

Default Value: 0000000h

Access: Read/Write

Each disable bit in the *HcInterruptDisable* register corresponds to an associated interrupt bit in the *HcInterruptStatus* register. The *HcInterruptDisable* register is coupled with the *HcInterruptEnable* register. Thus, writing a '1' to a bit in this register clears the corresponding bit in the *HcInterruptEnable* register, whereas writing a '0' to a bit in this register leaves the corresponding bit in the *HcInterruptEnable* register unchanged. On read, the current value of the *HcInterruptEnable* register is returned.

Bit	Access	Description
31	R/W	MasterInterrupt Disable
		A '0' written to this field is ignored by HC. A '1' written to this field disables interrupt generation due to events specified in the other bits of this register. This field is set after a hardware or software reset.
30	R/W	OwnershipChange Disable
		0 : Ignore
		1 : Disable interrupt generation due to Ownership Change.
29:7		Reserved

210

Preliminary V.10 Oct.07,1999

6	R/W	RootHubStatusChange Disable	
		0 : Ignore	
		1 : Disable interrupt generation due to Root Hub Status Change.	
5	R/W	FrameNumberOverflow Disable	
		0 : Ignore	
	$ \land \{ \land $	1 : Disable interrupt generation due to Frame Number Overflow.	
4	R/W	UnrecoverableError Disable	
		This event is not implemented. All writes to this bit will be ignored.	
3	R/W	ResumeDetected Disable	
		0 : Ignore	
		1 : Disable interrupt generation due to Resume Detect.	
2	R/W	StartofFrame Disable	
		0 : Ignore	
		1 : Disable interrupt generation due to Start of Frame.	
1	R/W	WritebackDoneHead Disable	
		0 : Ignore	
		1 : Disable interrupt generation due to HcDoneHead Writeback.	
0	R/W	Scheduling Overrun Disable	
		0 : Ignore	
		1 : Disable interrupt generation due to Scheduling Overrun.	

12.2.1.2 Memory Pointer Partition

Register 18h HcHCCA Register

Default Value: 0000000h Access: Read/Write

The *HcHCCA* register contains the physical address of the Host Controller Communication Area. The Host Controller Driver determines the alignment restrictions by writing all 1s to *HcHCCA* and reading the content of *HcHCCA*. The alignment is evaluated by examining the number of zeroes in the lower order bits. The minimum alignment is 256 bytes; therefore, bits 0 through 7 must always return '0' when read. This area is used to hold the control structures and the Interrupt table that are accessed by both the Host Controller and the Host Controller Driver.

Bit	Access	Description
31:8	R/W	This is the base address of the Host Controller Communication Area.

211

Preliminary V.10 Oct.07,1999

7:0 Reserved.

Register 1Ch HcPeriodCurrentED Register

Default Value: 0000000h

Access: Read/Write

The HcPeriodCurrentED register contains the physical address of the current Isochronous or Interrupt Endpoint Descriptor.

Bit	Access	Description
31:4	R/W	PeriodCurrentED This is used by HC to point to the head of one of the Periodic lists that will be processed in the current Frame. The content of this register is updated by HC after a periodic ED has been processed. HCD may read the content in determining which ED is currently being processed at the time of reading.
3:0		Reserved

Register 20h HcControlHeadED Register

Default Value: 0000000h

Access: Read/Write

The HcControlHeadED register contains the physical address of the first Endpoint Descriptor of the Control list.

Bit	Access	Description
31:4	R/W	ControlHeadED
		HC traverses the Control list starting with the HcControlHeadED pointer. The content is loaded from HCCA during the initialization of HC.
3:0		Reserved.
Pogistor 24		

Register 24h HcControlCurrentED Register

Default Value: 0000000h

Read/Write Access:

The HcControlCurrentED register contains the physical address of the current Endpoint Descriptor of the Control list.

212

Bit Access Description	Bit Access Description	
------------------------	------------------------	--

Preliminary V.10 Oct.07,1999

31:4	R/W	ControlCurrentED
		This pointer is advanced to the next ED after serving the present one. HC will continue processing the list from where it left off in the last Frame. When it reaches the end of the Control list, HC checks the ControlListFilled in HcCommandStatus. If set, it copies the content of HcControlHeadED to HcControlCurrentED and clears the bit. If not set, it does nothing. HCD is allowed to modify this register only when the ControlListEnable of HcControl is cleared. When set, HCD only reads the instantaneous value of this register. Initially, this is set to zero to indicate the end of the Control list.
3:0		Reserved.

Register 28h HcBulkHeadED Register

Default Value: 0000000h

Access: Read/Write

The HcBulkHeadED register contains the physical address of the first Endpoint Descriptor of the Bulk list.

Bit	Access	Description
31:4	R/W	BulkHeadED
		HC traverses the Bulk list starting with the HcBulkHeadED pointer. The content is loaded from HCCA during the initialization of HC.
3:0		Reserved.

Register 2Ch HcBulkCurrentED Register

Default Value: 0000000h

Access: Read/Write

The HcBulkCurrentED register contains the physical address of the current endpoint of the Bulk list. As the Bulk list will be served in a round-robin fashion, the endpoints will be ordered according to their insertion to the list.

Rit Access Description

31:4	R/W	BulkCurrentED
	R	This is advanced to the next ED after the HC has served the present one. HC continues processing the list from where it left off in the last Frame. When it reaches the end of the Bulk list, HC checks the ControlListFilled of HcControl. If set, it copies the content of HcBulkHeadED to HcBulkCurrentED and clears the bit. If it is not set, it does nothing. HCD is only allowed to modify this register when the BulkListEnable of HcControl is cleared. When set, the HCD only reads the instantaneous value of this register. This is initially set to zero to indicate the end of the Bulk list.
3:0		Reserved.

Register 30h HcDoneHead Register

Default Value: 00000000h

Access: Read/Write

The HcDoneHead register contains the physical address of the last completed Transfer Descriptor that was added to the Done queue. In normal operation, the Host Controller Driver should not need to read this register as its content is periodically written to the HCCA.

Bit	Access	Description
31:4	R/W	DoneHead
		When a TD is completed, HC writes the content of HcDoneHead to the NextTD field of the TD. HC then overwrites the content of HcDoneHead with the address of this TD. This is set to zero whenever HC writes the content of this register
		to HCCA. It also sets the WritebackDoneHead of HcInterruptStatus.
3:0		Reserved

12.2.1.3 Frame Counter Partition

Register 34h HcFmInterval Register

Default Value: 00002EDFh

Access: Read/Write

The HcFmInterval register contains a 14-bit value which indicates the bit time interval in a Frame, (i.e., between two consecutive SOFs), and a 15-bit value indicating the Full Speed maximum packet size that the Host Controller may transmit or receive without causing scheduling overrun. The Host Controller Driver may carry out minor adjustment on the **FrameInterval** by writing a new value over the present one at each SOF. This provides the programmability necessary for the Host Controller to synchronize with an external clocking resource and to adjust any unknown local clock offset.

Bit	Access	Description	
Preliminary	V.10 Oct.07,	1999 214	Silicon Integrated Systems Corporation

31	R/W	FrameIntervalToggle
		HCD toggles this bit whenever it loads a new value to FrameInterval.
30:16	R/W	FSLargestDataPacket
	R	This field specifies a value that is loaded into the Largest Data Packet Counter at the beginning of each frame. The counter value represents the largest amount of data in bits which can be sent or received by the HC in a single transaction at any given time without causing scheduling overrun. The field value is calculated by the HCD.
15:14		Reserved
13:0	R/W	FrameInterval
		This specifies the interval between two consecutive SOFs in bit times. The nominal value is set to be 11,999.
		HCD should store the current value of this field before resetting HC. By setting the HostControllerReset field of HcCommandStatus as this will cause the HC to reset this field to its nominal value. HCD may choose to restore the stored value upon the completion of the Reset sequence.

Register 38h HcFmRemaining Register

Default Value: 0000000h

Access: Read Only

The HcFmRemaining register is a 14-bit down counter showing the bit time remaining in the current Frame.

Bit	Access	Description
31	RO	FrameRemainingToggle
		This bit is loaded from the FrameIntervalToggle field of HcFmInterval whenever FrameRemaining reaches 0. This bit is used by HCD for the synchronization between FrameInterval and FrameRemaining.
30:14		Reserved
13:0	RO	FrameRemaining
		This counter is decremented at each bit time. When it reaches zero, it is reset by loading the FrameInterval value specified in HcFmInterval at the next bit time boundary. When entering the UsbOperational state, HC re-loads the content with the FrameInterval of HcFmInterval and uses the updated value from the next SOF.

215

Preliminary V.10 Oct.07,1999

Register 3Ch HcFmNumber Register

Default Value: 0000000h

Access: Read

The HcFmNumber register is a 16-bit counter. It provides a timing reference among events occurring in the Host Controller and the Host Controller Driver. The Host Controller Driver may use the 16-bit value specified in this register and generate a 32-bit frame number without requiring frequent access to the register.

Bit	Access	Description
31:16		Reserved
15:0	RO	FrameNumber This is incremented when HcFmRemaining is re-loaded. It will be rolled over to 0h after ffffh. When entering the UsbOperational state, this will be incremented automatically. The content will be written to HCCA after HC has incremented the FrameNumber at each frame boundary and sent a SOF but before HC reads the first ED in that Frame. After writing to HCCA, HC will set the StartofFrame in HcInterruptStatus.

Register 40h HcPeriodicStart Register

Default Value: 0000000h

Access: Read/Write

The HcPeriodicStart register has a 14-bit programmable value that determines when is the earliest time HC should start processing the periodic list.

Bit	Access	Description
31:14		Reserved
13:0	R/W	PeriodicStart
		After a hardware reset, this field is cleared. This is then set by HCD during the HC initialization. The value is calculated roughly as 10% off from HcFmInterval. A typical value will be 3E67h. When HcFmRemaining reaches the value specified, processing of the periodic lists will have priority over Control/Bulk processing. HC will therefore start processing the Interrupt list after completing the current Control or Bulk transaction that is in progress.

Register 44h HcLSThreshold Register

Default Value: 0000000h

Access: Read/Write

The HcLSThreshold register contains an 11-bit value used by the Host Controller to determine whether to commit to the transfer of a maximum of 8-byte LS packet before EOF. Neither the Host Controller nor the Host Controller Driver is allowed to change this value.

216

Preliminary V.10 Oct.07,1999

Bit	Access	Description
31:12		Reserved
11:0	R/W	LSThreshold
	A R	This field contains a value that is compared to the FrameRemaining field prior to initiating a Low Speed transaction. The transaction is started only if FrameRemaining \geq this field. The value is calculated by HCD with the consideration of transmission and set-up overhead.

12.2.1.4Root Hub Partition

All registers included in this partition are dedicated to the USB Root Hub which is an integral part of the Host Controller though still a functionally separate entity. The HCD emulates USBD accesses to the Root Hub via a register interface. The HCD maintains many USB-defined hub features that are not required to be supported in hardware. For example, the Hub's Device, Configuration, Interface, and Endpoint Descriptors are maintained only in the HCD as well as some static fields of the Class Descriptor. The HCD also maintains and decodes the Root Hub's device address as well as other trivial operations that are better suited to software than hardware.

The Root Hub register interface is otherwise developed to maintain similarity of bit organization and operation to typical hubs that are found in the system. Below are four register definitions: HcRhDescriptorA, HcRhDescriptorB, HcRhStatus, and HcRhPortStatus [5:1]. Each register is read and written as a Dword. These registers are only written during initialization to correspond with the system implementation. The HcRhDescriptorA and HcRhDescriptorB registers should be implemented such that they are writable regardless of the HC USB state. HcRhStatus and HcRhPortStatus must be writable during the USBOPERATIONAL state.

Register 48h HcRhDescriptorA Register

Default Value: 0100003h (function 2) / 0100002h (function3)

Access: Read/Write

The HcRhDescriptorA register is the first register of two describing characteristics of the Root Hub. Reset values are implementation-specific. The descriptor length (11), descriptor type (TBD), and hub controller current (0) fields of the hub Class Descriptor are emulated by the HCD. All other fields are located in the HcRhDescriptorA and HcRhDescriptorB registers.

Bit	Access	Description
31:24	R/W	PowerOnToPowerGoodTime
		This byte specifies the duration HCD has to wait before accessing a powered-on port of the Root Hub. It is implementation-specific. The unit of time is 2 ms. The duration is calculated as POTPGT * 2 ms.
23: 13		Reserved

217

Preliminary V.10 Oct.07,1999

12	R/W	NoOverCurrentProtection
		This bit describes how the overcurrent status for the Root Hub ports is reported. When this bit is cleared, the OverCurrentProtectionMode field specifies global or per-port reporting.
	$\Lambda \mathbb{R}$	0 : Over-current status is reported collectively for all downstream ports
	$(\bigcirc) \land$	1 : No overcurrent protection supported
11	R/W	OverCurrentProtectionMode
		This bit describes how the overcurrent status for the Root Hub ports is reported. At reset, this field should reflect the same mode as PowerSwitchingMode. This field is valid only if the NoOverCurrentProtection field is cleared.
		0 : over-current status is reported collectively for all downstream ports
		1 : over-current status is reported on a per-port basis
10	RO	DeviceType
		This bit specifies that the Root Hub is not a compound device. The Root Hub is not permitted to be a compound device. This field should always read/write 0.
9	R/W	NoPowerSwitching
		These bits are used to specify whether power switching is supported or ports are always powered. SiS630 USB HC supports global power switching mode. When this bit is cleared, the PowerSwitchingMode specifies global or per-port switching.
		0 : Ports are power switched
		1 : Ports are always powered on when the HC is powered on

8	R/W	PowerSwitchingMode
		This bit is used to specify how the power switching of the Root Hub ports is controlled. SiS630 USB HC supports global power switching mode. This field is only valid if the NoPowerSwitching field is cleared.
		0: all ports are powered at the same time.
		1: Each port is powered individually. This mode allows port power to be controlled by either the global switch or per-port switching.
		If the PortPowerControlMask bit is set, the port responds only to port power commands (Set/ClearPortPower). If the port mask is cleared, then the port is controlled only by the global power switch (Set/ Clear Global Power).
7:0	RO	NumberDownstreamPorts
		These bits specify the number of downstream ports supported by the Root Hub.
		One of the HC (function 2) supports three downstream ports, the other one (function 3) supports two downstream ports.

Register 4Ch HcRhDescriptorB Register

Default Value: 0000000h

Access: Read/Write

The HcRhDescriptorB register is the second register of two describing the characteristics of the Root Hub. These fields are written during initialization to configure the Root Hub.

Bit	Access	Description
31:16	R/W	PortPowerControlMask
		Each bit indicates if a port is affected by a global power control command when PowerSwitchingMode is set. When set, the port's power state is only affected by per-port power control (Set/ClearPortPower). When cleared, the port is controlled by the global power switch (Set/ClearGlobalPower). If the device is configured to global switching mode (PowerSwitchingMode=0), this field is not valid.
		SiS630 USB HC implements global power switching.
		bit 0: Reserved bit 1: Ganged-power mask on Port #1 bit 2: Ganged-power mask on Port #2 bit15: Ganged-power mask on Port #15

Preliminary V.10 Oct.07,1999

15:0	R/W	DeviceRemovable
		Each bit is dedicated to a port of the Root Hub. When cleared, the attached device is removable. When set, the attached device is not removable.
	AS S	bit 0: Reserved bit 1: Device attached to Port #1 bit 2: Device attached to Port #2
		bit15: Device attached to Port #15

Register 50h HcRhStatus Register

Default Value: 0000000h Access: Read/Write

The HcRhStatus register is divided into two parts. The lower word of a Dword represents the Hub Status field and the upper word represents the Hub Status Change field. Reserved bits should always be written '0'.

Bit	Access	Description
31	WO	ClearRemoteWakeupEnable(Write)
		Writing a '1' clears DeviceRemoveWakeupEnable. Writing a '0' has no effect.
30:18		Reserved
17	R/W	OverCurrentIndicatorChange
		This bit is set by hardware when a change has occurred to the OCI field of this register. The HCD clears this bit by writing a '1'.Writing a '0 has no effect.
16	R/W	LocalPowerStatusChange(Read)
		The Root Hub does not support the local power status feature; thus, this bit is always read as '0'.
		SetGlobalPower(Write)
		In global power mode (PowerSwitchingMode=0), This bit is written to '1' to turn on power to all ports (clear PortPowerStatus). In per-port power mode, it sets PortPowerStatus only on ports whose PortPowerControlMask bit is not set. Writing a '0 has no effect.

15	R/W	DeviceRemoteWakeupEnable(Read)
		This bit enables a ConnectStatusChange bit as a resume event, causing a UsbSuspend to UsbResume state transition and setting the ResumeDetected interrupt.
		0 : ConnectStatusChange is not a remote wakeup event.
	(Ω)	1 : ConnectStatusChange is a remote wakeup event.
		SetRemoteWakeupEnable(Write)
		Writing a '1' sets DeviceRemoveWakeupEnable. Writing a '0' has no effect.
14:2	$\sum (\zeta$	Reserved
1	RO	OverCurrentIndicator
		This bit reports overcurrent conditions when the global reporting is implemented. When set, an overcurrent condition exists. When cleared, all power operations are normal. If per-port overcurrent protection is implemented this bit is always ' 0 '
0	R/W	LocalPowerStatus((Read))
		The Root Hub does not support the local power status feature; thus, this bit is always read as '0'.
		ClearGlobalPower(Write)
		In global power mode (PowerSwitchingMode=0), This bit is written to '1' to turn off power to all ports (clear PortPowerStatus). In per-port power mode, it clears PortPowerStatus only on ports whose PortPowerControlMask bit is not set. Writing a '0 has no effect.

Register 54h/58h/5Ch HcRhPortStatus [3:1] Register

Default Value: 0000000h

Access: Read/Write

The HcRhPortStatus[3:1] register is used to control and report port events on a per-port basis. Three or two HcRhPortStatus registers are implemented in each HC, respectively. The lower word is used to reflect the port status, whereas the upper word reflects the status change bits. Some status bits are implemented with special write behavior (see below). If a transaction (token through handshake) is in progress when a write to change port status occurs, the resulting port status change must be postponed until the transaction completed. Reserved bits should always be written '0'.

Bit	Access	Description
31:21		Reserved

221

Preliminary V.10 Oct.07,1999

	DAA				
20	R/W	PortResetStatusChange			
		This bit is set at the end of the 10-ms port reset signal.			
		The HCD writes a '1' to clear this bit. Writing a '0' has no effect.			
		0 : port reset is not complete			
		1 : port reset is complete			
19	R/W	PortOverCurrentIndicatorChange			
		This bit is valid only if overcurrent conditions are reported on a per-port basis. This bit is set when Root Hub changes the PortØverCurrentIndicator bit. The HCD writes a '1' to clear this bit. Writing a /0' has no effect.			
		0 : no change in PortOverCurrentIndicator			
		1 : PortOverCurrentIndicator has changed			
18	R/W	PortSuspendStatusChange			
		This bit is set when the full resume sequence has been completed. This sequence includes the 20-s resume pulse, LS EOP, and 3- ms resychronization delay. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. This bit is also cleared when ResetStatusChange is set.			
		0 : resume is not completed			
		1 : resume completed			
17	R/W	PortEnableStatusChange			
		This bit is set when hardware events cause the PortEnableStatus bit to be cleared. Changes from HCD writes do not set this bit. The HCD writes a '1' to clear this bit. Writing a '0' has no effect.			
		0 : no change in PortEnableStatus			
		1 : change in PortEnableStatus			

16	R/W	ConnectStatusChange		
		This bit is set whenever a connect or disconnect event occurs. The HCD writes a '1' to clear this bit. Writing a '0' has no effect. If CurrentConnectStatus is cleared when a SetPortReset, SetPortEnable, or SetPortSuspend write occurs, this bit is set to force the driver to re-evaluate the connection status since these writes should not occur if the port is disconnected.		
	$(\bigcirc) \land$	0 : no change in CurrentConnectStatus		
	\sim	after a Root Hub reset to inform the system that the device is attached.		
15:10		Reserved		
9	R/W	LowSpeedDeviceAttached((Read))		
		This bit indicates the speed of the device attached to this port. When set, a Low Speed device is attached to this port. When clear, a Full Speed device is attached to this port. This field is valid only when the CurrentConnectStatus is set.		
		0 : full speed device attached		
		1 : low speed device attached		

8	R/W	Port Power Status((Read))		
		This bit reflects the port's power status, regardless of the type of power switching implemented. This bit is cleared if an overcurrent condition is detected. HCD sets this bit by writing Set Port Power or Set Global Power. HCD clears this bit by writing Clear Port Power or Clear Global Power. Which power control switches will be enabled is determined by Power Switching Mode and Port Power Control Mask[NDP]. In global switching mode (Power Switching Mode=0), only Set/ClearGlobalPower controls this bit. In per-port power switching (Power Switching Mode=1), if the Port Power Control Mask[NDP] bit for the port is set, only Set/ClearPortPower commands are enabled. If the mask is not set, only Set/ Clear Global Power commands are enabled. When port power is disabled, Current Connect Status, Port Enable Status, Port Suspend Status, and Port Reset Status should be reset. 0 : port power is off 1 : port power is on		
		SetPortPower(Write)		
		The HCD writes a '1' to set the PortPowerStatus bit. Writing a '0' has no effect.		
		Note: This bit is always reads '1b' if power switching is not supported.		
7:5		Reserved		
4	R/W	PortResetStatus(Read)		
		When this bit is set by a write to SetPortReset, port reset signalling is asserted. When reset is completed, this bit is cleared when PortResetStatusChange is set. This bit cannot be set if CurrentConnectStatus is cleared.		
		0 : port reset signal is not active		
		1 : port reset signal is active		
		SetPortReset(Write)		
		The HCD sets the port reset signalling by writing a '1' to this bit. Writing a '0' has no effect. If CurrentConnectStatus is cleared, this write does not set PortResetStatus, but instead sets ConnectStatusChange. This informs the driver that it attempted to reset a disconnected port.		

3	R/W	PortOverCurrentIndicator(Read)	
		This bit is only valid when the Root Hub is configured in such a way that overcurrent conditions are reported on a per-port basis. If per-port overcurrent reporting is not supported, this bit is set to 0. If cleared, all power operations are normal for this port. If set, an overcurrent condition exists on this port. This bit always reflects the overcurrent input signal	
	()	0 : no overcurrent condition.	
		1 : overcurrent condition detected.	
	$\langle \rangle$	ClearSuspendStatus(Write)	
		The HCD writes a '1' to initiate a resume. Writing a '0' has no effect. A resume is initiated only if PortSuspendStatus is set.	
2	R/W	PortSuspendStatus(Read)	
		This bit indicates the port is suspended or in the resume sequence. It is set by a SetSuspendState write and cleared when PortSuspendStatusChange is set at the end of the resume interval. This bit cannot be set if CurrentConnectStatus is cleared. This bit is also cleared when PortResetStatusChange is set at the end of the port reset or when the HC is placed in the UsbResume state. If an upstream resume is in progress, it should propagate to the HC.	
		0 : port is not suspended	
		1 : port is suspended	
		SetPortSuspend(Write)	
		The HCD sets the PortSuspendStatus bit by writing a '1' to this bit. Writing a '0' has no effect. If CurrentConnectStatus is cleared, this write does not set PortSuspendStatus; instead it sets ConnectStatusChange. This informs the driver that it attempted to suspend a disconnected port.	

1	R/W	PortEnableStatus(Read)		
		This bit indicates whether the port is enabled or disabled. The Root Hub may clear this bit when an overcurrent condition, disconnect event, switched-off power, or operational bus error such as babble is detected. This change also causes PortEnabledStatusChange to be set. HCD sets this bit by writing SetPortEnable and clears it by writing ClearPortEnable. This bit cannot be set when CurrentConnectStatus is cleared. This bit is also set, if not already, at the completion of a port reset when ResetStatusChange is set or port suspend when SuspendStatusChange is set. 0 : port is disabled		
		1 · port îs enabled		
		SetPortEnable(Write)		
		The HCD sets PortEnableStatus by writing a '1'.Writing a '0' has no effect. If CurrentConnectStatus is cleared, this write does not set PortEnableStatus, but instead sets ConnectStatusChange. This informs the driver that it attempted to enable a disconnected port.		
0	R/W	CurrentConnectStatus(Read)		
		This bit reflects the current state of the downstream port.		
		0 : no device connected		
		1 : device connected		
		ClearPortEnable(Write)		
		The HCD writes a '1' to this bit to clear the PortEnableStatus bit. Writing a '0' has no effect. The CurrentConnectStatus is not affected by any write.		
		Note: This bit is always read '1b' when the attached device is nonremovable (DeviceRemoveable[NDP]).		

12.3 Legacy Support Registers

Four operational registers are used to provide the legacy support. Each of these registers is located on a 32-bit boundary. The offset of these registers is relative to the base address of the Host Controller operational registers with HceControl located at offset 100h.

Offset	Register		Description
100h	HceControl	Used to enable and various status inform	I control the emulation hardware and report nations.
Preliminary V.10 Oct.07,1999 226 Silicon Integrated Systems Corporatio			

104h	HceInput	Emulation side of the legacy Input Buffer register.		
108h	HceOutput	Emulation side of the legacy Output Buffer register where keyboard and mouse data is to be written by software.		
10Ch	HceStatus	Emulation side of the legacy Status register.		

Three of the operational registers (HceStatus, HceInput, HceOutput) are accessible at I/O address 60h and 64h when emulation is enabled. Reads and writes to the registers using I/O addresses have side effects as outlined in the Table 12.3-2 Emulated Registers

I/O Address	Cycle Type	Register Contents Accessed/ Modified	Side Effects
60h	IN	HceOutput	IN from port 60h will set OutputFull in HceStatus to 0
60h	OUT	HceInput	OUT to port 60h will set InputFull to 1 and CmdData to 0 in HceStatus.
64h	IN	HceStatus	IN from port 64h returns current value of HceStatus with no other side effect.
64h	OUT	HceInput	OUT to port 64h will set InputFull to 0 and CmdData in HceStatus to 1.

Register 100hHceControl RegisterDefault Value:00000000h

Access:	Read/Wr	ite	
Bit	Access	Description	
31:9		Reserved	
8	R/W	A20State	
		Indicates current state of Gate A20 on keyboard controller. Used to compare value to 60h when GateA20Sequence is active.	
7	R/W	IRQ12Active	
		Indicates that a positive transition on IRQ12 from keyboard controller has occurred. SW may write a 1 to this bit to clear it (set it to 0). SW write of a 0 to this bit has no effect.	
6	R/W	IRQ1Active	
		Indicates that a positive transition on IRQ1 from keyboard controller has occurred. SW may write a 1 to this bit to clear it (set it to 0). SW write of a 0 to this bit has no effect.	

227

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

1/1/25

5	R/W	GateA20Sequence
		Set by HC when a data value of D1h is written to I/O port 64h. Cleared by HC on write to I/O port 64h of any value other than D1h.
4	R/W	ExternalIRQEn
	R	When set to 1, IRQ1 and IRQ12 from the keyboard controller causes an emulation interrupt. The function controlled by this bit is independent of the setting of the EmulationEnable bit in this register.
3	R/W	IRQEn
		When set, the HC generates IRQ1 or IRQ12 as long as the OutputFull bit in <i>HceStatus</i> is set to 1. If the AuxOutputFull bit of <i>HceStatus</i> is 0, then IRQ1 is generated; if it is 1, then an IRQ12 is generated.
2	R/W	CharacterPending
		When set, an emulation interrupt is generated when the OutputFull bit of the <i>HceStatus</i> register is set to 0.
1	RO	EmulationInterrupt
		This bit is a static decode of the emulation interrupt condition
0	R/W	EmulationEnable
		When set to 1, the HC is enabled for legacy emulation. The HC decodes accesses to I/O registers 60h and 64h and generates IRQ1 and/or IRQ12 when appropriate. Additionally, the HC generates an emulation interrupt at appropriate times to invoke the emulation software.
Register 104	4h Hcelnpu	t Register

Register 104h Hcelnput Register

Default Value	e: 00000000	h 🗸	
Access: Read/Wri		te A	
Bit	Access	Description	
31:8		Reserved	

7:0	R/W	InputData
		This register holds data that is written to I/O ports 60h and 64h.
		I/O data that is written to ports 60h and 64h is captured in this register when emulation is enabled. This register may be read or written directly by accessing it with its memory address in the Host Controller's operational register space. When accessed directly with a memory cycle, reads and writes of this register have no side effects.

Register 108h HceOutput Register

Default Value: 0000000h

Access:	Read/wr	ite
Bit	Access	Description
31:8		Reserved
7:0	R/W	OutputData This register hosts data that is returned when an I/O read of port 60h is performed by application software.
		The data placed in this register by the emulation software is returned when I/O port 60h is read and emulation is enabled. On a read of this location, the OutputFull bit in HceStatus is set to 0.
Register 10		Status Register

Register 10Ch **HceStatus Register**

Default Value Access:	e: 0000000 Read/Wr	Dh ite
Bit	Access	Description
31:8		Reserved
7	R/W	Parity Indicates parity error on keyboard/mouse data.
6	R/W	Time-out Used to indicate a time-out
5	R/W	AuxOutputFull IRQ12 is asserted whenever this bit is set to 1 and OutputFull is set to 1 and the IRQEn bit is set.
4	R/W	Inhibit Switch This bit reflects the state of the keyboard inhibit switch and is set if the keyboard is NOT inhibited.

229

Preliminary V.10 Oct.07,1999

3	R/W	CmdData		
		The HC sets this bit to 0 on an I/O write to port 60h and to 1 on an I/O write to port 64h		
2	R/W	Flag		
		Nominally used as a system flag by software to indicate a warm or cold boot.		
1	R/W	InputFull		
		Except for the case of a Gate A20 sequence, this bit is set to 1 on an I/O write to address 60h or 64h. While this bit is set to 1 and emulation is enabled, an emulation interrupt condition exists.		
0	R/W	OutputFull		
		The HC sets this bit to 0 on a read of I/O port 60h. If IRQEn is set and AuxOutputFull is set to 0, then an IRQ1 is generated as long as this bit is set to 1. If IRQEn is set and AuxOutputFull is set to 1, then an IRQ12 is generated as long as this bit is set to 1. While this bit is 0 and CharacterPending in <i>HceControl</i> is set to 1, an emulation interrupt condition exists.		
		The contents of the <i>HceStatus</i> Register are returned on an I/O Read of port 64h when emulation is enabled. Reads and writes of port 60h and writes to port 64h can cause changes in this register. Emulation software can directly access this register through its memory address in the Host Controller's operational register space. Accessing this register through its memory address produces no side effects.		

230

13 Register Summary / Description – Fast Ethernet / Home Networking Summary

13.1 MAC and PHY Registers

13.1.1 MAC Configuration Space (Function 1)

Configuration. Offset	Access	Mnemonic Register
00-01h	RO	Vendor ID
02-03h	RO	Device ID
04-05h	R/W	Command Register
06-07h	R/Ŵ	Status Register
08h	RO	Revision ID
09-0Bh	RO	Class Code
0Ch	RO	Cache Line Size
0Dh	R/W	Master Latency Timer
0Eh	RO	Header Type
0Fh	RO	Built-in-Self Test
10-13h	R/W	Configuration IO Base Address Register
14-17h	R/W	Configuration Memory Address Register
18-28h	RO	RESERVED (reads return zero)
2C-2Fh	R/W	Configuration Subsystem Identification Register
30-33h	R/W	Configuration Expansion ROM Base Address Register
34-37h	R/W	Configuration Capabilities Pointer Register
38-3Bh	RO	RESERVED (reads return zero).
3C-3Fh	R/W	Configuration Interrupt Select Register
40-43h	R/W	Configuration Power Management Capabilities Register
44-47h	R/W	Configuration Power Management Control and Status Register
48-FFh	RO	RESERVED (reads return zero)

231

Preliminary V.10 Oct.07,1999

Configuration. Offset Access		Mnemonic Register	
00-03h	R/W	Command Register	
04-07h	R/W	Configuration Register	
08-0Bh	R/W	EEPROM Access Register	
0C-0Fh	R/W	PCI Test Control Register	
10-13h	R/W	Interrupt Status Register	
14-17h	R/W	Interrupt Mask Register	
18-1Bh	R/W	Interrupt Enable Register	
1C-1Fh	R/W	Enhanced PHY Access Register	
20-23h	R/W	Transmit Descriptor Pointer Register	
24-27h	R/W	Transmit Configuration Register	
28-2Fh	R/W	RESERVED	
30-33h	R/W	Receive Descriptor Pointer Register	
34-37h	R/W	Receive Configuration Register	
38-3Bh	R/W	Flow Control Register	
3C-47h	RO	RESERVED	
48-4Bh	R/W	Receive Filter Control Register	
4C-4Fh	R/W	Receive Filter Data Register	
50-AFh	RO	RESERVED	
B0-B3h	R/W	Power Management Control Register	
B4-B7h	R/W	Power Management Wake-up Event Register	
B8-BBh	R/W	RESERVED	
BC-BFh	R/W	Wake-up Sample Frame CRC Register	
C0-EFh	R/W	Wake-up Sample Frame Mask Registers	
F0-FFh	R/W	RESERVED	

13.1.2 MAC Operational Registers

13.1.3 PHY Configuration Registers

Configuration. Offset	Access	Mnemonic Register			
00h	R/W	MI Register 0 Control Register			
01h	R/W	MI Register 1 Status Register			
Preliminary V.10 Oct.07,1999 232 Silicon Integrated Systems Corporation					

02h	R/W	MI Register 2 PHY ID#1
03h	R/W	MI Register 3 PHY ID#2
04h	R/W	MI Register 4 Auto Negotiation Advertisement
05h	R/W	MI Register 5 Auto Negotiation Remote End Capability
10h	R/W	MI Register 16 Configuration 1
11h	R/W	MI Register 17 Configuration 2
12h	R/W	MI Register 18 Status Output
13h	R/Ŵ	MI Register 19 Mask
14h	R/W	MI Register 20 Reserved

13.2 10M/100M Ethernet Controller Registers

The SiS Ethernet Controller is configured and controlled through registers. There are three categories of control/status registers implemented inside the SiS Ethernet Controller, which includes PCI Configuration Registers, MAC Operational Registers and MII PHY Registers. The PCI Configuration registers are mapped into PCI configuration space and accessed using PCI configuration bus cycles. The MAC Operational registers can be mapped into either PCI memory or PCI IO space. MII PHY Registers are accessed through MAC Operational Register ENPHY (Enhanced PHY access register, offset 1Ch). The SiS Ethernet Controller requires an allocation of 256 bytes of operational register space, and 72 bytes of PCI configuration register space. The detailed definitions for each bit allocated in each register will be described in section 4.2, 4.3 and 4.4 respectively.

Acronyms mentioned in the PCI configuration registers and MAC Operational registers are defined as follows:

RO Read Only

R/W Read Write

Sym.	Name		Definition		
_			Write Cycle	Read Cycle	
W	Write		Input	No Operation	
R	Read		No Operation	Output	
R/W	Read/Write		Input	Output	
R/WSC	Read/Write Cleaning	Self	Input	Output Clears itself After Operation Complete	
Preliminary V.10 Oct.07,1999			233 Silicon Integra	ated Systems Corporation	

Acronyms mentioned in the MII PHY registers that are defined as follows:

Preliminary V.10 Oct.07,1999

R/LL	Read/Latching Low	No Operation	Output When Bit Goes Low, Bit Latched. When Bit is Read, Bit Updated.
R/LH	Read/Latching High	No Operation	Output When Bit Goes High, Bit Latched. When Bit is Read, Bit Updated.
R/LT	Read/Latching on Transition	No Operation	Output When Bit Transitions, Bit Latched And Interrupt Set When Bit is Read, Interrupt Clear And Bit Updated.

13.3 PCI Configuration Registers

The SiS Ethernet Controller implements a PCI version 2.1 configuration register space. This allows PCI BIOS to "soft" configure the SiS Ethernet Controller. Software Reset has no effect on configuration registers. Hardware Reset returns all configuration registers to their hardware reset state. For all reserved registers, a write are ignored, and a read return 0.

Table 13.3-1	Configuration	Register Map
--------------	---------------	--------------

Offset	Tag	Description	Access	Section
00h	CFGID	Configuration Identification Register	RO	4.2.1
04h	CFGCS	Configuration Command and Status Register	R/W	4.2.2
08h	CFGRID	Configuration Revision ID Register	RO	4.2.3
0Ch	CFGLAT	Configuration Revision ID Register	R/W	4.2.4
10h	CFGIOA	Configuration IO Base Address Register	R/W	4.2.5
14h	CFGMA	Configuration Memory Address Register	R/W	4.2.6
18h-28h		RESERVED (reads return zero).		
2Ch	CFGSID	Configuration Subsystem Identification Register	RO	4.2.7
30h	CFGEROMA	Configuration Expansion ROM Base	R/W	4.2.8

234

Preliminary V.10 Oct.07,1999

		Address Register		
34h	CFGCAP	Configuration Capabilities Pointer Register	RO	4.2.9
38h		RESERVED (reads return zero).		
3Ch	CFGINT	Configuration Interrupt Select Register	R/W	4.2.10
40h	CFGPMC	Configuration Power Management Capabilities Register	RO	4.2.11
44h	CFGPMCSR	Configuration Power Management Control and Status Register	R/W	4.2.12
48-FFh		RESERVED (reads return zero).		

235

Preliminary V.10 Oct.07,1999

Register 00h Configuration Identification

Default Value: 09001039h

Access: Read Only

This register identifies The SiS Ethernet Controller to PCI system software.

Bit	Access	Description
31:16		Device ID
		This field is read-only and is set to the device ID 0900h assigned by SiS if auto load is not enabled. If auto load is enabled, it is set to the device ID stored in Serial EEPROM.
15:0	RO	Vendor ID
		This field is read-only and is set to a value of 1039h that is SiS's PCI Vendor ID if auto load is not enabled. If auto load is enabled, it is set to the vendor ID stored in EEPROM.

Register 04h Configuration Command and Status

Default Value: 0290000h Access: Read/Write

This register has two parts. The upper 16-bits (31-16) is devoted to device status. The lower 16-bits (15-0) is devoted to command and are used to configure and control the device.

Bit	Access	Description
31	R/W	Detected Parity Error
		The SiS Ethernet Controller sets this bit whenever a parity error is detected, even if the parity error handling is disabled (controlled by command register bit 6). SW writes '10 to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.
30	R/W	Signalled SERR
		This bit is set whenever the SiS Ethernet Controller asserts SERR#. SW writes '1' to this bit will clear this bit. SW writes '0' to this bit leaves this bit unchanged.
29	R/W	Received Master Abort
		The SiS Ethernet Controller sets this bit whenever its master transaction is terminated with Master-Abort. SW writes '0' to this bit leaves this bit unchanged.
28	R/W	Received Target Abort
		The SiS Ethernet Controller sets this bit whenever its master transaction is terminated with Target-Abort. SW writes '0 to this bit leaves this bit unchanged.

Preliminary V.10 Oct.07,1999

27	R/W	Sent Target Abort The SiS Ethernet Controller sets this bit whenever it terminates a target transaction with Target-Abort. SW writes '0' to this bit leaves this bit unchanged.
26:25	RO	DEVSEL Timing This field will always be set to 01 indicating that the SiS Ethernet Controller supports "medium" DEVSEL timing.
24	R/W	Data Parity Detected This bit is set when three conditions are met: (1) the bus agent asserted PERR# itself or observed PERR# asserted; (2) The SiS Ethernet Controller acted as the bus master for the operation in which the error occurred; and (3) the Parity Error Response bit in command register is set. SW writes '0 to this bit leaves this bit unchanged.
23	RO	Fast Back-to-Back Capable The SiS Ethernet Controller will set this bit to 1.
22	RO	User Definable Features Supported The SiS Ethernet Controller does not support User Definable Features, and therefore reads will return a 0.
21	RO	66MHz Capable The SiS Ethernet Controller is not 66MHz capable. Reads will return a 0.
20	RO	Capabilities The SiS Ethernet Controller will set this bit to 1 indicating implementation of extended capabilities (PCI power management).
19:10		Reserved Reads return 0.
9	R/W	Fast Back-to-Back Enable Set to 1 by the PCI BIOS to enable the SiS Ethernet Controller to do Fast Back-to-Back transfers (FBB transfers as a master is not implemented in the current revision).
8	R/W	SERR# Enable When set, the SiS Ethernet Controller will generate SERR# when an address parity error is detected.

237

Preliminary V.10 Oct.07,1999

7	RO	Address Data Stepping This bit is hardwired to 0 for the SiS Ethernet Controller never do stepping.
6	R/W	Parity Error Response When set, The SiS Ethernet Controller will assert PERR# on the detection of a data parity error when acting as the target, and will sample PERR# when acting as the initiator. When reset, data parity errors are ignored. The action taken is specified by CFG: PESEL.
5	RO	VGA Palette Snoop The SiS Ethernet Controller does not implement this bit. Reads will return a 0.
4	RO	Memory Write and Invalidate Enable Set to 0 indicating that The SiS Ethernet Controller will not generate the Memory Write and Invalidate command.
3	RO	Special Cycles Set to 0 indicating that The SiS Ethernet Controller will ignore all Special Cycle operations.
2	R/W	Bus Master Enable When set, The SiS Ethernet Controller is allowed to act as a PCI bus master. When reset, The SiS Ethernet Controller is prohibited from acting as a PCI bus master.
1	R/W	Memory Space Access When set, The SiS Ethernet Controller responds to memory space accesses. When reset, The SiS Ethernet Controller ignores memory space accesses.
0	R/W	IO Space Access When set, The SiS Ethernet Controller responds to IO space accesses. When reset, The SiS Ethernet Controller ignores IO space accesses.

Register 08h Configuration Revision ID

Default Value: 0200080h

Access: Read Only

This register stores silicon revision number, revision number of software interface specification and lets the configuration software know that it is an Ethernet controller in the class of network controllers.

Bit	Access	Description

238

Preliminary V.10 Oct.07,1999

31:24	RO	Base Class
		Returns 02 which specifies a network controller.
23:16	RO	Sub Class
		Returns 00, which specifies an Ethernet controller.
15:8	RO	Programming IF
	$\langle \rangle \rangle$	Returns 00, which specifies the first release of The SiS Ethernet Controller Software Interface Specification.
7:0	RO	Silicon Revision
	× (Returns 80, which specifies the silicon revision.

Register 0Ch Configuration Latency Timer

Default Value: 0000000h Access: Read/Write

This register gives status and controls such miscellaneous functions as BIST, Latency timer and Cache line size.

Bit	Access	Description
31:24	RO	Built-in Self Test
		The SiS Ethernet Controller do not support BIST. Read will return 0, write is ignored.
23:16	RO	Header Type
		00h
15:8	R/W	Latency Timer
		Set by software to the number of PCI clocks that The SiS Ethernet Controller may hold the PCI bus.
7:0	RO	Cache Line Size
		Ignored by The SiS Ethernet Controller.

Register 10h Configuration IO Base Address

Default Value: 0000001h

Access: Read/Write

This register specifies the Base I/O address that is required to build an address map during configuration. It also specifies the number of bytes required as well as an indication that it can be mapped into I/O space.

Bit Access Description

239

Preliminary V.10 Oct.07,1999

31:8	R/W	Base IO Address
		This is set by software to the base IO address for the Operational Register Map.
7:2	RO	Size indication
		Read back as 0. This allows the PCI bridge to determine that The SiS Ethernet Controller requires 256 bytes of IO space.
1		Reserved
	\bigcirc	Reads return 0.
0	RO	IO Space Indicator
		Set to 1 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller is capable of being mapped into IO space.

Register 14h Configuration Memory Address

Default Value: 0000000h

Access: Read/Write

This register specifies the Base Memory address that is required to build an address map during configuration. It also specifies the number of bytes required as well as an indication that it can be mapped into memory space.

Bit	Access	Description		
31:12	R/W	Memory Base Address This is set by software to the base address for the Operational Register Map.		
11:4	RO	Memory Size These bits return 0, which indicates that The SiS Ethernet Controller requires 4096 bytes of Memory Space (the minimum recommended allocation)		
3	RO	Prefetchable Set to 0 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller does not support this feature.		
2:1	RO	Location Selection Set to 00 by The SiS Ethernet Controller. This indicates that the base register is 32-bits wide and can be placed anywhere in the 32-bit memory space		
0	RO	Memory Space Indicator Set to 0 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller is capable of being mapped into memory space.		

Preliminary V.10 Oct.07,1999

Register 2Ch Configuration Subsystem Identification

Default Value: 09001039h

Access: Read Only

This register allows system software to distinguish between different subsystems based on the same PCI silicon.

Bit	Access	Description	
31:16		Subsystem Device ID	
		This field is set to the device ID 0900h assigned by SiS if auto load is not enabled. If auto load is enabled, it is set to the subsystem ID stored in EEPROM.	
15:0	RO	Subsystem Vendor ID	
		This field is set to a value of 1039h, which is SiS's PCI Vendor ID if auto load is not enabled. If auto load is enabled, it is set to the subvendor ID stored in EEPROM.	

Register 30h Configuration Expansion ROM Base Address

Default Value: 0000000h

Access: Read/Write

This register specifies the Base Expansion ROM address that is required to build an address map during configuration. It also specifies the number of bytes required as well as an indication that the device accepts accesses to its expansion ROM.

Bit	Access	Description		
31:17	R/W	Expansion ROM Base Address		
		This is set by software to the base address for the Expansion ROM.		
16:1		Reserved		
		Reads return 0.		
0	R/W	Expansion ROM address decode enable		
		This The SiS Ethernet Controller will respond to access its expansion ROM when this bit is set and the Memory Space Access bit is set.		

Register 34h Configuration Capabilities Pointer

Default Value: 00000040h

Access.	Read Oni	у			
Bit	Access	Description			
31:8		Reserved			
		Reads return 0.			

Preliminary V.10 Oct.07,1999

7:0	RO	Capabilities Pointer	
		It provides an offset into PCI configuration space for the location of the first item in the capabilities linked list. Hardwired to 40' h in The SIS Ethernet Controller to point to CFGPMC.	

Register 3Ch Configuration Interrupt Select

Default Value: 0b340300h

Access: Read/Write

This register stores the interrupt line number as identified by the POST software that is connected to the interrupt controller as well as The SiS Ethernet Controller desired settings for maximum latency and minimum grant.

Bit	Access	Description			
31:24	RO	Maximum Latency			
		The SiS Ethernet Controller desired setting for Max Latency. The SiS Ethernet Controller will initialize this field to 0B (2.75 μ sec).			
23:16	RO	Minimum Grant			
		The SiS Ethernet Controller desired setting for Minimum Grant.			
		The SiS Ethernet Controller will initialize this field to 34 (13 μ sec).			
15:8	RO	Interrupt Pin			
		Always return 0000 0011 (INTC).			
7:0	R/W	Interrupt Line			
		Set to which line on the interrupt controller that The SiS Ethernet Controller's interrupt pin is connected to.			

Register 40h Configuration Power Management Capabilities

Default Value: fe010001h

Access: Read Only

The SiS Ethernet Controller supports both PCI Bus Power Management Interface specifications. revision 1.0 and revision 1.0a. If auto load is enabled, the CFGPMC register is 1.0a version, otherwise it is 1.0 version.

1.0 version:

Bit	Access	Description		
31:27	RO	PME Support		
		Indicates PME# may be asserted from which power state. If Auxiliary Power Source is present, this 5-bit field is 11111b indicating PME# can be asserted from D0, D1, D2, D3hot and D3cold. If Auxiliary Power Source is absent, this 5-bit field is 01111b indicating PME# can be asserted from D0, D1, D2 and D3hot but cannot be asserted from D3cold.		

Preliminary V.10 Oct.07,1999

26	RO	D2 Support		
		Set to 1 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller supports D2 Power Management State.		
25	RO	D1 Support		
		Set to 1 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller supports D1 Power Management State.		
24:22	$ \land \land \land \land$	Reserved		
		Reads return 0.		
21	RO	Device Specific Initialization		
		Set to 0 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller does not require a device specific initialization sequence following transition to the D0 uninitialized state.		
20		Reserved		
		Reads return 0.		
19	RO			
		Set to 0 by The SiS Ethernet Controller to indicate that no PCI clock is required for The SiS Ethernet Controller to generate PME#.		
18:16	RO	PCI PM Spec. Version		
		Set to 001b indicates that The SiS Ethernet Controller complies with Revision 1.0 of the PCI Power Management Interface Specification.		
15:8	RO	Next Item Pointer		
		Set to 00h by The SiS Ethernet Controller to indicate that no additional items in the Capabilities List.		
7:0	RO	Capability ID		
		Set to 01h by The SiS Ethernet Controller to indicate that the linked list item as being the PCI Power Management registers.		

1.0a version:

Bit Access Description	
------------------------	--

31:27	RO	PME Support		
		Indicates PME# may be asserted from which power state. If Auxiliary Power Source is present, this 5-bit field is 11111b indicating PME# can be asserted from D0, D1, D2, D3hot and D3cold. If Auxiliary Power Source is absent, this 5-bit field is 01111b indicating PME# can be asserted from D0, D1, D2 and D3hot but cannot be asserted from D3cold.		
26	RO	D2 Support		
		Set to 1 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller supports D2 Power Management State.		
25	RO	D1 Support		
		Set to 1 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller supports D1 Power Management State.		
24:22	RO	Auxiliary Current		
		This field reports the 3.3Vaux auxiliary current requirements for The SiS Ethernet Controller.		
21	RO	Device Specific Initialization		
		Set to 0 by The SiS Ethernet Controller to indicate that The SiS Ethernet Controller does not require a device specific initialization sequence following transition to the D0 uninitialized state.		
20		Reserved		
		Reads return 0.		
19	RO	PME Clock		
		Set to 0 by The SiS Ethernet Controller to indicate that no PCI clock is required for The SiS Ethernet Controller to generate PME#.		
18:16	RO	PCI PM Spec. Version		
		Set to 010b indicates that The SiS Ethernet Controller complies with Revision 1.0a of the PCI Power Management Interface Specification.		
15:8	RO	Next Item Pointer		
		Set to 00h by The SiS Ethernet Controller to indicate that no additional items in the Capabilities List.		
7:0	RO	Capability ID		
		Set to 01h by The SiS Ethernet Controller to indicate that the linked list item as being the PCI Power Management registers.		

Register 44h Configuration Power Management Control/Status

Preliminary V.10 Oct.07,1999

Default Value: 0000000h

Access: Read/Write

This register is used to manage The SiS Ethernet Controller's power management state as well as to enable/monitor PME

Bit	Access	Description		
31:24	RØ	State Dependent Data		
	$ \land () \lor $	Not implemented in The SiS Ethernet Controller (reads return 0).		
23:16		PMCSR PCI to PCI Bridge Support Extensions		
		Not implemented in The SiS Ethernet Controller (reads return 0).		
15	R/W	PME Status		
		This bit is set when The SiS Ethernet Controller would normally assert the PME# signal independent of the state of the PME_EN bit. Writing a '1' to this bit will clear it and cause The SiS Ethernet Controller to stop asserting a PME# (if enabled). Writing a '0 has no effect. If Auxiliary Power Source is present, i.e. PME# can be asserted from D3cold, then this bit must be explicitly cleared by the operating system each time the operating system is initially loaded. Unchanged by hardware reset.		
14:13	RO	Data Scale		
		Not implemented in The SiS Ethernet Controller (reads return 0).		
12:9	RO	Data Select		
		Not implemented in The SiS Ethernet Controller (reads return 0).		
8	R/W	PME Enable		
		Writing a '1' enables The SiS Ethernet Controller to assert PME#. Writing a '0, PME# assertion is disabled. If Auxiliary Power Source is present, i.e. PME# can be asserted from D3cold, then this bit must be explicitly cleared by the operating system each time the operating system is initially loaded. Unchanged by hardware reset.		
7:2		Reserved		
		Reads return 0		

1:0	R/W	Power State		
		This 2-bit field is used both to determine the current power state of The SiS Ethernet Controller and to set The SiS Ethernet Controller into a new power state. The hardware reset value is 00b. The definition of the field values is given below.		
		00b	D0	
	$ \land (\land) \land)$	_01b D1		
	(O)	10b	D2	
		(11b) D3hot		
	$\langle / \wedge \rangle$			

13.4 MAC Operational Registers

The SiS Ethernet Controller provides the following set of operational registers mapped into PCI memory space or I/O space. Writes to reserved register locations may result in unexpected behavior. Reads to reserved register locations will return unspecified value.

Register	Tag	Description	Access	Section
00h	CR	Command Register	R/W	4.3.1
04h	CFG	Configuration Register	R/W	4.3.2
08h	EROMAR	EEPROM Access Register	R/W	4.3.3
0Ch	PTSCR	PCI Test Control Register	R/W	4.3.4
10h	ISR	Interrupt Status Register	R/W	4.3.5
14h	IMR	Interrupt Mask Register	R/W	4.3.6
18h	IER	Interrupt Enable Register	R/W	4.3.7
1Ch	ENPHY	Enhanced PHY Access Register	R/W	4.3.8
20h	TXDP	Transmit Descriptor Pointer Register	R/W	4.3.9
24h	TXCFG	Transmit Configuration Register	R/W	4.3.10
28-2Ch		RESERVED		
30h	RXDP	Receive Descriptor Pointer Register	R/W	4.3.11
34h	RXCFG	Receive Configuration Register	R/W	4.3.12
38h	FLOWCTL	Flow Control Register	R/W	4.3.13
3C-44h		RESERVED		
48h	RFCR	Receive Filter Control Register	R/W	4.3.14
Preliminary V.10 Oct.07,1999 246 Silicon Integrated Systems Corporation				

Table 13.4-1 Operational Register Map

4Ch	RFDR	Receive Filter Data Register	R/W	4.3.15
50-ACh		RESERVED		
B0h	PMCTL	Power Management Control Register	R/W	4.3.16
B4h	PMEVT	Power Management Wake-up Event Register	R/W	4.3.17
B8h	(0)	RESERVED		
BCh	WAKECRC	Wake-up Sample Frame CRC Register	R/W	4.3.18
C0-ECh	WAKEMASK	Wake-up Sample Frame Mask Registers	R/W	4.3.19
F0-FCh	\langle	RESERVED		

Register 00h Command

Default Value: 0000000h Access: Read/Write

This register is used for issuing commands to The SiS Ethernet Controller. These commands are issued by setting the corresponding bits for the function. Global software reset along with individual reset and enable/disable switches for transmitter and receiver are provided here.

Bit	Access	Description
31-10		Reserved
9	R/W	HomePHY Software Reset
		Set to 1 to reset HomePHY and set to 0 to clear reset.
8	R/W	Reset
		Set to 1 to force The SiS Ethernet Controller to a soft reset state, which disables the transmitter and receiver, reinitializes the FIFOs, and resets all affected registers to their soft reset state. This operation implies both a TXR and a RXR. This bit will read back a 1 during the reset operation, and be cleared to 0 by the hardware when the reset operation is complete.
7	R/W	Software Interrupt
		Setting this bit to a 1 forces The SiS Ethernet Controller to generate a hardware interrupt. This interrupt is maskable via the IMR.
6		Reserved

247

Preliminary V.10 Oct.07,1999

5	R/W	Receiver Reset
		When set to a 1, this bit causes the current packet reception to be aborted, the receiver data and status FIFOs to be flushed, and the receiver state machine to enter the idle state (RXE goes to 0). This is a write-only bit and is always read back as 0.
4	R/W	Transmit Reset
		When set to a 1, this bit causes the current transmission to be aborted, the transmitter data and status FIFOs to be flushed, and the transmitter state machine to enter the idle state (TXE goes to 0). This is a write-only bit and is always read back as 0.
3	R/W	Receiver Disable
		Disable the receiver's state machine after any current packets in progress. When this operation has been completed the RXE bit will be cleared to 0. This is a write-only bit and is always read back as 0. If the programmer is silly enough to set both RXD and RXE in the same write, the RXE will be ignored, and RXD will have precedence.
2	R/W	Receiver Enable
		When set to a 1, and the receiver's state machine is idle, then the receiver's machine becomes active. This bit will read back as a 1 whenever the receive state machine is active. After initial power- up, software must insure that the receiver has completely reset before setting this bit (see ISR:RXRCMP)
1	R/W	Transmit Disable
		When set to a 1, halts the transmitter after the completion of the current packet. This is a write-only bit and is always read back as 0. If the programmer is silly enough to set both TXD and TXE in the same write, the TXE will be ignored, and TXD will have precedence.
0	R/W	Transmit Enable
		When set to a 1, and the transmit state machine is idle, then the transmit state machine becomes active. This bit will read back as a 1 whenever the transmit state machine is active. After initial power-up, software must insure that the transmitter has completely reset before setting this bit (see ISR:TXRCMP)

Register 04h Configuration

Default Value:	00000000	1
Access:	Read/Write	Э
Bit	Access	Description

248

Preliminary V.10 Oct.07,1999

31-8		Reserved
7	R/W	PCI Bus Request Algorithm
		Selects mode for making requests for the PCI bus. When set to 0 (default), The SiS Ethernet Controller will use an aggressive Request scheme. When set to a 1, The SiS Ethernet Controller will use a more conservative scheme.
6	R/W	Single Backoff
		Setting this bit to 1 forces the transmitter backoff state machine to always backoff for a single 802.3 slot time instead of following the 802.3 random backoff algorithm. 0 (default) allows normal transmitter backoff operation.
5		Program Out of Window Timer
		This bit controls when the Out of Window collision timer begins counting its 512-bit slot time. A 0 causes the timer to start after the SFD is received. A 1 causes the timer to start after the first bit of the preamble is received.
4	R/W	Excessive Deferral Timer disable
		Setting this bit to 1 will inhibit transmit errors due to excessive deferral. This will inhibit the setting of the ED status.
3	R/W	Parity Error Detection Action
		This bit control the assertion of SERR when a data parity error is detected while The SiS Ethernet Controller is acting as the bus master. When set, parity errors will not result in the assertion of SERR. When reset, parity errors will result in the assertion of SERR, indicating a system error.
2-1		Reserved
0	R/W	Big Endian Mode
		When set, The SiS Ethernet Controller will perform bus-mastered data transfers in "big endian" mode. Note that access to register space is unaffected by the setting of this bit.

Register 08h Serial EEPROM Access

Default Value:	00000000h
Access:	Road/M/rito

Access:	Read/wri	te
Bit	Access	Description
31-8		Reserved

249

Preliminary V.10 Oct.07,1999

7	R/W	HomePHY Register Access
		Set to 1 to access HomePHY registers and set to 0 to access EEPROM.
6-4		Reserved
3	R/W	EEPROM Chip Select / HomePHY Register Select
	\wedge	In EEPROM chip select mode, it controls the value of the EECS pin. When set, the EECS pin is 1; when clear the EECS pin is 0.
	\bigcup	In HomePHY register select mode, set to 0 to enable access.
2	R/W	EEPROM Serial Clock / HomePHY Register Serial Clock
		In EEPROM chip select mode, it controls the value of the EESK pin. When set, the EESK pin is 1; when clear the EESK pin is 0.
		In HomePHY register select mode, when set, serial clock is 1; when clear, serial clock is 0.
1	RO	EEPROM Data Out / HomePHY Register Data Out
		In EEPROM chip select mode, it returns the current state of the EEDO/PA2 pin when EECS is 1. When EECS is 0, this bit returns 0.
		In HomePHY register select mode, it returns the data of HomePHY register.
0	R/W	EEPROM Data In / HomePHY Register Data In
		In EEPROM chip select mode, it controls the value of the EEDI pin.
		In HomePHY register select mode, it controls the data input of HomePHY register.

Register 08h PCI Test Control

Default Value: 3400000h

Access:	Read/Wr	te
Bit	Access	Description
31		Reserved
30	R/W	Discard Timer Test Mode Setting this bit to 1, the discard timer for delay transaction will have an initial value of 3ff0h. Setting this bit to 0, the initial value of the discard timer will be 0 and the counter expires when up-count to 3fffh. Default value is set to 0.

250

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

29-28		Reserved
27-24	R/W	Boot ROM Access Time This field adjusts the boot ROM access time. The default value is 0100b that equal to 4 PCI clocks.
23-21		Reserved
20-12	R/W	TX/RX RAM address Used as the address for the Transmit/Receive data FIFO when accessed through TXCFG/RXCFG during RAM test mode.
11-10		Reserved
9	R/W	Bus Master Test Enable When enabled (set to 1), the bus master test mode allows the TX buffer manager to be used as a bus master read cycle generator, and the RX buffer manager to be used as a bus master write cycle generator. While in this test mode, normal buffer manager operation is inhibited. The BMTEN bit should only be set to 1 after the TX and RX have been reset and disabled. After setting BMTEN to 0, the TX and RX must be reset and reconfigured to allow normal operation to resume.
8		Reserved
7	R/W	Receive RAM Test Mode Enable Set this bit to 1 to enable Receive RAM Test mode, which will allow read/write access to the RX data FIFO. The address is specified in bit20-12 RAM address field. The data is written to or read from the RXCFG register.
6	R/W	Transmit RAM Test Mode Enable Set this bit to 1 to enable Transmit RAM Test mode, which will allow read/write access to the TX data FIFO. The address is specified in bit20-12 RAM address field. The data is written to or read from the TXCFG register.
5	R/W	Status RAM Test Mode Enable
		Set this bit to 1 to enable Status RAM Test mode, which will allow read/write access to the RX status FIFO. The address is specified in bit4-0 Status RAM address field. The data is written to or read from the RXCFG register.
4-0	R/W	Status RAM address
		Used as the address for the receiver status FIFO when accessed through RXCFG during RAM test mode.

Preliminary V.10 Oct.07,1999

Bus Master Read Cycle Test Mode Generation

When the BMTEN bit is set to 1, the TX buffer manager will generate bus master read cycles on command. Several of the TX operational register bit fields are redefined to facilitate control of this mode.

TXDP	Read cycle starting address (dword aligned only).
TXCFG:DRTH	Length of read cycle in bytes (1-335 bytes). The actual length value is derived as follows: length[8:0] = {DRTH[5], 0, DRTH[4], 0, 0, DRTH[3:0]}.
	NOTE: TXCFG:MXDMA is still utilized while in this test mode to control the maximum DMA size. It is recommended that TXCFG:MXDMA be set to 0 so that the byte count in TXCFG:DRTH will control the DMA length.
CR:TXE	Write a "1" to this bit will invoke the read cycle.

The sequence required to generate bus master read cycle is as follows:

Write a 1 to CR:TXR (not necessary if this mode is invoked immediately after reset)

Write a 1 to PTSCR:BMTEN

Write a Dword aligned starting address to the TXDP reg

WRITE A BYTE LENGTH TO THE TXCFG:DRTH

Write a 1 to the CR:TXE

All data read during this bus master cycle is discarded (bit bucket). Read cycles can be initiated repetitively without resetting TX between cycles. TXDP, and TXCFG data are retained between cycles.

Bus Master Write Cycle Test Mode Generation

When the BMTEN bit is set to 1, the RX buffer manager will generate bus master write cycles on command. Several of the RX operational register bit fields are redefined to facilitate control of this mode.

RXDP	Write cycle starting address (Dword aligned only).
RXCFG:DRTH	Length of write cycle in bytes (1-335 bytes). The actual length value is derived as follows: length[8:0] = {DRTH[5], 0, DRTH[4], 0, 0, DRTH[3:0]}.
	NOTE: RXCFG:MXDMA is still utilized while in this test mode to control the maximum DMA size. It is recommended that RXCFG:MXDMA be set to 0 so that the byte count in the RXCFG:DRTH bits will control the DMA length.
RXstatus[22:0]	Write cycle data (this data byte value is used for all byte lanes – see below for data pattern)
CR:RXE	Writing a "1" to this bit will invoke the write cycle

Data from the Receive status FIFO is used to provide the bus data for the write cycles. A location in the RX status FIFO must be written and read using RAM test mode to initialize the desired data pattern. The status data mapping used for each byte lane (little endian) during the

Preliminary V.10 Oct.07,1999 252 Silicon Integrated Systems Corporation

generated write cycles is as follows:

byte 0 : status[7:0]

byte 1 : status[15:8]

byte 2 : {status[0], status[22:16]}

byte 3 : status[8:1]

The sequence required to generate bus master write cycle is as follows:

Write a 1 to CR:RXR (not necessary if this mode is invoked immediately after reset)

Write a 1 to PTSCR:SRTMEN and 00000 to PTSCR:SRAMADR[4:0]

Write desired data pattern to RXCFG (Note: Only bits 22-0 are used)

Read RXCFG

Write a 1 to PTSCR:BMTEN

Write a dword aligned starting address to the RXDP register

Write a byte length to the RXCFG:DRTH

Write a 1 to the CR:RXE

Write cycles can be initiated repetitively without resetting RX between cycles. RXDP, RX status, and RXCFG data are retained between cycles.

The sequence from step 1 to step 4 also describes the status RAM test mode procedure, as a example with address 00000. Similarly, Transmit and Receive RAM test mode can be achieved as follows:

- 1. Write a 1 to CR:TXR (not necessary if this mode is invoked immediately after reset)
- 2. Write a 1 to PTSCR:TRTMEN and the address to PTSCR:TRRAMADR[20:12]
- 3. Write desired data pattern to TXCFG
- 4. Read RXCFG

Register 10h Interrupt Status

Default Value: 03008000h Access: Read Only

This register indicates the source of an interrupt when the INTA pin goes active. Enabling the corresponding bits in the Interrupt Mask Register (IMR) allows bits in this register to produce an interrupt. When an interrupt is active, one or more bits in this register are set to a "1". The Interrupt Status Register reflects all current pending interrupts, regardless of the state of the corresponding mask bit in the IMR. Reading the ISR clears all interrupts. Writing to the ISR has no effect.

Bit	Access	Description
31-29		Reserved

253

28	RO	Wake Up Event
		Indicates that there is wake-up event occurs. This bit is a wired version of PM Event registers bits, it's not a registered one. So this bit will not be cleared by read operation like others status bits do, it is read as '0' when all PM Event registers bits are cleared.
27	RO	End of Transmission Pause
	\sim	Indicates pause command is completed when pause timer expires.
26	RO	Start of Transmission Pause
		Indicates data transmission is paused.
25	RO	Transmit Reset Complete
		Indicates that a requested transmit reset operation is complete.
24	RO	Receive Reset Complete
		Indicates that a requested receive reset operation is complete.
23	RO	Detected Parity Error
		This bit is set whenever CFGCS:DPERR is set, but cleared (like all other ISR bits) when the ISR register is read.
22	RO	Signaled System Error
		The SiS Ethernet Controller signaled a system error on the PCI bus.
21	RO	Received Master Abort
		The SiS Ethernet Controller received a master abort on the PCI bus.
20	RO	Received Target Abort
		The SiS Ethernet Controller received a target abort on the PCI bus.
19-17		Reserved
16	RO	RX Status FIFO Overrun
		Set when an overrun condition occurs on the RX Status FIFO.
15	RO	High Bits Error Set
		A logical OR of bits 25-16
14-13		Reserved
12	RO	Software Interrupt
		Set whenever the SWI bit in the CR register is set.
11		Reserved
Preliminary V.10 Oct.07,1999 254 Silicon Integrated Systems Corporation		

Preliminary V.10 Oct.07,1999

10	RO	TX Underrun
		Set when a transmit data FIFO underrun condition occurs.
9	RO	TX Idle This event is signaled when the transmit state machine enters the idle state from a non-idle state. This will happen whenever the state machine encounters an "end-of-list" condition (NULL link field or a descriptor with OWN clear).
8	RO	TX Packet Error
		This event is signaled after the last transmit descriptor in a failed transmission attempt that has been updated with valid status.
7	RO	TX Descriptor
		This event is signaled after a transmitter descriptor with the INTR bit set in the CMDSTS field that has been updated.
6	RO	TX Packet OK
		This event is signaled after the last transmit descriptor in a successful transmission attempt has been updated with valid status
5	RO	RX Overrun
		Set when a receive data FIFO overrun condition occurs.
4	RO	RX Idle This event is signaled when the receive state machine enters the idle state from a running state. This will happen whenever the state machine encounters an "end-of-list" condition (NULL link field or a descriptor with OWN set).
3	RO	RX Early Threshold
		Indicates that the initial RX Drain Threshold has been met by the incoming packet, and the transfer of the number of bytes specified by the DRTH field in the RXCFG register has been completed by the receive DMA engine. This interrupt condition will occur only once per packet.
2	RO	RX Packet Error
		This event is signaled after the last receive descriptor in a failed packet reception that has been updated with valid status.
1	RO	RX Descriptor
		This event is signaled after a receiver descriptor with the INTR bit set in the CMDSTS field that has been updated.

255

Preliminary V.10 Oct.07,1999

0	RO	RX ОК
		Set by the receive state machine following the update of the last receive descriptor in a good packet.

Register 14h Interrupt Mask

Default Value: 0000000h

Access: Read/Write

This register masks the interrupts that can be generated from the ISR. Writing a "1" to the bit enables the corresponding interrupt. During hardware reset, all mask bits are cleared.

Bit	Access	Description
31-29		Reserved
28	R/W	Wake Up Event When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
27	R/W	End of Transmission Pause When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
26	R/W	Start of Transmission Pause When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
25	R/W	Transmit Reset Complete When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
24	R/W	Receive Reset Complete When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
23	R/W	Detected Parity Error When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
22	R/W	Signaled System Error When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
21	R/W	Received Master Abort When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.

256

Preliminary V.10 Oct.07,1999

20	R/W	Received Target Abort
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
19-17		Reserved
16	R/W	RX Status FIFO Overrun
	\wedge (R)	Set when an overrun condition occurs on the RX Status FIFO.
15	R/W	High Bits Error Set
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
14-13		Reserved
12	R/W	Software Interrupt
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
11		Reserved
10	R/W	TX Underrun When this bit is 0, the corresponding bit in the ISR will not cause
		an interrupt.
9	R/W	TX Idle When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
8	R/W	TX Packet Error
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
7	R/W	TX Descriptor
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
6	R/W	TX Packet OK
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
5	R/W	RX Overrun
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
4	R/W	RX Idle
		When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.

Preliminary V.10 Oct.07,1999

3	R/W	RX Early Threshold When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
2	R/W	RX Packet Error When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
1	R/W	RX Descriptor When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.
0	R/W	RX OK When this bit is 0, the corresponding bit in the ISR will not cause an interrupt.

The Interrupt Mask Register provides a mechanism for enabling individual interrupt sources in the Interrupt Status Register (ISR). Setting a mask bit allows the corresponding bit in the ISR to cause an interrupt. ISR bits are always set to 1, however, if the condition is present, regardless of the state of the corresponding mask bit,

Register 18h Interrupt Enable

Default Value: 0000000h

Access: Read/Write

The Interrupt Enable Register controls the hardware INTR signal.

Bit	Access	Description
31-1		Reserved
0	R/W	Interrupt Enable When set to 1, the hardware INTR signal is enabled. When set to 0, the hardware INTR signal will be masked, and no interrupts will be generated. The setting of this bit has no effect on the ISR or IMR. This provides the ability to disable the hardware interrupt to the host with a single access (eliminating the need for a read- modify-write cycle).

Register 1Ch Enhanced PHY Access

Default Value: 0000000h

Access: Read/Write

The SiS Ethernet Controller provides ten internal MII PHY registers for internal PHY configuration settings and status readings. Driver can access the ten internal MII registers by defining the command, Register offset, desired data from the ENPHY resister listed below.

Bit	Access	Description

258

Preliminary V.10 Oct.07,1999

31-16	R/W	R/W PHY Data
		When write, this field specifies the data written to PHY register. When read, this field contains the data returned by PHY.
15-11		Reserved
10-6	R/W	Register Address of PHY
	$\Lambda(R)$	Indicates the offset of PHY register.
5	R/W	Access CMD to PHY
		When '1', HW will issue a read operation to PHY registers, when '0, HW will issue a write operation. This field is valid only when bit 4 is '1'.
4	R/W	SW Access Request/HW Done
		When SW wants to access PHY register, it sets this bit to request HW. For such operation, HW will perform the access operation in a proper time, when finished, it clears this bit. SW can't change the PHY access contents if the current access is not done.
3-0		Reserved

Register 20h Transmit Descriptor Pointer

Default Value: 0000000h Access: Read/Write

This register points to the current Transmit Descriptor.

Bit	Access	Description
31-2	R/W	Transmit Descriptor Pointer
		The current value of transmitter descriptor pointer. When the transmit state machine is idle, software must set TXDP to the address of a completed transmit descriptor. While the transmit state machine is active, TXDP will follow the state machine as it advances through a linked list of active descriptors. If the link field of the current transmit descriptor is NULL (signifying the end of the list), TXDP will not advance, but will remain on the current descriptor. Any subsequent writes to the TXE bit of the CR register will cause the transmit state machine to reread the link field of the current descriptor to check for new descriptors that may have been appended to the end of the list. Transmit descriptors must be aligned on an even 32-bit boundary in host memory (A1-A0 must be 0).
1-0		Reserved

259

Register 24h Transmit Configuration

Preliminary V.10 Oct.07,1999

Default Value: 00800102h

Access: Read/Write

This register defines the Transmit Configuration for The SiS Ethernet Controller. It controls such functions as Loopback, Auto Transmit Padding, Fill & Drain Thresholds, and maximum DMA burst size.

Bit	Access	Description
31	R/W	Carrier Sense Ignore Setting this bit to 1 causes the transmitter to ignore carrier sense activity, which inhibits reporting of CRS status to the transmitter status register. When this bit is 0 (default), the transmitter will monitor the CRS signal during transmission and reflect valid status in the transmitter status register. This bit must be set to enable full-duplex operation.
30	R/W	HeartBeat Ignore Setting this bit to 1 causes the transmitter to ignore the heartbeat (CD) pulse that follows the packet transmission. When this bit is set to 0 (default), the transmitter will monitor the heartbeat pulse. This bit must be set to enable full-duplex operation
29	R/W	MAC Loopback Setting this bit to a 1 places The SiS Ethernet Controller into a controller loopback state which routes all transmit traffic to the receiver, and disables the transmit and receive interfaces of the MII. A 0 in this bit allows normal MAC operation. The transmitter and receiver must be disabled before enabling the loopback mode. (Packets received during MLB mode will reflect loopback status in the receive descriptor's CMDSTS.LBP field.)
28	R/W	Automatic Transmit Padding Setting this bit to 1 causes the MAC to automatically pad small (runt) transmit packets to the Ethernet minimum size of 64 bytes. This allows driver software to transfer only actual packet data. Setting this bit to 0 disables the automatic padding function, forcing software to control runt padding.
27-25		Reserved
24-23		Writes are ignored, reads return 01.

260

22-20	R/W	Max DMA Burst Size per TX DMA Burst		
		This field sets the maximum size of transmit DMA data bursts according to the following table:		
		000	128 x 32-bit words (512 bytes)	
		001	1 x 32-bit word (4 bytes)	
	\wedge (R)	010	2 x 32-bit words (8 bytes)	
	(0)	011	4 x 32-bit words (16 bytes)	
		100	8 x 32-bit words (32 bytes)	
	$\sim \sim \sim$	101	16 x 32-bit words (64 bytes)	
		110 32 x 32-bit words (128 bytes)		
		111	64 x 32-bit words (256 bytes)	
19-14		Reserved		
13-8	R/W	TX Fill Threshold		
		Specifies the fill threshold in units of 32 bytes. When the number of available bytes in the transmitter FIFO reaches this level, the transmit bus master state machine will be allowed to request the PCI bus for transmit packet fragment reads. A value of 0 in this field will produce unexpected results and must not be used.		
7-6		Reserved		
5-0	R/W	TX Drain Threshold		
		Specifies the drain threshold in units of 32 bytes. When the number of bytes in the FIFO reaches this level (or the FIFO contains at least one complete packet) the MAC transmit state machine will begin the transmission of a packet. NOTE: In order to prevent a deadlock condition from occurring, the transmit drain threshold should never be set higher than the (TXFIFOSize – TXCFG:FLTH). A value of 0 in this field will produce unexpected results and must not be used.		

Register 30h This register points to the current Receive Descriptor.

Default Value: 0000	0000h
---------------------	-------

This register points to the current Receive Descriptor.

|--|

261

Preliminary V.10 Oct.07,1999

31-2	R/W	Receive Descriptor Pointer		
		The current value of the receiver descriptor pointer. When the receive state machine is idle, software must set RXDP to the address of an available receive descriptor. While the receive state machine is active, RXDP will follow the state machine as it advances through a linked list of available descriptors. If the link field of the current receive descriptor is NULL (signifying the end of the list), RXDP will not advance, but will remain on the current descriptor. Any subsequent writes to the RXE bit of the CR register will cause the receive state machine to reread the link field of the current descriptor to check for new descriptors that may have been appended to the end of the list. Software should not write to this register unless the receive state machine is idle. Receive descriptors must be aligned on 32-bit boundaries (A1-A0 must be zero).		
1-0		Reserved		

Register 34h Receive Configuration

Default Value: 0000002h

Access: Read/Write

This register is used to set the receiver configuration for The SiS Ethernet Controller. Receive properties such as accepting error packets, runt packets, setting the receive drain threshold etc. are controlled here.

Bit	Access	Description	
31	R/W	Accept Errors Packets	
		When set to 1, all packets with CRC, alignment, and/or collision errors will be accepted. When set to 0, all packets with CRC, alignment, and/or collision errors will be rejected if possible. Note that depending on the type of error, some packets may be received with errors, regardless of the setting of AEP. These errors will be indicated in the CMDSTS field of the last descriptor in the packet.	
30	R/W	Accept Runt Packets	
		When set to 1, all packets under 64 bytes in length without errors are accepted. When this bit is 0, all packets less than 64 bytes in length will be rejected if possible.	
29		Reserved	

262

28	R/W	Accept Transmit Packets		
	$\wedge \mathbb{R}$	When set to 1, data received simultaneously to a local transmission (such as during a PMD loopback or full duplex operation) will be accepted as valid received data. Additionally, when set to 1, the receiver will ignore collision activity. When set to 0 (default), all data receive simultaneous to a local transmit will be rejected. This bit must be set to 1 for PMD loopback and full duplex operation.		
27	R/W	Accept Jabber Packets		
		When set to 1, all packets over 1518 bytes in length (to a maximum of 2046 bytes) will be accepted and placed in the receive data buffers (if buffers that large are specified in the receive descriptor list). When set to 0, packets larger than 1518 bytes (CRC inclusive) will be rejected if possible. A byte count of 2046 indicates that the packet may have been truncated.		
26-23		Reserved		
22-20	R/W	Max DMA Burst Size per RX DMA Burst		
		This field sets the maximum size of receive DMA data bursts according to the following table:		
		000 128 x 32-bit words (512 bytes)		
		001 1 x 32-bit word (4 bytes)		
		010 2 x 32-bit words (8 bytés)		
		011 4 x 32-bit words (16 bytes)		
		100 8 x 32-bit words (32 bytes)		
		101 16 x 32-bit words (64 bytes)		
		110 32 x 32-bit words (128 bytes)		
		111 64 x 32-bit words (256 bytes)		
19-6		Reserved		

263

5-1	R/W	RX Drain Threshold		
		Specifies the drain threshold in units of 8 bytes. When the number of bytes in the receiver FIFO reaches this value (times 8), or the FIFO contains a complete packet, the receive bus master state machine will begin the transfer of data from the FIFO to host memory. Care must be taken when setting DRTH to a value lower than the number of bytes needed to determine if packet should be accepted or rejected. In this case, the packet might be rejected after the bus master operation to begin transferring the packet into memory has begun. When this occurs, neither the OK bit nor any error status bit in the descriptor' s CMDSTS will be set. A value of 0 is illegal, and the results are undefined. This value is also used to compare with the accumulated packet length for early receive indication. When the accumulated packet length meets or exceeds the DRTH value, the RXEARLY interrupt condition is generated.		
0		Reserved		

Register 38h Flow Control

Default Value: 0000000h

Access: Read/Write

The FLOWCTL register is used to control and configure The SiS Ethernet Controller Flow Control logic. The Flow Control Logic is used to detect PAUSE frame packets and control data frame transmission.

Bit	Access	Description
31-2		Reserved
1	R/W	PAUSE Flag
		When "1" indicates data frame transmission is paused. When "0" transmission is normal. This bit is reset by H/W reset, 900 soft reset, transmit reset, pause timer expires or S/W write 0 to this bit.
0	R/W	Flow Control Enable
		Set to 1, enable the PAUSE frame detection. Set to 0, disable the PAUSE frame detection. This bit is reset only by H/W reset.

Register 48h Receive Filter Control

Default Value: 0000000h

Access: Read/Write

The RFCR register is used to control and configure The SiS Ethernet Controller Receive Filter Control logic. The Receive Filter Control Logic is used to configure destination address filtering of incoming packets.

264

Preliminary V.10 Oct.07,1999

Bit	Access	Description		
31	R/W	RX Filter Enable		
	(When this bit is set to 1, the RX Filter is enabled to qualify incoming packets. When set to 0, receive packet filtering is disabled (i.e. all receive packets are rejected).		
30	R/W	Accept All Broadcast		
		When set to 1, this bit causes all broadcast address packets to be accepted. When set to 0, no broadcast address packets will be accepted.		
29	R/W	Accept All Multicast		
		When set to 1, this bit causes all multicast address packets to be accepted. When set to 0, multicast destination addresses must have the appropriate bit set in the multicast hash table mask in order for the packet to be accepted.		
28	R/W	Accept All Physical		
		When set to 1, this bit causes all physical address packets to be accepted. When set to 0, the destination address must match the node address register in order for the packet to be accepted.		
27	R/W	HomePHY Or 802.3u PHY Select		
		When set to 1, HomePHY is selected and set to 0 to select 802.3u PHY.		
26-20		Reserved		

265

19-16	R/W	Receive Filter Address	
		Selects RFDR:	which internal receive filter register is accessible via
		0000	node address octets 1-0
		0001	node address octets 3-2
	$\Lambda(R)$	0010	node address octets 5-4
	(0)	0011	RESERVED
		0100	multicast hash table bits 15-0
		0101	multicast hash table bits 31-16
		0110	multicast hash table bits 47-32
		0111	multicast hash table bits 63-48
		1000	multicast hash table bits 79-64
		1001	multicast hash table bits 95-80
		1010	multicast hash table bits 111-96
		1011	multicast hash table bits 127-112
		others	RESERVED
15-0		Reserve	d

Register 4Ch Receive Filter Data

Default Value: 0000000h

Access: Read/Write

The RFDR register is used for reading from and writing to the internal receive filter registers (unique address register, and the hash table register).

Bit	Access	Description		
31-16		Reserved	\sim	
15-0	R/W	Receiver Filter Data		
		Receiver Filter Data		

The Receive Filter Logic uses the following algorithm when qualifying incoming packets for reception:

266

Preliminary V.10 Oct.07,1999

Figure 13.4-1 Receive Filter Algorithm

The *Node Address* register is a 48-bit register internal to the Receive Filter logic. When RFCR:AAP is clear, then the receive filter logic will only accept unicast packets which match the contents of the node address register. Octet 0 of the node address register corresponds to the first octet of the packet as it appears on the wire. Octet 5 of the node address register corresponds to the last octet of the destination address as it appears on the wire. For example, to configure a node address of 00-E0-06-07-28-55,

267

Software will need to execute the following series of register operations:

out32(RFCR, 0x0000000);	/* disable receive filter, NA(0) */
out32(RFDR, 0x0000E000);	/* load octets 0 and 1 */
out32(RFCR, 0x00010000);	/* select NA[1] */
out32(RFDR, 0x00000706);	/* load octets 2 and 3 */
out32(RFCR, 0x00020000);	/* select NA[2] */
out32(RFDR, 0x00005528);	/* load octets 4 and 5 */
out32(RFCR, 0xC000000);/	/* enable receive filter, accept broadcasts */

The *Multicast Hash Table* register can be configured to perform imperfect filtering of multicast packets. If the receive packet's destination address is a multicast address (but not the broadcast address) and the RFCR:AAM is not set, then the receive filter logic will use the 7 most significant bits of the destination address's CRC as an index into the Multicast Hash Table register. If the corresponding bit is set, then the packet is accepted, otherwise the packet is rejected. Refer to Appendix B - Hash Table Index Computation.

Register B0h Power Management Control

Default Value: 0000000h

Access: Read/Write

This register provides SW an interface to control which Power Management Event to assert PME# / INTA#. The contents of this register should be well-programmed before set the Ethernet Controller into power saving state, and will not be affected by PCI HW reset. It can be reset by software reset (OP register offset 00h bit8) except ISOSEL.

Bit	Access	Description	
31	R/W	Gate Dual Target Clock Enable	
		When '1', the clock of dual powered blocks will be gated when in (D3cold and (not PME_EN)). When '0, the clock of dual powered blocks will never be gated.	
30	R/W	Wake-up While Receive OK Packet	
		When '1', any packet that passed the RXFilter with no error will cause a wake-up event. This may include any broadcast, multicast, or direct addressed packet depending on how RXFilter is programmed.	
29-27		Reserved	

268

Preliminary V.10 Oct.07,1999

26	R/W	3rd Wake-up Frame Access	
		When '1', access to WAKECRC is indirectly mapped to the 3rd wake-up frame CRC register. FRM3ACS, FRM2ACS, and FRM1ACS are supposed not to be set at the same time for read access.	
25	R/W	2nd Wake-up Frame Access	
		When '1', access to WAKECRC is indirectly mapped to the 2 nd wake-up frame CRC register. FRM3ACS, FRM2ACS, and FRM1ACS are supposed not to be set at the same time for read access.	
24	R/W	1st Wake-up Frame Access	
		When 1, access to WAKECRC is indirectly mapped to the 1 st wake-up frame CRC register. FRM3ACS, FRM2ACS, and FRM1ACS are supposed not to be set at the same time for read access.	
23		Reserved	
22	R/W	3rd Wake-up Frame Match Enable	
		When this bit is '1', and PME_EN is '1', the 3rd wake-up mechanism of receipt of a network wake-up frame is enabled.	
21	R/W	2nd Wake-up Frame Match Enable	
		When this bit is '1', and PME_EN is '1', the 2nd wake-up mechanism of receipt of a network wake-up frame is enabled.	
20	R/W	1st Wake-up Frame Match Enable	
		When this bit is '1', and PME_EN is '1', the 1st wake-up mechanism of receipt of a network wake-up frame is enabled.	
19-12		Reserved	
11	R/W	Magic PacketTM Match Algorithm	
		When '1', a strict magic packet match algorithm is used when detect magic packet.	
		When '0, a loose magic packet match algorithm is used when detects magic packet.	
10	R/W	Magic PacketTM Match Enable	
		When this bit is '1', and PME_EN is '1', the wake-up mechanism of receipt of a Magic Packet is enabled.	
9-2		Reserved	

269

Preliminary V.10 Oct.07,1999

1	R/W	Link On Monitor Enable	
		When this bit is '1', and PME_EN is '1', the wake-up mechanism of detection the link on state is enabled.	
0	R/W	Link Loss Monitor Enable	
		When this bit is '1', and PME_EN is '1', the wake-up mechanism of detection the link loss state is enabled.	

Register B4h Power Management Wake-up Event

Default Value: 0000000h

Access: Read/Write

This register records which wake-up event wake up the system. This register is not affected by PCI HW reset. It can be reset only by software reset (OP register offset 00h bit8). SW writes 1 will clear the individual bits. SW writes 0 will leave the individual bits unchanged.

Bit	Access	Description	
31		Reserved	
30	R/W	Receive OK Packet H/W sets this bit whenever bit30 of PM Control Register is '1' and an incoming packet passes the RXFilter with no error.	
		SW writes '1' to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.	
29-23		Reserved	
22	R/W	Match 3rd Wake-up Sample Frame H/W sets this bit whenever bit22 of PM Control Register is '1' and receipt of the pre-defined 3rd wake-up frame with no error.	
		SW writes '1' to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.	
21	R/W	Match 2nd Wake-up Sample Frame H/W sets this bit whenever bit21 of PM Control Register is '1' and receipt of the pre-defined 2nd wake-up frame with no error. SW writes '1' to this bit will clear this bit. SW writes '0' to this bit	
		leaves this bit unchanged.	
20	R/W	Match 1st Wake-up Sample Frame H/W sets this bit whenever bit20 of PM Control Register is '1' and receipt of the pre-defined 1st wake-up frame with no error.	
		SW writes '1' to this bit will clear this bit. SW writes '0' to this bit leaves this bit unchanged.	

Preliminary V.10 Oct.07,1999

19-11		Reserved	
10	R/W	Magic PacketTM Match	
		H/W sets this bit whenever bit10 of PM Control Register is '1' and receipt of a magic packet with no error.	
		SW writes '1' to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.	
9-2	$\langle \langle \rangle \rangle$	Reserved	
1	R/W	Link On Event	
	$\langle \rangle$	H/W sets this bit whenever bit1 of PM Control Register is '1' and link status changes from loss to on.	
		SW writes '1' to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.	
0	R/W	Link Loss Event	
		H/W sets this bit whenever bit0 of PM Control Register is '1' and link status changes from on to loss.	
		SW writes '1' to this bit will clear this bit. SW writes '0 to this bit leaves this bit unchanged.	

Register BCh Wake-up Sample Frame CRC

Default Value: 0000000h

Access: Read/Write

This register provides an access window to the CRC values of the mask bytes in wake-up sample frames. When FRM3ACS, FRM2ACS, or FRM1ACS is '1', the CRC value of the mask bytes in the corresponding wake-up sample frame can be accessed through this register. FRM3ACS, FRM2ACS, and FRM1ACS are supposed not to be set at the same time for read access. If the CRC value of those incoming bytes, whose byte mask is set to 1 in the sample frame, equals to the CRC value in the sample frame, then the incoming frame is considered a wake-up frame. This register is not affected by PCI HW reset. It can be reset only by software reset (OP register offset 00h bit8).

Bit	Access	Description
31-0	R/W	Wake-up Frame CRC Value
		This field specifies the CRC value of the mask bytes in the corresponding wake-up sample frame specified by FRM3ACS, FRM2ACS, and FRM1ACS. H/W uses this 32-bit CRC value to match the 32-bit CRC value of incoming frame mask bytes. If matched, the incoming frame is a wake-up frame and PME# will be asserted if enabled.

271

13.4.1 Wake-up Sample Frame Byte Mask Register

These registers provide the mask bytes in wake-up sample frames. These registers are not affected by PCI HW reset. They can be reset by software reset (OP register offset 00h bit8).

Register	Size	R/W	Description	
C0h	32	R/W	The 1st 32 byte mask in the 1st Wake-up sample frame.	
C4h	32	R/W	The 2nd 32 byte mask in the 1st Wake-up sample frame.	
C8h	32	R/W	The 3rd 32 byte mask in the 1st Wake-up sample frame.	
CCh	32	R/W	The 4th 32 byte mask in the 1st Wake-up sample frame.	
D0h	32		The 1st 32 byte mask in the 2nd Wake-up sample frame.	
D4h	32	R/W	The 2nd 32 byte mask in the 2nd Wake-up sample frame.	
D8h	32	R/W	The 3rd 32 byte mask in the 2nd Wake-up sample frame.	
DCh	32	R/W	The 4th 32 byte mask in the 2nd Wake-up sample frame.	
E0h	32	R/W	The 1st 32 byte mask in the 3rd Wake-up sample frame.	
E4h	32	R/W	The 2nd 32 byte mask in the 3rd Wake-up sample frame.	
E8h	32	R/W	The 3rd 32 byte mask in the 3rd Wake-up sample frame.	
ECh	32	R/W	The 4th 32 byte mask in the 3rd Wake-up sample frame.	

13.5 **MII PHY Registers**

SiS540 has eleven internal MII PHY 16 bit registers. Ten registers are available for setting configuration inputs and reading status outputs and one register is reserved for factory use. The ten accessible registers consist of six registers that are defined by IEEE 802.3 specification (MI Register 0-5) and four registers that are unique to SiS540 (MI Register 16-19).

The accesses of the ten MI PHY Registers are through MAC Operational Register ENPHY (offset 1Ch). Users can define the command (RWCMD, ENPHY bit 5), the Register Offset (REGADDR, ENPHY bit 10-6), and the Data contents (PHYDATA, ENPHY bit 31-16). And then the driver issue the access command bit by writing '1' to register ENPHY bit 4, ACCESS, and wait for SiS540 complete the operation which should return '0' when completed.

Register	Тад	Description	Access	Section
00h	CONTROL	MI Register 0 Control Register	RO	4.4.1
01h	STATUS	MI Register 1 Status Register	R/W	4.4.2
02h	PHYID1	MI Register 2 PHY ID#1	RO	4.4.3
03h	PHYID2	MI Register 3 PHY ID#2	R/W	4.4.4
04h	AUTOADV	MI Register 4 Auto Negotiation	R/W	4.4.5
Preliminary	Preliminary V.10 Oct.07.1999 272 Silicon Integrated Systems Corporatio			

Table 13.5-1 PHY Configuration Register Map

Preliminary V.10 Oct.07,1999

		Advertisement		
05h	AUTOREC	MI Register 5 Auto Negotiation Remote End Capability	R/W	4.4.6
10h	CONFIG1	MI Register 16 Configuration 1	R/W	4.4.7
11h	CONFIG2	MI Register 17 Configuration 2	R/W	4.4.8
12h	STSOUT	MI Register 18 Status Output	R/LT	4.4.9
13h	MASK	MI Register 19 Mask	R/W	4.4.10
14h	RESERVED	MI/Register 20 Reserved	R/W	4.4.11

Register 00h CONTROL

Default Value: 3000h

Access:	s: Read/Write		
Bit	Access	Description	
15	R/WSC	PHY Reset	
		1: Reset, Bit Self Cleaning After Reset Completed	
		0: Normal	
14	R/W	Loopback	
		1: Loopback Mode Enabled	
		0: Normal	
13	R/W	Speed	
		1: 100 Mbps Selected (100Base TX)	
		0: 10 Mbps selected (10Base-T)	
12	R/W	Auto-Negotiation	
		1: Auto-Negotiation Enabled	
		0: Normal	
11	R/W	Powerdown	
		1: Powerdown	
		0: Normal	
10	R/W	MII interface	
		1: MII Interface Disabled	
		0: Normal	

273

Preliminary V.10 Oct.07,1999

9	R/WSC	Auto-Negotiation Reset
		1: Reset Auto-Negotiation Process, Bit Self Clearing After Reset Completed
		0: Normal
8	R/W	Duplex Mode
	\mathcal{A}	1: Full Duplex 0: Half Duplex
7	R/W	Collision Test 1: Collision Test Enabled 0: Normal
6-0	R/W	Reserved

Doluun	value.	700011	
Access		Read Only	,

6-0	R/W	Reserved
Register 01h Default Value Access:	ו STATUS e: 7809h Read On!	
Bit	Access	Description
15	RO	0: Not Capable of 100Base-T4 Operation
14	RO	1: Capable of 100Base-TX Fulk Duplex
13	RO	1: Capable of 100Base-TX Half Duplex
12	RO	1: Capable of 10Base-T Full Duplex
11	RO	1: Capable of 10Base-T Half Duplex
10-7	RO	Reserved
6	R	0: Not Capable of Accepting MI Frames with MI Preamble Suppressed
5	R	1: Auto-Negotiation Acknowledge Process Complete 0: Normal
4	R/LH	 Remote Fault Detected. This bit is set when Either Interrupt Detect or Auto-Negotiation Remote Fault is set. No Remote Fault
3	R	1: Capable of Auto-Negotiation Operation
2	R/LL	1: Link Detected 0: Link not detected

Preliminary V.10 Oct.07,1999

1	R/LH	1: Jabber Detected 0: Normal
0	R	1: Extended Register Exist

Register 02h PHY ID #1

Default Value: 001Dh

Access:	Read		
Bit	Access		Description
15-0	R	Company ID, Bits 3-18	
	Č (OUI = 00-Ê0-06	

Register 03h PHY ID #2

Default Value: 8000h

Read

Access:	Read	
Bit	Access	Description
15-10	R	Company ID, Bits 19-24
		OUI = 00-E0-06
9-4	R	Manufacturer's Part Number
		00 н
3-0	R	Manufacturer's Revision Number
		00 н

Register 04h Auto-Negotiation Advertisement

Register 04I Default Value Access:	n Auto-Ne e: 05E1h Read/Wri	gotiation Advertisement te
Bit	Access	Description
15	R/W	1: Next Page Exists 0: No Next Page
14	R	1: Received Auto-Negotiation Word Recognized 0: Not Recognized
13	R/W	1: Auto-Negotiation Remote Fault Detected 0: No Remote Fault
12-11	R/W	RESERVED

Preliminary V.10 Oct.07,1999

10	R/W	1: Capable of Pause Operation for Full Duplex Link 0: Not Capable
9	R/W	1: Capable of 100Base-T4 0: Not Capable
8	R/W	1: Capable of 100Base-TX Full Duplex 0: Not Capable
7	R/W	1: Capable of 100Base-TX Half Duplex 0: Not Capable
6	R/W	1: Capable of 10Base-T Full Duplex 0: Not Capable
5	R/W	1: Capable of 10Base-T Half Duplex 0: Not Capable
4-1	R/W	RESERVED
0	R/W	1: Capable of 802.3 CSMA Operation 0: Not Capable

NOTE 1: NEXT PAGE CURRENTLY NOT SUPPORTED.

Register 05h Auto-Negotiation Remote End Capability

Default Value: 0000h Access: Read

ALLESS.	Reau	
Bit	Access	Description
15	R	1: Next Page Exists 0: No Next Page
14	R	1: Received Auto-Negotiation Word Recognized 0: Not Recognized
13	R	1: Auto-Negotiation Remote Fault Detected 0: No Remote Fault
12-11	R	Reserved
10	R	1: Capable of Pause Operation for Full Duplex Link 0: Not Capable
9	R	1: Capable of 100Base-T4 0: Not Capable

276

8	R	1: Capable of 100Base-TX Full Duplex 0: Not Capable
7	R	1: Capable of 100Base-TX Half Duplex 0: Not Capable
6	R	1: Capable of 10Base-T Full Duplex 0: Not Capable
5	R	1: Capable of 10Base-T Half Duplex 0: Not Capable
4-1	R	RESERVED
0	R	1: Capable of 802.3 CSMA Operation 0: Not Capable

Register 10h Configuration 1 Default Value: 0022h

Access:	Read/Wr	ite
Bit	Access	Description
15	R/W	Link Disable
		1: Received Link Detect Function Disabled (Force Link Pass)
		0: Normal
14	R/W	Transmit Disable
		1: TP Transmitter Disabled
		0: Normal
13	R/W	Transmit Powerdown
		1: TP Transmitter Powered Down
		0: Normal
12	R/W	TX_EN to CRS Loopback
		1: TX_EN to CRS Loopback Disabled
		0: Enabled
11-10	R/W	RESERVED

9	R/W	Unscrambled Idle Reception Disable	
		 Disable Auto-Negotiation with devices that transmit unscrambled, idle on power up and various instances Enables Auto-Negotiation with devices that transmit unscrambled, idle on power up and various instances 	
8	R/W	Receive Equalizer Select	
	$ \land \rangle \rangle \land$	1: Received Equalizer Disabled, Set to 0 Length	
	\bigcirc	0: Receive Equalizer On (For 100Base-TX Mode Only)	
7	R/W	Cable Type Select	
		1: STP (150 Ohm)	
		0: UTP (100 Ohm)	
6	R/W	Receive Input Level Adjust	
		1: Receive Squelch Levels Reduced By 4.5 dB	
		0: Normal	
5-2	R/W	Reserved	
1-0	R/W	Transmitter Rise/Fall Time Adjust	
		11 -0,25 ns	
		10 +0.0 ns	
		01 +0.25 hs	
		00 +0.5 ns	

Register 11h Configuration 2

Register 11h Configuration 2 Default Value: FF00h Access: Read/W/rite			
Bit	Access	Description	
15-6	R	Reserved	
5	R/W	Auto Polarity Disable	
		 Auto Polarity Correction Function Disabled Normal 	
4	R/W	Jabber Disable Select	
		1: Jabber Disabled	
		0: Enabled	
3-0	R/W	Reserved	

278

Preliminary V.10 Oct.07,1999

Register 12	h Status O	Putput REGISTER	
Default Value	e: 0080h		
Access:	Access: Read Only		
Bit	Access	Access Description	
15	RO	Interrupt Detect	
	$\left(\right)$	1: Interrupt Bit(s) Have Changed Since Last Read Operation.	
	$ \land \land \land \land \land$	0: No Change	
14	R/LT	Link Fail Detect	
		1: Link Not Detected	
	Č (()	0: Normal	
13	R/LT	Descrambler Loss of Synchronization Detect	
		1: Descrambler Has Lost Synchronization	
		0: Normal	
12	R/LT	Codeword Error	
		1: Invalid 4B/5B Code Detected On Receive Data	
		0: Normal	
11	R/LT	Start Of Stream Error	
		1: No Start Of Stream Delimiter Detected on Received Data	
		0: Normal	
10	R/LT	End Of Stream Error	
		1: No End Of Stream Delimiter Detected On Receive Data	
		0: Normal	
9	R/LT	Reverse Polarity Detect	
		1: Reserve Polarity Detected	
		0: Normal	
8	R/LT	Jabber Detect	
		1: Jabber Detected	
		0: Normal	
7	R/LT	100/10 Speed Detect	
		1: Device in 100 Mbps Mode (100Base-TX)	
		0: Device in 10 Mbps Mode (10Base-T)	

279

Preliminary V.10 Oct.07,1999

6	R/LT	Duplex Detect	
		1: Device In Full Duplex	
		0: Device In Half Duplex	
5-4	RO	Auto-Negotiation Status	
		11 Auto-Negotiation Detected & Started	
	$ \land \{ \land \lor \}$	10 Auto-Negotiation Detected & Stuck	
	$(\bigcirc) \land$	01 Auto-Negotiation Detected & Done	
		00 Auto-Negotiation Not Detected	
3-0	RO	Reserved	

Register 13h Mask

Default Value: FFC0h

Access:	Read/Wri	te	
Bit	Access	Description	
15	R/W	1: Mask Interrupt For INT in Register 18 0: No Mask	
14	R/W	1: Mask Interrupt For LNK_FAIL in Register 18 0: No Mask	
13	R/W	1: Mask Interrupt For LOSS_SYNC in Register 18 0: No Mask	
12	R/W	1: Mask Interrupt For CWRD in Register 18 0: No Mask	
11	R/W	1: Mask Interrupt For SSD in Register 18 0: No Mask	
10	R/W	1: Mask Interrupt For ESD in Register 18 0: No Mask	
9	R/W	1: Mask Interrupt For RPOL in Register 18 0: No Mask	
8	R/W	1: Mask Interrupt For JAB in Register 18 0: No Mask	
7	R/W	1: Mask Interrupt For SPD_DET in Register 18 0: No Mask	

280

Preliminary V.10 Oct.07,1999

6	R/W	1: Mask Interrupt For DPLX_DET in Register 18	
		0. NO WASK	
5-3	R/W	Reserved	
2-0	R/W	Link Fail Timer Select	
		111 Reserved	
	$ \land \{ \land \lor \}$		
	$(O) \land$	101 Bit 18.14 Set to 1 if Link Fail for >16 Sec	
		100Bit 18.14 Set to 1 if Link Fail for >8 Sec011Bit 18.14 Set to 1 if Link Fail for >4 Sec	
		010 Bit 18.14 Set to 1 if Link Fail for >2 Sec	
		001 Bit 18.14 Set to 1 if Link Fail for >1 Sec	
		000 Bit 18.14 Set to 1 if Link Fail for >0 Sec	

Register 14h RESERVED

Default Value: 0000h

Access: Read/Write

AUCESS.	Reau/Wh	
Bit	Access	Description
15-0	R/W	Reserved for Factory Use. Must to 0 for Normal Operation

13.6 Home SPI Registers

(These registers can be accessed from MAC serial EEPROM interface)

Address	Access	Register Name
01h-00h	R/W	CONTROL Register
03h-02h	R/W	STATUS Register
05h-04h	R/W	IMASK Register
07h-06h	R/W	ISTAT Register
0Bh-08h	R/W	TX_PCOM Register
0Fh-0Ch	R/W	RX_PCOM Register
10h	R/W	NOISE Register
11h	R/W	PEAK Register
12h	R/W	NSE_FLOOR Register
13h	R/W	NSE_CEILING Register
14h	R/W	NSE_ATTACK Register

281

Preliminary V.10 Oct.07,1999

15h	R/W	NSE_EVENTS Register
19h	R/W	AID_ADDRESS Register
1Ah	R/W	AID_INTERVAL Register
1Bh	R/W	AID_ISBI Register
1Ch	R/W	ISBI_SLOW Register
1Dh	RAW	ISBI_FAST Register
1Eh	R/W	TX_PULSE_WIDTH Register
1Fh	R/W	TX_PULSE_CYCLES Register

Register 00h CONTROL

Default Value: 05

	_
A 00000	
ACCESS.	r

Access:	Read / V	Vrite /
Bit	Access	Description
7	R/W	Disable AID Address Negotiation
		0 : normal
		1 : disable
6	R/W	Clear the NSE_EVENTS Register
		0 : normal
		1 : clear
5	R/W	Disable SLICE Adaptation
		0 : normal
		1 : disable
4	R/W	Power down
		0 : normal
		1 : power down
3	R/W	Reserved
2	R/W	High Speed
		0 : low speed
		1 : high speed
1	R/W	High Power
		0 : low power
		1 : high power
0	R/W	Reserved

282

Register 01h CONTROL

Preliminary V.10 Oct.07,1999

Default Value	e: 00	
Access:	Read / W	rite
Bit	Access	Description
7	R/W	Set Remote Command
	\frown	0 : disable
		1 : enable
6-4	R/W	Reserved
3	R/W	Command Low Power
		0 : normal
	Č (1 : set low power command
2	R/W	Command High Power
		0 : normal
		1 : set high power command
1	R/W	Command Low Speed
		0 : normal
		1 : set low speed command
0	R/W	Command High Speed
		0 : normal
		1 : set high speed command

Default Value:	00
Access.	Read / Write

Register 02	h STATUS	
Default Value	e: 00	
Access:	Read / W	/rite
Bit	Access	Description
7	R/W	Reserved
6	R/W	RX_POWER
		0 : receive low power
		1 : receive high power
5	R/W	RX_SPEED
		0 : receive low speed
		1 : receive high speed
4	R/W	RX_VERSION
		0 : version 0
		1 : not version 0
Preliminary	V.10 Oct.07,	1999 283 Silicon Integrated Systems Corporatio

Preliminary V.10 Oct.07,1999

3-0	R/W	Reserved
Register 03I Default Value Access:	h STATUS e: 00 Read / W	rite
Bit	Access	Description
7-0	R/W	Reserved
Register 04I Default Value Access:	h IMASK e: 00 Read/W	rite
Bit	Access	Description
7-4	R/W	Reserved
3	R/W	Receive Packet 0 : mask 1 : no mask
2	R/W	Transmit Packet 0 : mask 1 : no mask
1	R/W	Receive Remote Command 0 : mask 1 : no mask
0	R/W	Sent Remote Command 0 : mask 1 : no mask

Register 05h IMASK

Default Value: 00 Access: Read / Write Description Bit Access 7-2 R/W Reserved R/W 1 **RxPCOM** 0 : mask 1 : no mask

284

Preliminary V.10 Oct.07,1999

0	R/W	ТхРСОМ
		0 : mask
		1 : no mask

egister 06	ISTAT	
efault Valu	ie: 00)
ccess:	Read / W	Irite
Bit	Access	Description
4-7	R/W	Reserved
3	R/W	Packet Rcy'd
		0 : no receive packet
		1 : receive packet done
2	R/W	Packet Xmt'd
		0 : no transmit packet
		1 : transmit packet done
1	R/W	Receive Remote Command Valid
		0 : no complete
		1 : complete
0	R/W	Sent Remote Command Done
		0 : no complete
		1 : complete

Register 05	h ISTAT			
Default Valu	ie: 00			
Access:	Read / V	/rite	G // 5.	
Bit	Access		Description	
7-2	R/W	Reserved		
1	R/W	RxPCOM Valid	\sim	
		0 : all 0 data		
		1 : non-null data		
0	R/W	TxPCOM Ready		
		0 : all 0 data		
		1: non-null data		

Register 0Bh~08h TX_PCOM

Default Value: 00000000 Access: Read / Write

Preliminary V.10 Oct.07,1999

communication between HOMEPHY management entities.

Bit	Access	Description
31:0	R/W	The 32-bit transmitted data field to be used for out-of-band communication between HOMEPHY management entities.

Register 0Fh~0Ch RX_PCOM

Default Value	e: 0000000)									
Access:	_Read / W	rite									
Bit	Access	\sim			D	escrip	otio	n			
31:0	R/W	The	32-bit	received	data	field	to	be	used	for	out-of-band

Register 10h NOISE

Default Value: 04

^			•

Access:	Read / W	rite /
Bit	Access	Description
7:0	R/W	This is the digital value of the SLICE_LVL_NOISE output.
		When the bit-5 of the 00h register is false, this register is updated with current NOISE LEVEL every 50ns.
		When the bit 5 of the 00h register is true, this register is used to genertae both the SLICE_LVL_NOISE and SLICE_LVL_DATA.

Register 11h PEAK

Default Value: FF

Access:	Read / W	/rite
Bit	Access	Description
7:0	R/W	This is a measurement of the peak level of the AID received (non-collision).

Register 12h NSE_FLOOR

Default Value: 04

Access:	Read / Write	
Bit	Access	Description
7:0	R/W	The minimum value of the NOISE measurement.

286

Register 13h NSE_CEILING

Default Value: FF Access: Read / Write

Preliminary V.10 Oct.07,1999

Bit	Access	Description
7:0	R/W	The value that is reload into PEAK register if NOISE level exceeds PEAK level.

Register 14h NSE_ATTACK

Default Value: F4

Access:	/Read/W	rite
Bit	Access	Description
7:4	R/W	This value define the number of noise events need to raise the SLICE LEVEL immediately.
3:0	R/W	This value define the number of noise events need to raise the SLICE LEVEL at the end of an 870ms period.

Register 15h NSE_EVENTS

Default Value: 00

Access:	Read / W	rite
Bit	Access	Description
7:0	R/W	The value record the number of noise event detected.

Register 19h AID_ADDRESS

Default Value: 00

Access: Read / Write

/ 1000001	110000 / 11		
Bit	Access	Description	
7:0	R/W	The AID address is used for collision detection.	
		Unless bit 7 of the 00h register is set, the HOMEPHY is assured to select unique AID address.	
Register 1Ah AID_INTERVAL			

Register 1Ah AID_INTERVAL

Default Value: 14

Access:	Read / W	rite
Bit	Access	Description
7:0	R/W	The value defines the number of TCLK separating AID symbols.

Register 1Bh AID_ISBI

Default Value: 40

Access: Read / Write

Bit	Access		Description
Preliminary	V.10 Oct.07,	1 999 28	7 Silicon Integrated Systems Corporation

Preliminary V.10 Oct.07,1999

7:0	R/W	The value defines the number of TCLK between AID pulse for symbol 0.
-----	-----	--

Register 1Ch ISBI_SLOW

Default Value: 2C

Access:	Read / Write

ACCE33.		
Bit	Access	Description
7:0	R/W	The value defines the number of TCLK between DATA pulse for symbol 0 in low speed.

Register 1Dh ISBI_FAST

Default Value: 1C

Access:	Read / W	/rite /
Bit	Access	Description
7:0	R/W	The value defines the number of TCLK between DATA pulse for symbol 0 in high speed.

Register 1Eh TX_PULSE_WIDTH

Default Value: 04

Access:	Read / W	rite
Bit	Access	Description
7:0	R/W	The value determines the number of OSC cycles a transmit pulse lasts.

Register 1Fh TX_PULSE_CYCLES

Default Value: 04 Access: Read / Write

ALLESS.	Reau / W	
Bit	Access	Description
7:4	R/W	The value determines the number of pulse on TXP.
3:0	R/W	The value determines the number of pulse on TXN.

288

GIA

14 Register Summary / Description – Audio Accelerator Summary

Configuration. Offset	Access	Mnemonic Register
00-01h	R/W	Vendor ID
02-03h	R/W	Device ID
04-05	R/W	Command
06-07h	R/W	Status
08h ((RØ	Revision ID
09-0Bh	RO	Class Code
0Ch	RAW	Cache Line Size
0Dh	R/W	Latency Timer
0Eh	R/W	Héader Type
0Fh	R/W	BIST
10-13h	R/W	Audio 10 Base Address
14-17h	R/W	Audio Memory Base Address
18-2Bh	RO	ŔSVD
2C-2Dh	R/W	Subsystem Vendor ID
2E-2Fh	R/W	Subsystem ID
30-33h	R/W	RSVD
34h	RO	Power Management Capability List Pointer
35-37h	RO	RSVD
38-3Bh	RO	RSVD
3Ch	R/W	Interrupt Line
3Dh	R/W	Interrupt Pin
3Eh	R/W	MIN_GNT
3Fh	R/W	MAX_LAT
40-43h	R/W	DDMA Slave Configuration
44h	R/W	Legacy I/O base decoding
45h	R/W	Legacy DMA decoding

289

14.1 Audio Configuration Space (Function 4)

Preliminary V.10 Oct.07,1999

46h	R/W	Power Management Configuration
47h	R/W	Inactivity Timer Expiration Control
48-49h	R/W	INT Acknowledge Snoop
4A-4Bh	RO	RSVD
4C-DBh	RO	RSVD
DC-DFh	R/W	Power Management Capability Register
E0-E3h	R/W	Power management control/status Register

14.1.1 Audio Configuration Registers:

Register 00h Device ID & Vendor ID

Default Value: 70181039h

Access: read/write, can be written only when CFG46h[6]=1

Bit	Access	Description
31:16	R/W	Device ID: default 7018h
15:0	R/W	Vendor ID: default 1039h

 $2 \beta_{i}$

Register 04h Status & Command

Default: 0290000h

Description:	Read/Wri	te
Bit	Access	Description
1-0	R/W	
2	R/W	Bus Master. Write 0 to this bit can not disable bus mastering.
20	R/W	PM PCI Power Management support, hardwired to 1
23,25	R/W	hardwired to 1
28	R/W	TA Received target abort. Write 1 to clear.
29	R/W	MA Received master abort. Write 1 to clear.

The rest bits are hardwired to 0

Register 08h-0Bh Status & Command

Default Value: 04010001h

Access:	read only	
Bit	Access	Description
7:0	RO	01 Revision ID

290

Preliminary V.10 Oct.07,1999

15:8	RO	00
23:16	RO	01 Sub-class: Audio device
31:24	RO	04 Base class: Multimedia

Register 0Ch BIST, Header Type, Latency Timer & Cache Line Size Legacy Address: Default Value: 00000000b

Default Value: 0000000h Access: Read/Write

/ 100000.		
Bit	Access	Description
15:12	R/W	\bigtriangledown
	(())	

The rest bits are hardwired to 0

Register 10h Audio IO Base Register:

Default Value: 00000001h

Access:	Read/Wri	te
Bit	Access	Description
31:8	R/W	Audio IO base
7:1	R/W	Hardwired to 0
0	R/W	Hardwired to 1

Register 14h Audio MEM Base Register:

Default Value	e: 0000000	Dh	× / / <</th
Access:	Read/Wr	te	
Bit	Access		Description
31:12	R/W	Audio MEM base	
11:0	R/W	Hardwired to 0	

Register 2Ch Subsystem ID & Subsystem Vendor ID:

Default Value: 70181039h

Dit	A	Description
Access:	read/write	e, can be written only when CFG46h[6]=1

Bit	Access	Description
31:16	R/W	Subsystem ID: default 7018h
15:0	R/W	Subsystem vendor ID: default 1039h

Register 34h PCIPM Capability List Pointer Register:

Preliminary V.10 Oct.07,1999291Silicon Integrated Systems Corporation

Default Value: 000000DCh

Access:	Read Onl	У
Bit	Access	Description
7:0	RO	PCIPM Capability List Pointer Register

Register 3Ch Max_Dat) Min_Gnt, Interrupt Pin & Interrupt Line:

Default Value: 18020100h				
Access:	Read /Wr	ite		
Bit	Access	Description		
7:0	R/W	INT line		
15:8	R/W	INT pin hardwired to 01		
23:16	R/W	Min_Gnt hardwired to 02		
31:24	R/W	Max_Gnt hardwired to 18		

Register 40h DDMA Slave Configuration Register:

Default Value: 0000000h

///////////////////////////////////////	Ttead / W	
Bit	Access	Description
31:4	R/W	DDMABase
3	R/W	Non Legacy Extended Addressing Control (Fully 32 bit Addressing) 0: disabled 1: enabled
2:1	R/W	Legacy DMA Transfer Size Control, Read Only as 00 00:8 bit transfer, legacy
0	R/W	 DDMA Slave Channel Access Enable Control disabled enabled When disabled, the DDMABase is not useful and the PCM sample playback control registers can not be accessed through DDMA Slave channel method. When enabled, SiSAudio can behave like a DDMA Slave channel device. DDMA Master will transfer the legacy DMA controller channel specific information to the related DDMA Slave channel control register when software trying to program the legacy DMA

Preliminary V.10 Oct.07,1999

controller register.			controller register.	
----------------------	--	--	----------------------	--

Register 44h Legacy I/O Decoding

Default Value: E200000h

Bit	Access	Description
7	R/W	0: MPU401Base disable
		1: MPU401Base enable
6	R/W	0: MPU401Base = 0330h-0333h
		1: MPU401Base = 0300h-0303h
5	R/W	0: GAMEBase disable
		1: GAMEBase enable
4	R/W	0: GAMEBase = 0200h-0207h
		1: GAMEBase = 0208h-020Fh
3	R/W	0: ADLIBBase disable
		1: ADLIBBase enable
2	R/W	0: ADLIBBase = 0388h-038Bh
		1: ADLIBBase = 038Ch-038Fh
1	R/W	0: SBBase disable
		1: SBBase enable
0	R/W	0: SBBase = 0220h-022Fh
		1: SBBase = 0240h-024Fh

Register 45h Legacy DMA Decoding

Default Value: E2	000000h
-------------------	---------

Access:	Read /W	rite
Bit	Access	Description
5:7	R/W	Reserved
4	R/W	DMAREG_RD_EN_ 0: Response to DMAREG(00h-03h, 83h/87h) Read when CFG45[1] is 1;

Preliminary V.10 Oct.07,1999

		1: Never response to DMAREG(00h-03h, 83h/87h) Read.
3	R/W	0: DMA status retry OK
		1: DMA status retry error
		If this bit is set, bus interface will not respond to IO8 operation anymore unless the status retry error bit is cleared by writing 1 to this bit.
2	R/W	0: DMA status handle mode A (slave only)
		1: DMA status handle mode B (bus master)
1	R/W	0: DMA trapping disable
		1: DMA trapping enable
0	R/W	0: DMA channel 1 trapping
		1: DMA channel 0 trapping

When DMA trapping is enable, the chip will decode the following I/O port

DMA channel 1 trapping

read 2,3 write snoop 2,3 write snoop 8-Fh write snoop 83h DMA channel 0 trapping

read	0,1	
write snow	р	0,1
write snow	р	8-Fh
write snoo	р	87h

When DMA trapping is enabled, the chip will handle DMA status read (I/O read port 8) depending on the DMA status mode bit.

DMA status handle mode A:

SiSAudio will decode I/O read port 8 if StatusRDY is active, otherwise, it will ignore the cycle.

DMA status handle mode B:

When StatusRDY is not active, the chip will retry DMA status read if it is not the current active bus master. Whenever the chip retries the DMA status read from other bus master, it will also generate a bus request for the DMA status read. When the DMA status read cycle generated by the chip is terminated normally, the chip will write the status data by asserting the StatusWR signal.

If the chip retries DMA status read from other bus master 3 times without getting the bus

Preliminary V.10 Oct.07,1999	294	Silicon Integrated Systems Corporation
------------------------------	-----	--

ownership or proper data, it will set the status error bit high which will terminate the pending DMA status read request internally and ignore the all DMA status read cycle by the other bus master.

When audio engine receives the StatusWR signal, it will assert the StatusRDY signal to the chip and allow it to decode I/O read port 8 normally. The audio engine will de-assert the StatusRDY after each DMA status read.

NOTE:

All I/O decoding is 16-bit, write snooping happen only once even with multiple write retry cycle. Write snooping means the chip will decode the cycle to audio engine without generate the DEVSEL# signal or TRDY# to PCI bus.

Register 46h Power Management Configuration (PM_CFG)

Default Value: 00h

Access.	Tteau / W	
Bit	Access	Description
7	R/W	(TIMER_PME_EN) Inactivity Timer assert PME# enable
		0: Disable
		1: Enable
		If enabled, PME# will be asserted when Inactivity Timer expired.
6	R/W	(ID_WR_EN) Chip IDs write enable
		0:Vendor ID, Device ID, Subsystem Vendor ID & Subsystem ID are read only
		1:Vendor ID, Device ID, Subsystem Vendor ID & Subsystem ID are writable.
		Bit 7 (TIMER_PME_EN) Inactivity Timer assert PME# enable
5	R/W	(WAKE_EN2) Secondary CODEC Wake-up Enable
		Powered with Vaux. Cleared when H/W reset or S/W reset.
		0: disable
		1: enable
		When CODEC_PD = 1, BCLK keeps low, a rising edge of ACDI2 will set WAVE_EV to high
4	R/W	(WAKE_EN1) Primary CODEC Wake-up Enable
		Powered with Vaux. Cleared when H/W reset or S/W reset.
		0: Disable
Preliminary	V.10 Oct.07	1999 295 Silicon Integrated Systems Corporation

		1: Enable
		When CODEC_PD = 1, BCLK keeps low, a rising edge of ACDI1 will set WAVE_EV to high
3	R/W	(AC_PM_EN_) Analog CODEC Power Management Enable
		0: Enable
	\wedge	If enabled, AC97 bit clock can be shut off according to PM_ST
	(0)	1: Disable
2	R/W	(DC_RST) Digital Controller Software Reset
	$\sim (2)$	0:normal
		1:Reset Digital Controller
1	R/W	(DC_PM_EN_) Digital Controller Power Management Enable
		0:Enable
		When enabled, the internal pci clock can be shut off or turn on according to PM_ST.
		1:Disable
0	R/W	(DCC_EN) Dynamic Clock Control Enable 0:Disable
		1:Enable. CLKRUN# scheme will be enabled.

Register 47h Inactivity Timer Expiration Control

Default Value: 00h

Access: Read /Write

Bit	Access	Description	
7:0	R/W	Inactivity timer expiration base (in second)	
		Every time when audio engine enters into D2 state, the Inactivity timer will load the base count from this register and start counting at 1s clock rate. When the MSB of the counter goes from high to low, the timer expired. When not at D2 state, the timer is reset.	

Register 48h INT Acknowledge Snoop Register:

Default Value: 00h

Access:	Read /Wi	ite
Bit	Access	Description
15:7	R/W	(INT_VEC) Interrupt Vector to be matched

296

Preliminary V.10 Oct.07,1999

0	R/W	(INTA_SNOOP_ENA) Enable bit.	Interrupt	Acknowledge	Snooping
		0:Disable			
		1:Enable			

Register DCh Power Management Capability Register (PMC)

Access:	Access: Réad Only				
Bit	Access	Description			
7:0	RO	(PM_Cap_ID) Power management capability identifier , read only as 01h			
15:8	RO	(PM_Next_Ptr) Next data structure item list pointer in the PCI header, read only as 00h			
31:16	RO	(PM_CAP) Power management capability register, read only as E611h.			
31:27	RO	(PME_Support) PME# supported PM_ST, read only as 01100b, indicates that PME# can be asserted in D2, D3hot.			
26	RO	(D2_Support) Read only as 1, indicates D2 supported.			
25	RO	(D1_Support) Read only as 1, indicates D1 supported.			
24:22	RO	Reserved. Read only as 000b			
21	RO	(DSI) Device Specific Initialization. Read only as 0.			
20	RO	(Vaux) Auxiliary Power Source. Read only as 0.			
19	RO	(PME_clk) PME clock. Read only as 0, indicates that no PCI clock is required to generate PME#.			
18:16	RO	(Version)Read only as 001b, indicates PPMI v1.0 compliance			

Register E0h Power Management Control/Status Register (PMCSR) & PMCSR_BSE & Data:

Default Value:	00000000h
Access:	Read /Write

	110000,111			
Bit	Access	Description		
31:24	R/W	(Data) Read only as 00h.		
23:16	R/W	(PMCSR_BSE) Read only as 00h.		
15:0	R/W	(PMCSR) Power Management Control/Status Register		

Preliminary V.10 Oct.07,1999

15	R/W	(PME_Status) Re	ad/Write-Clear.		
		0:(Default) Normal (PME# is controlled by bit[8] PME_En)			
		1:PME# can be asserted independent of bit[8] (PME_En).			
		Writing 0 to this bit has no effectt.			
	$ \langle \mathcal{R} \rangle $	Writing 1 to this b stop asserting PM	it will clear this bit, and also cause the chip to E#.		
14:13	R/W	(Data_Scale) Re	ad only as 00b.		
12:9	R/W	(Data_Select) Re	ad only as 0000b		
8	R/W	(PME_En) Re	ad/Write.		
		0: (Default) PME#	is disabled to be asserted.		
		1:PME# is enabled	to be asserted.		
7:2	R/W	Reserved. Read only as 000000b			
1:0	R/W	(PM_ST) Power State. Read/Write.			
		Read will return current Power State, write will set to new state.			
		00 D0			
		01 D1 🗸	25.		
		10 D2			
		11 D3hot			
14.2 Operational Registers					
Operatio	on. Offset	Access	Mnemonic Register		

Operational Registers 14.2

R/M	
1 \/ V V	Legacy DMA Playback Buffer Base Register Port 1
R/W	Legacy DMA Playback Buffer Base Register Port 2
R/W	Legacy DMA Playback Buffer Base Register Port 3
R/W	Legacy DMA Playback Buffer Base Register Port4
R/W	Legacy DMA Playback Byte Count Register 1
R/W	Legacy DMA Playback Byte Count Register 2
	R/W R/W R/W R/W

298

Preliminary V.10 Oct.07,1999

06h	R/W	Legacy DMA Playback Byte Count Register 3		
07h	R/W	Legacy DMA Playback Misc. Register		
08h	RO	Legacy DMA Controller Command / Status Register		
0Ah	WO	Legacy DMA Single Channel Mask Port		
OBh	R/W	Legacy DMA Channel Operation Mode Register		
0Ch	wo	Legacy DMA Controller First_Last Flag Clear Port		
0Dh	WO	Legacy DMA Controller Master Clear Port		
0Eh	WO	Legacy DMA Controller Clear Mask Port		
0Fh	WØ	Legacy DMA Controller Multi-Channel Mask Register		
10h	R/W	Legacy FmMusic Bank 0 Register Index / Legacy FmMusic Status		
11h	R/W	Legacy FmMusic Bank 0 Register Data Port		
12h	R/W	Legacy FmMusic Bank 1 Register Index		
13h	R/W	Legacy FmMusic Bank 1 Register Data Port		
14h	R/W	Legacy Sound Blaster Mixer Register Index		
15h	R/W	Legacy Sound Blaster Mixer Register Data Port		
16h	WO	Legacy Sound Blaster ESP Reset Port		
1A or 1Bh	RO	Legacy Sound Blaster ESP Data Port		
1C or 1Dh	R/W	Legacy Sound Blaster Command / Status Port		
1Eh	RO	Legacy Sound Blaster ESP Data Ready / IRQ Acknowledge Port 1		
1Fh	RO	Legacy Sound Blaster ESP Data Ready / IRQ Acknowledge Port 2		
40-43h	R/W	AC-97 Mixer Write Register		
44-47h	R/W	AC-97 Mixer Read Register		
48-4Bh	R/W	Serial Interface Control Register		
4C-4Fh	R/W	AC97 General Purpose IO Register		

299

Preliminary V.10 Oct.07,1999

50-53h	RO	SiSAudio Status Register	
54-55h	RO	Legacy Sound Blaster Frequency Read Back Register	
56h	RO	Legacy Sound Blaster Time Constant Read Back Register	
58-5Bh	R/W	SiSAudio Scratch Register	
5Ch	RO	SiSAudio Version Control Register	
5Eh	(₍) R/W	SB ESP Version High Byte Control Register	
5Fh	R/W	SB ESP Version Low Byte Control Register	
60-63h	RO	OPL3 Emulation Channel Key on/off Trace Register	
70-73h	R/W	S/PDIF Channel Status Register	
7C-7Fh	R/W	General purpose IO Register	
80-83h	R/W	START command and status register for Bank	
84-87h	R/W	Channel STOP command and status register for Bank A	
88-8Bh	R/W	Delay flag of Bank A	
8C-8Fh	R/W	Sign bit of CSO	
90-93h	RO	Bank A Current Sample Position Flag	
94-97h	R/W	Current Envelope Buffer Control	
98-9Bh	R/W	Bank A address engine interrupt	
9C-9Fh	R/W	Envelope engine interrupt register	
A0-A3h	R/W	Global Control & Channel Index	
A4-A7h	R/W	Bank A Address Engine Interrupt Enable	
A8-ABh	R/W	Global Music Volume & Global Wave Volume	
AC-AFh	R/W	Sample Change Step for Legacy Playback & Recording	
B0-B3h	R/W	Miscellaneous Int & Status	
B4-B7h	R/W	START command and status register for Bank B	
B8-BBh	R/W	Channel STOP command and status register	

300

Preliminary V.10 Oct.07,1999

		for Bank B
BC-BFh	RO	Bank B Current Sample Position Flag
C0-C3h	R/W	Sound Blaster Base Block Length & Current Block Length
C4-C7h	R/W	Sound Blaster Control
C8-CBh	RO	Playback Sample Timer
CC-CFh	R/W	Bank B Low Frequency Oscillator Control
D0-D3h	R/W	Sample Timer Target
D8-DBh (R/W	Bank B address engine interrupt
DC-DFh	R/Ŵ	Bank B Address Engine Interrupt Enable
E0-E3h	RAW	CSO & ALPHA & FMS
E4-E7h	R/W	LBA
E8-EBh	R/W	ESO & DELTA
EC-EFh	R/W	For Bank A: LFO_CTRL & LFO_CT & FMC & RVOL & CVOL
		For Bank B: Bank B ATTRIBUTE & FMC & RVOL & CVOL
F0-F3h	R/W	For Bank A: Bank A GVSEL & PAN & VOL & CTRL & Ec
		For Bank B: Bank B GVSEL & PAN & VOL & CTRL & Bank A LFO_INIT
F4h		EBUF1
F8h		EBUF2

Register 0h DMAR0 (Legacy DMA Playback Buffer Base Register Port 1)

Legacy Address: DDMASlaveBase + 0h || 0000h / 0002h Default Value: 00h

Access: Read/Write

Bit	Access			Description	
7:0	R/W	Legacy DMA Playback Buffer Current Transfer Address 7-0			
		The PCI bus interface circuit should response to I/O read to 0000h or 0002h on the PCI bus only when DMASnoopEn is active Write: Legacy DMA Playback Buffer Base Address 7-0			
Preliminary V.10 Oct.07,1999 301 Sil			Silicon Integrated Systems Corporation		

	Read: Legacy DMA Playback Buffer Current Transfer Address 7- 0
--	---

Register: 1h DMAR1 (Legacy DMA Playback Buffer Base Register Port 2)

Legacy Address: DDMASlaveBase + 1h || 0000h / 0002h Default Value: 00h

Access: Read/Write

AUCESS.		
Bit	Access	Description
7:0	R/W	Legacy DMA Playback Buffer Current Transfer Address 15-8
		The PCI bus interface circuit should response to I/O read to 0000h or 0002h on the PCI bus only when DMASnoopEn is active
		Write: Legacy DMA Playback Buffer Base Address 15-8
		Read: Legacy DMA Playback Buffer Current Transfer Address 15-8

Register: 2h DMAR2 (Legacy DMA Playback Buffer Base Register Port 3)

Legacy Address: DDMASlaveBase + 2h ∦ 0087h / 0083h

Loguoy / lau		
Default Valu	ie: 00h	$\vee / 2 \rightarrow \wedge$
Access:	Read/W	/rite
Bit	Access	Description
7:0	R/W	Legacy DMA Playback Buffer Current Transfer Address 23-16
		The PCI bus interface circuit should response to I/O read to 0087h or 0083h on the PCI bus only when DMASnoopEn is active
		Write: Legacy DMA Playback Buffer Base Address 23-16
		Read: Legacy DMA Playback Buffer Current Transfer Address 23-16

Register: 3h DMAR3 (Legacy DMA Playback Buffer Base Register Port4)

Legacy Address: DDMASlaveBase + 3h

Default Value: 00h

Access: Read/Write

Bit	Access	Description
7:0	R/W	Legacy DMA Playback Buffer Current Transfer Address 31-24
		Write: Legacy DMA Playback Buffer Base Address 31-24
		Read: Legacy DMA Playback Buffer Current Transfer Address

302

Preliminary V.10 Oct.07,1999

31-24	

This register is intended for system which has DDMA Master.

Any time when legacy DMA playback is not running, this register must be reset to 0 by software driver.

Register: 4h DMAR4 (Legacy DMA Playback Byte Count Register 1)

Legacy Address: DDMASlaveBase + 4h || 0001h / 0003h

Default Value: 00h

ALLESS.	Reau/will	ie
Bit	Access	Description
7:0	R/W	Legacy DMA Playback Current Byte Count 7-0
		The PCI bus interface circuit should response to I/O read to 0003h or 0001h on the PCI bus only when DMASnoopEn is active
		Write: Legacy DMA Playback Byte Base Count 7-0
		Read: Legacy DMA Playback Current Byte Count 7-0

Register: 5h DMAR5 (Legacy DMA Playback Byte Count Register 2)

Legacy Address: DDMASlaveBase + 5h || 0001h / 0003h Default Value: 00h

Bit	Access	Description
7:0	R/W	Legacy DMA Playback Current Byte Count 15-8
		The PCI bus interface circuit should response to I/O read to 0003h or 0001h on the PCI bus only when DMASnoopEn is active.
		Write: Legacy DMA Playback Byte Base Count 15-8
		Read: Legacy DMA Playback Current Byte Count 15-8

Register: 6h DMAR6 (Legacy DMA Playback Byte Count Register 3)

Legacy Address: DDMASlaveBase + 6h

Default Value: 00h

Access: Read/Write

Bit	Access	Description
7:0	R/W	Legacy DMA Playback Current Byte Count 23-16
		Write: Legacy DMA Playback Byte Base Count 23-16
		Read: Legacy DMA Playback Current Byte Count 23-16

Preliminary V.10 Oct.07,1999

This register is intended for system which has DDMA Master.

Any time when legacy DMA playback is not running, this register must be reset to 0 by software driver.

Register: 7h DMAR7(Legacy DMA Playback Misc. Register)

Legacy Address: DDMASlaveBase + 7h

Default Value: 00h

ALLESS.	neau/wii	
Bit	Access	Description
7:0	R/W	This Register is for internal debugging use.

Register: 8h DMAR8(Legacy DMA Controller Command / Status Register)

Legacy Address: DDMASlaveBase + 8h || 0008h

Default Value: 00h

Access:	Read On	y /
Bit	Access	Description
7:0	RO	Status register for implemented legacy 8237-A DMA channel.
		Implementation of this register maintains the compatibility with legacy 8237-A status register. However, when reading this register, the return value should be different for I/O read to (DDMASIaveBase + 8h), I/O read to (AudioBase +8h)and I/O read to (0008h). I/O read to (DDMASIaveBase + 08h) is normally initiated by DDMA Master. I/O read to (AudioBase + 08h) is normally initiated by our debug program. The DDMA Master will take the responsibility to combine the return value of each DMA Slave Channel in the system and return the final resultant byte to response to the PCI I/O read to 0008h initiated by Host. The PCI bus interface circuit should response to I/O read to 0008h on the PCI bus only when DMASnoopEn is active.

Register: Ah DMAR10(Legacy DMA Single Channel Mask Port)

Legacy Address: 000Ah

Default Value: 00h Access: Write Only

]
Bit	Access	Description
0	WO	Channel mask register for implemented legacy 8237-A DMA channel. Writing to this register will affect the legacy DMA operation of SiSAudio, implementation of this register maintains the register compatibility with legacy 8237-A DMA signal channel mask register. For system which has DDMA Master, it is the DMA Master's responsibility to update the legacy channel mask bit

304

Preliminary V.10 Oct.07,1999

DMAR15.0 with address (DMASIaveBase + Fh) when a I/O write to 000Ah occurred on PCI Bus. When snooping legacy 8237-A register operation is enabled, any I/O write to 000Ah should be snooped to DMAR15.0 if the channel number matches the
snooping legacy DMA channel number.

Register: 0Bh DMAR11(Legacy DMA Channel Operation Mode Register)

Legacy Address: DDMASlaveBase + 0Bh || 000Bh Default Value: 00h

Delaun	value.			
Access.		Read	Write	

ALLESS.	Reau / V	
Bit	Access	Description
7:0	R/W	This register can only be read out through AudioBase + 0Bh port channel mode register for implemented legacy 8237-A DMA channel. Writing to this register will affect the legacy DMA operation of SiSAudio, implementation of this register maintains the register compatibility with legacy 8237-A DMA channel mode register for system with or without DDMA Master . For system which has DDMA Master, it is the DMA Master's responsibility to update this register when a I/O write to 000Bh occurred on PCI Bus. When snooping legacy 8237-A register operation is enabled, any I/O write to 000Bh should be snooped to this register if the channel number matches the snooping legacy DMA channel number.

Register: Ch DMAR12(Legacy DMA Controller First_Last Flag Clear Port)

Legacy Addr	ess: 000Ch	
Default	Value:	
Access:	Write Onl	ý (
Bit	Access	Description
0	WO	First_Last flag clear register for implemented legacy 8237-A DMA channel .
		Writing to this register will clear the flag signal First_Last. Implementation of this register maintains the register compatibility with legacy 8237-A DMA controller for system without DDMA Master. For system which has DDMA Master, it is the DMA Master's responsibility to implement this flag.
		When snooping legacy 8237-A register operation is enabled, any I/O write to 000Ch should clear First_Last flag

Register: Dh DMAR13(Legacy DMA Controller Master Clear Port)

Legacy Address: DDMASlaveBase + 0Dh || 000Dh Default Value:

Preliminary V.10 Oct.07,1999305Silicon Integrated Systems Corporation

Access:	Write Onl	У
Bit	Access	Description
0	WO	Master clear register for implemented legacy 8237-A DMA channel.
		Writing to this register has the effect of hardware reset to the implemented legacy 8237-A DMA channel. Implementation of this register maintains the register compatibility with legacy 8237-A DMA controller for system with or without DDMA Master. For system which has DDMA Master, it is the DMA Master's responsibility to write to this register when a write to legacy 8237-A master clear register (I/O write to 000Dh) is on the PCI Bus. When snooping legacy 8237-A register operation is enabled, any I/O write to 000Dh should clear several legacy flags such as First_Last flag.

Register: Eh DMAR14(Legacy DMA Controller Clear Mask Port)

Legacy Address: 000Eh

Default Value:

Access:	Write Onl	y GV/A
Bit	Access	Description
0	WO	Multi-channel mask clear port for implemented legacy 8237-A DMA channel . Writing to this register will affect the legacy DMA operation of SiSAudio , implementation of this register maintains the register compatibility with legacy 8237-A DMA multi-channel clear mask register . For system which has DDMA Master, it is the DMA Master's responsibility to update the legacy channel mask bit DMAR15.0 with address (DMASlaveBase + Fh) when a I/O write to 000Eh occurred on PCI Bus. When spooping legacy 8237-A
		register operation is enabled, any I/O write to 000Eh will reset DMAR15.0 to 0.

Register: Fh DMAR15(Legacy DMA Controller Multi-Channel Mask Register)

Legacy Address: DDMASlaveBase + 0Fh || 000Fh

Default Value: 0b

Access:	Write On	ly .
Bit	Access	Description
1	WO	Multi-channel mask register for implemented legacy 8237-A DMA channel .
		Implementation of this register maintains the register compatibility with legacy 8237-A DMA controller for system with or without

Preliminary V.10 Oct.07,1999

DDMA Master. Fo	or system which has DDMA Master, it is the DMA sibility to write DMAR15 when a write to legacy
8237-A multi-cha PCI Bus. When	nnel mask register (I/O write to 000Fh) is on the snooping legacy 8237-A register operation is
enabled, any I/O the implemented	write to 000Fh should update the mask flag for legacy 8237-A DMA channel.

Register 10h SBR0 (Legacy FmMusic Bank 0 Register Index / Legacy FmMusic Status)

Legacy Address: SBBase + 0h || SBBase + 8h || ADLIBBase + 0h Default Value: 00h

Access: Read/Write

ACCE33.		
Bit	Access	Description
7:0	RW	1:FmMusic Timer Interrupt Flag (Equal to Bit 6 + Bit 5)
		1:FmMusic Timer 1 Overflowed Flag
		1:FmMusic Timer2 Overflowed Flag
		0:Reserved
		Legacy FmMusic Bank 0 Register Index

Relative Internal Function Register File

In order to emulate the legacy FmMusic(YMF262 or OPL3) function, a 512 bytes register file (RAM) must be implemented. By legacy access method, this register file has two banks and the bank index is specified by SBR0 and SBR2 respectively. This register file is byte-wide format, read/write RAM which has no high speed operation requirement.

Relative Internal Functional Register Extracted From Legacy FmMusic Bank 0 Register File FmMusic-TIMER1

Bank Index : 02h

Size : 8 bits Type : read/write Default : 00h

14.2.1 Bit 7..0 X Timer1 Preset Value

If enabled Timer1 counter, it will increase every 1024 AC97 bit clock (12.288MHz) . When overflow occurs, this value is re-loaded into the counter.

307

FmMusic-TIMER2

Bank Index : 03h Size : 8 bits Type : read/write

Preliminary V.10 Oct.07,1999

Default : 00h

Bit 7..0 X Timer2 Preset Value

If enabled Timer2 counter, it will increase every 4096 AC97 bitclock (12.288MHz). When overflow occurs, this value is re-loaded into the counter.

FmMusic-Timer-CONTROL

	/	
Bank Index	: 04	h))
Size: 8 bits	s //	
Type : read/	/write	
Default :	00h	$\langle (R) \rangle$
Bit 7	1	Reset Bit 7-5 of Legacy FmMusic Status Register
Bit 6	1	Reset Timer1 Overflow Flag
Bit 5	1	Reset Timer2 Overflow Flag
Bit 4-2	0	Reserved
Bit 1	1	Enable Timer 2

14.2.2 Bit 0 1 Enable Timer 1

Bit 7-5 must be self-cleared to 0 after it is written as 1.

When bit 1 or 0 is set from 0 to 1, the corresponding timer counter will load its preset value and start counting. When these bits are zero, the respective timer counter will stop counting. If bit 1 is set 1, bit 7 and 5 of FmMusic Status register will be set 1 when timer2 is overflowed. If bit 0 is set 1, bit 7 and 6 of FmMusic Status register will be set 1 when timer1 is overflowed.

Register: 11h / 13h SBR1 (Legacy FmMusic Bank 0 Register Data Port)

Legacy Address: SBBase + 1h || SBBase + 9h || ADLIBBase + 1h || SBBase + 3h || ADLIBBase + 3h

Default Value: XXh Access: read/write

Access. reac		
Bit	Access	Description
7:0	R/W	Legacy FmMusic Bank 0 Register(indexed by SBR0) Data

When writing to this register, if SBR0 is B0h-B8h and bit 5 of the content (indexed by SBR0) is changed from 0 to 1 or vice versa, or SBR0 is BDh and any one of bit 4-0 of the content (indexed by SBR0) is changed from 0 to 1 or vice versa, an OPL3 Bank0 Key On/Off Dirty Flag will be set at SiSAudio Status Register ASR0 and AOPLSR0.

Register: 12h SBR2 (Legacy FmMusic Bank 1 Register Index)

Legacy Address: SBBase + 2h || ADLIBBase + 2h

Default Value: 00h

Access: read/write

Bit	Access	Description
1		

Preliminary V.10 Oct.07,1999 308 Silicon Integrated Systems Corporation

7:0	R/W	Legacy FmMusic Bank 1 Register Index
-----	-----	--------------------------------------

Register: 11h / 13h SBR3 (Legacy FmMusic Bank 1 Register Data Port)

Legacy Address: SBBase + 1h || ADLIBBase + 1h || SBBase + 3h || ADLIBBase + 3h Default Value: XXh

Access: read/write

Bit	Access	Description
7:0	R/W	Legacy FmMusic Bank 1 Register(indexed by SBR2) Data

When write to this register, if SBR2 is B0h-B8h and bit 5 of the content (indexed by SBR2) is changed from 0 to 1 or vice versa, an OPL3 Bank1 Key On/Off Dirty Flag will be set at SiSAudio Status Register ASR0 and AOPLSR0.

Register: 14h SBR4 (Legacy Sound Blaster Mixer Register Index)

Legacy Address: SBBase + 4h Default Value: 00h

Access: read/write

Access:	read/write	
Bit	Access	Description
7:0	R/W	Legacy SB16 / SBPRO Mixer Register Index

Register: 15h SBR5 (Legacy Sound Blaster Mixer Register Data Port)

Legacy Address: SBBase + 5h

Default Value: XXh

Access: read/write

Bit	Access	Description
7:0	R/W	Legacy SB16 / SBPRO Mixer Register (indexed by SBR4) Data Port

Register: 16h / 17h SBR6 (Legacy Sound Blaster ESP Reset Port)

Legacy Address: SBBase + 6h || SBBase + 7h Default Value:

Access: write only

	mile only	
Bit	Access	Description
0	WO	1:Enter Legacy SB16 / SBPRO ESP Reset State
		0:Escape From SB16 / SBPRO ESP Reset State

309

ESP Reset should do the following things:

a. Reset ESP to no operation status and clear ESP Busy Flag.

b. Stop wave engine SB channel operation.

Preliminary V.10 Oct.07,1999

Reset any flags that may affect the next command execution.

Register: 1Ah / 1Bh SBR7 (Legacy Sound Blaster ESP Data Port)

Legacy Address: SBBase + Ah || SBBase + Bh

Default Value: 00h

Access: Read-only

Bit	Access	Description
7:0	RO	Data returned by Legacy SB16 / SBPRO ESP Read Operation

Register: 1Ch / 1Dh / SBR8 (Legacy Sound Blaster Command / Status Port)

Legacy Address: SBBase + Ch || SBBase + Dh

Default Value: 00h

Access:	read/write	
Bit	Access	Description
7:0	WO	The Command (Operator) or Data (Operand) Written to Legacy SB ESP
7	RO	0:Legacy SB ESP is Available For Next Command / Data
		1:Legacy SB ESP is Busy.
6:0	RO	Reserved

After the command / data has been written to the ESP Command / DATA port, bit 7 of this status register will be set to 1 (busy). After ESP has processed the written command / data and waiting for the next one , bit 7 of this status register will be reset to 0 (not busy). Any acknowledge byte must be readback before any new command is issued. ESP will be set busy after this port has ever been written and will be set not busy if the command/status has been read four times.

Register: 1Eh SBR9 (Legacy Sound Blaster ESP Data Ready //RQ Acknowledge Port 1)

Legacy Address: SBBase + Eh

Default Value: 00h

read only Access:

Bit	Access	Description	
7	RO	0:Data is not available on SBR7.	
		1:Data is available on SBR7.	
6:0	RO	Reserved	

Reading this register will clear the interrupt generated by the ESP for NON-BX type legacy SB DMA command.

After SBR7 has been read, bit 7 of this register will reset to 0 (no data) until the next read data is available and set bit 7 of this register.

310

Preliminary V.10 Oct.07,1999

Register: 1Fh SBR10 (Legacy Sound Blaster ESP Data Ready / IRQ Acknowledge Port 2

Legacy Address: SBBase + Fh

Default Value: 00h

Access:	Read only	/
Bit	Access	Description
7	RO	0:Data is not available on SBR7.
	(0)	1:Data is available on SBR7.
6:0	RO	Reserved

Reading this register will clear the interrupt generated by the ESP for BX type legacy SB DMA command.

After SBR7 has been read, bit 7 of this register will reset to 0 (no data). If the next read data is available at SBR7, bit 7 of this register will again be set to 1.

Register 40h ACWR(AC-97 Mixer Write Register)

Default Value: : 0000000h

Bit		Description	
31.16		Data to be written into AC-97 mixer register:	
15	R/W	Read: 0:ready to write AC-97 mixer register	
_		1:busy writing AC-97 mixer (indexed by Bit 70);	
		Write: 0:do nothing	
		1:write AC-97 mixer register (indexed by bit 70) with bit 31-16;	
14	R/W	Audio_Write_Busy: indicating Audio driver is busy writing AC97.	
		Write 0 to clear.	
		Write 1: if bit $13 = 0$, this bit can be set, else do nothing.	
		Read 0: fail to set Audio_Write_Busy.	
		1: succeed to set Audio_Write_Busy.	
13	RO	Modem_Write_Busy: indicating Modem driver is busy writing AC97.	
		Write : If BSModem enabled, do nothing, else clear this bit.	
		Read 1: indicating Modem driver is busy writing AC97.	
		Read 0: Modem driver is not busy writing AC97.	
12:8	R/W	Reserved	
7:0	R/W	index of the AC-97 mixer register to be written;	
		index of the AC-97 mixer register to be written;	

Preliminary V.10 Oct.07,1999

	Bit 7=0	for Primary CODEC;
	Bit 7=1	for Secondary CODEC.

Register 44h ACRD(AC-97 Mixer Read Register)

Default Value	e: 0000000)h		
Access: Read / Write				
Bit	Access	Description		
31:16	R/W	AC-97 mixer register contents		
		Reserved		
15	R/W	0:bit 3116 is valid data of AC-97 mixer register (indexed by bit 70)		
		1:busy reading AC-97 mixer register (indexed by bit 70); 0:do nothing		
		1:read AC-97 mixer register (indexed by bit 70) to bit 3116;		
14	R/W	Audio_Read_Busy: indicating Audio driver is busy reading AC97.		
		Write 0 to clear.		
		Write 1: if bit $13 = 0$, this bit can be set, else do nothing.		
		Read 0: fail to set Audio_Read_Busy.		
		1: succeed to set Audio_Read_Busy.		
13	RO	Modem_Read_Busy: indicating Modem driver is busy reading AC97.		
		Write : If BSModem enabled, do nothing, else clear this bit.		
		Read 1: indicating Modem driver is busy reading AC97.		
		Read 0: Modem driver is not busy reading AC97.		
12:8	R/W	Reserved		
7:0	R/W	index of the AC-97 mixer register to be read;		
		index of the AC-97 mixer register to be read;		
		Bit 7=0 for Primary CODEC;		
		Bit 7=1 for Secondary CODEC.		

Register 48h SCTRL (Serial INTF Control Register)

Default Value: 00014000h

Access:	Read / W	rite		
Bit	Access			Description
26	RO	CODEC	Power Dowi	n State flag
		0:Norm	al	
Preliminary	/ V.10 Oct.07	,1999	312	Silicon Integrated Systems Corporation

		1: CODEC is in power down mode
		When PM_ST enters D3, this bit will be set.
25	RO	Secondary CODEC Ready flag
		0: Not ready
		1: Ready
24	RO	Primary CODEC Ready flag
	$(\bigcirc) \land$	0: Not ready
		1; Ready
23	R/W	GPIOOUT Slot Enable
		0: Disable
		1; Énáble (lf DBLRATE_EN is 0)
22	R/W	HSETOUT Slot Enable
		0: Disable
		1: Ènable (If DBLRATE_EN is 0)
21	R/W	LINE2OUT Slot Enable
		0: Disable
		1: Enable (If DBLRATE_EN is 0)
20	R/W	LINE1OUT Slot Enable
		0: Disable
		1: Enable
19	R/W	LFEOUT Slot Enable
		0: Disable
		1: Enable
18	R/W	CENTEROUT Slot Enable
		0: Disable
		1: Enable
17	R/W	SURROUT L/R Slot Enable
		0: Disable
		1: Enable
16	R/W	PCMOUT L/R Slot Enable, Default: 1
		0: Disable
		1: Enable (Default)
15:14	R/W	Secondary CODEC ID
		Default: 01

Preliminary V.10 Oct.07,1999

13	R/W	GPIOIN Slot Select
		0: Primary CODEC GPIOIN slot input to GPIOIN buffer
		1: Secondary CODEC GPIOIN slot input to GPIOIN buffer
12	R/W	HSETIN Slot Select
		0: Primary CODEC HSETIN slot input to HSETIN buffer
		1: Secondary CODEC HSETIN slot input to HSETIN buffer
11	R/W	LINE2IN Slot Select
		0; Primary CODEC LINE2IN slot input to LINE2IN buffer
		1: Secondary CODEC LINE2IN slot input to LINE2IN buffer
10	R/W	MIC Slot Select
		0: Primary CODEC MIC slot input to MIC buffer
		1. Secondary CODEC MIC slot input to MIC buffer
9	R/W	LINE1IN Slot Select
		0: Primary CODEC LINE1IN slot input to LINE1IN buffer
		1: Secondary CODEC LINE1IN slot input to LINE1IN buffer
8	R/W	PCMIN Slot Select
		0: Primary CODEC PCMIN slot input to PCMIN_A buffer
		1: Secondary CODEC PCMIN slot input to PCMIN_A buffer
7	R/W	I2S Input Function Enable
		0: Disable
		If disabled, the clocks of I2S receiver should be shut down.
		1: Enable
6	R/W	I2S Output Function Enable
		0: Disable
		If disabled, the clocks of I2S transmitter should be shut down.
		1: Enable
5	R/W	S/PDIF Output Function Enable
		0:Disable
		If disabled, the clocks of SPDIF transmitter should be shut down.
		1: Enable
4	R/W	CODEC Double Rate Enable
		0: Disable
		1: Enable
3	R/W	PCM Output Select (Primary/Secondary)

Preliminary V.10 Oct.07,1999

		0: PCM Output up to Primary CODEC request
		1: PCM Output up to Secondary CODEC request
2	R/W	MCLK clock rate select for I2S Output
		0: MCLK = 12.288M
	\frown	1: MCLK = 6.144M
1	R/W	CODEC Cold Reset Command
	$(\)) \) \) \) \) \ $	<u>O:</u> Normal
	\Box	1; Cold Reset CODEC
		When write '1' to this bit, pin ACRST# should be driven to low for at least 1us.
		After Power up, this bit will set to issue AC97 cold reset, SW must write 0 to stop issuing AC97 cold reset.
0	R/W	CODEC Warm Reset Command
		0: Normal
		1: Warm Reset CODEC
		When write '1' to this bit, pin ACSYNC should be driven to high for at least 1us.

Register 4Ch ACGPIO (AC97 General Purpose IO Register)

Default	Value.	(
Delault	value.	

00000000h Read Write

Access:	Read /W	rite V///		
Bit	Access	Description		
31:16	R/W	data to be written into AC-97 through output Slot 12;		
15	R/W	This bit is status when read. 0:ready to output AC-97 Slot 12 1:busy This bit is command when write 0:do nothing 1:output AC-97 Slot 12		
14:5	R/W	Reserved		
4	R/W	Secondary CODEC GPIO_INT Enable 0:Disable 1:Enable		
3	R/W	Primary CODEC GPIO_INT Enable 0:Disable		

Preliminary V.10 Oct.07,1999

		1:Enable	
2	R/W	Secondary CODEC GPIO_INT register	
		This bit will be updated with Secondary input Slot 12 bit 0 of every AC97 frame.	
1	R/W	Primary CODEC GPIO_INT register	
	AS	This bit will be updated with Primary input Slot 12 bit 0 of every AC97 frame.	
0	R/W	Reserved	

_		(77)		
Register 50h	ASR0 (S	iSAudio	Status	Register)
Default Value:	00000000)h /	$\left(\right)$	

Bit	Access	Description		
31:30	RO	Reserved		
29	RO	Read/Write, MPU401 Output Buffer Select		
		0: 8-byte		
		1: 128-byte		
28	RO	Legacy Recording IRQ MASK		
		0:Generate IRQ when legacy recording block length expired.		
		1:Don' t generate IRQ when legacy recording block length expired		
27	RO	1:SB ESP is at special DMA mode		
26:25	RO	00:SB ESP is at get operator state		
		01:SB ESP is at get first operand state		
		11:SB ESP is at get second operand state		
		10:SB ESP is at get third operand state		
24	RO	1:SB Mixer Soft-Reset		
23	RO	1:SB PRO Command Captured Most Recently (Non-Bx or Cx Type Command Captured)		
22	RO	1:SB16 Command Captured Most Recently (Bx or Cx Type Command Captured)		
21	RO	1:SB Engine Sample Rate Set By Frequency Most Recently		
20	RO	1:SB Engine Sample Rate Set By Time Constant Most Recently		
19	RO	1:SB16 Mixer Register Update		
18	RO	1:SB PRO Mixer Register Update		
17	RO	1:OPL3 Bank1 Key On/Off		
16	RO	1:OPL3 Bank0 Key On/Off		

15	RO	0:AC-97 codec is not ready		
		1:AC-97 codec is ready		
14	RO	0:SB Mixer Register MX0E.1 is 0		
		1:SB Mixer Register MX0E.1 is 1		
13	RO	0:SB ESP is not at Direct Recording Mode		
	$\left(\right)$	1:SB ESP is at Direct Recording Mode		
12	RO	0:SB ESP has no ack byte		
		1:SB ESP has ack byte that needs to be read out		
11	RO	0:SB ESP DMA Command is not valid		
	~ ((1:SB ESP DMA command is valid		
10	RO	0:SB ESP Engine at Digital Audio Off State		
		1:SB ESP Engine at Digital Audio On State		
9:8	RO	00:SB ESP Engine Command Port Not Busy		
		01:SB ESP Engine Command Port Busy		
		10:SB ESP DMA Test Busy		
		11:SB ESP Command Buffer Full		
7	RO	0:8 bit data format		
		1:16 bit data format		
6	RO	0:mono		
		1:stereo		
5	RO	0:unsigned data format		
		1:signed data format		
4	RO	0:playback		
		1:recording		
3	RO	0:SB DMA loop disable		
		1:SB DMA loop enable		
2:0	RO	LegacyCMD		
		000 stop : No any operation. No contribution to Digital Mixer		
		001 run : Normal operation.		
		010 silent_DMA : SBCL will count; CA, CBC won't count. No data fetching. No interpolation. No contribution to Digital Mixer		
		011 reserve		
		100 silent_SB : SBCL, CA & CBC will count as the same as run mode.No data fetching. No interpolation. No		

317

Preliminary V.10 Oct.07,1999

	contrib	ution to	Digital Mixer	•
	101	paus	e: SBCL, CA	& CBC don't change.
	let SBA	ALPHA	unchanged, (CACHE_HIT=1
	drive c	urrent L	D (or LD_L,	LD_R) to Digital Mixer
	110		reserve	
$ \land \{ \land \lor \}$	_111		direct play	: SBCL, CA & CBC don't change.
$\left(\begin{array}{c} 0 \end{array} \right)$	drive S	BDD to	Digital Mixer	

Only one bit of Bit 21 and Bit 20 can be set 1 by implemented SB ESP Engine at any time. Only one bit of Bit 23 and Bit 22 can be set 1 by implemented SB ESP Engine at any time.

Register 54h ASR1 (Legacy Sound Blaster Frequency Read Back Register)

Default Value: 00h

Access:	Read Onl	y × / 2
Bit	Access	Description
15:0	RO	Sample Frequency Set by SB Command 41h or 42h

Register 56hASR2 (Legacy Sound Blaster Time Constant Read Back Register)Default Value:00h

Access:	Read Only	
Bit	Access	Description
7:0	RO	Time Constant Value Set by SB Command 40h

Register 58h ASR3 (SiSAudio Scratch Register) Default Value: 0000000h Access: Read / Write

Bit	Access	Description
31:0	R/W	

Register 5ch ASR4 (SiSAudio Version Control Register)

Default Value: 88h

Access:	Read Onl	у
Bit	Access	Description
7:0	RO	

318

Register 5Eh ASR5 (SB ESP Version High Byte Control Register)

Default Value: 4h

Access: Read /Write

Preliminary V.10 Oct.07,1999

Bit	Access	Description
3:0	R/W	

Register 5Fh ASR6 (SB ESP Version Low Byte Control Register)

Default Value: 2h

Access:	Read / Write		
Bit	Access	Description	
3:0			

 Register 60h
 AOPLSR0 (OPL3 Emulation Channel Key on/off Trace Register)

 Default Value:
 0000000h

Access:	Read On	lý / A l
Bit	Access	Description
31:25	RO	Reserved
24:16	RO	Bank1 channel 8-0 key on/off event captured
15	RO	Read only
		0:Bank0
		1:Bank1
14	RO	Reserved
13:9	RO	1:OPL3 rhythm channel 4-0 key on/off event captured
8:0	RO	1:Bank0 channel 8-0 key on/off event captured.

All the flag will be cleared after this register is read.

Register 70h SPDIF_CS (S/PDIF Channel Status Register)

Default Value: 0200000h

Access:	Read/Wri	ite
Bit	Access	Description
31:30	R/W	Reserved
		Hardwired to 00b
29:28	R/W	Clock Accuracy
		Read/Write, Default: 00b
27:24	R/W	Sample rate
		Read/Write, Default: 2h (48kHz)
23:20	R/W	Read/Write, Default: 0h

Preliminary V.10 Oct.07,1999

19:16	R/W	Read/Write, Default: 0h
15:8	R/W	Read/Write, Default: 00h
7:6	R/W	Read/Write, Default: 00b
5:3	R/W	Read/Write, Default: 000b
2	R/W	Copyright
	\land	Read/Write, Default: 00b
1	RAW	Audio content flag
		Read/Write, Default: 0
0	R/W	Professional flag
		Read/Write, Default: 0

Register 7Ch GPIO(General purpose IO Register)

Default Value: 00

alue:	0000000h	

Access:	Read /Wi	rite
Bit	Access	Description
31:24	R/W	reserved
23:16	R/W	reserved
15:10	R/W	GPO[7:2]
9	R/W	Set to indicate BSModem that SiSAudio has issued AC97 power down command.
8	R/W	After Audio driver has initialized AC97, it must set this bit to inform BSModem.
7:1	R/W	GPI[7:1]
	RO	Read 1 indicating that BSModem has initialized AC97.

All reserved bits return 0 when read.

14.2.3 Wave Engine Register:

64 voice channels are classified into two banks.

- Bank A: channel 0-31 (optimized for MIDI)
- Bank B: channel 32-63 (optimized for Wave, WDM Stream, DirectX buffer, I²S, S/PDIF, MODEM, Handset, Recording, Microphone, Main Mixer Capture, Reverb Send, Chorus Send, AC97 SURR, AC97 CENTER/LFE)

Each channel in Bank A can only be programmed as a playback channel with individual EM(envelope modulation), individual LFO AM and individual LFO FM.

Preliminary V.10 Oct.07,1999

[•]

Channels in Bank B have more flexibility. Each of them can be programmed as a Normal PB channel with global LFO AM and LFO FM but without EM, or as a Special PB channel, or as a REC_PB channel. Bit[31:19] of RegEC_B is Channel ATTRIBUTE.

Default Valu	ue: 00000000)h Irito
Bit	Access	Description
31:0	R/W	This register and STOP_A are used as Bank A channel start/stop command register when they are written, and used as Bank A channel running/stopped status register when they are read. bit n is for channel n.
		Reading from this I/O port will return the running/stopped status of Bank A 32 voice channels.
		0:Stopped.
		When bit n is read as $^{\prime}0$, it means any operation of channel n, including address generation, sample data fetching, interpolation, and envelope calculation is stopped. And this channel has no contribution to the digital mixer.
		This bit will be reset from '1' to '0 in four cases.
		when a '1' is written to the corresponding bit in register STOP_A.
		when out of data, i.e. when sample loop disabled and CSO (Current Sample Offset) >= ESO (End Sample Offset).
		when Ec (current envelope) drops down to -63.984375 dB.
		when current envelope buffer is in delay-stop mode, and EDLY count down to ' ${\tt 0}$.
		1:Running.
		When bit n is read as '1', it means channel n is working.
		This bit will be set from '0' to '1' only when a '1' is written to the corresponding bit in register START_A.
		Writing to this I/O port means issuing a start command to address engine and envelope engine in expected channel.
		0:Ignore.
		A '0 written to bit n will not change the status of channel n.
		1:Start.
		A '1' written to bit n will start channel n's address engine and

Register 80h	STAR_A (START	command and status	register for Bank A)
--------------	---------------	--------------------	----------------------

Preliminary V.10 Oct.07,1999

|--|

Register 84h STOP_A (Channel STOP command and status register for Bank A) Default Value: 0000000h

Access:	Read / W	rite
Bit	Access	Description
31:0	R/W	Reading from this I/O port will return the same value as from the last register START_A. Writing to this I/O port means issuing a stop command to address engine and envelope engine in expected channel. 0:Ignore. A '0 written to bit n will not change the status of channel n. 1:Stop. A '1' written to bit n will stop channel n's address engine and envelope engine, and also reset the corresponding status bit to '0.
Register 88h Default Value	DLY (De) E: 00000000	ay flag of Bank A)

Register 88h	DLY (Delay flag of Bank A)
--------------	---------------------------	---

Access:	Read / W	/rite
Bit	Access	Description
31:0	R/W	When read, this register will show the delay status of each channel of Bank A. Bit n is for channel n. 0:normal
		This bit will toggle from '1' to '0 when envelope engine change from a delay mode buffer to a non-delay mode buffer. When channel n is stopped, bit n will be reset to '0'.
		1: channel is currently in delay mode (address engine keep stopped but envelope engine is running).
		This bit will toggle from '0' to '1' only when envelope engine begin to deal with a delay mode buffer.
		When write,
		0:ignore (don' t change)
		1:set to ' 1'

322

Preliminary V.10 Oct.07,1999

Register 8Ch SIGN_CSO (Sign bit of CSO) (for Bank A only)

Default Value: 0000000h / \ \ / Ac

cess:	Read /	Write

Bit	Access	Description
31:0	R/W	This register is used to store the sign bits of 32 channel's CSO of Bank A, with '0' means current sample address is greater than or equal to LBA(Loop Begin Address), while '1' means current sample address is little than or equal to LBA. This register can be programmed with an initial status and will be updated by address engine. Write '0 :ignore (don't change) Write '1' :set to '1' When channel n is stopped, bit n will be reset to '0'.

Register 90h	CSPF_A	(Bank A Current Sample Position Flag)
Default Value	e: 0000000	Dh
Access:	Read onl	y × (,
Bit	Access	Description
31:0	RO	This register will show a flag which indicates the Bank A's current sample is in a range between ESO/2 to ESO or in a range before ESO/2 (ESO is offset from loop begin to loop end). And this flag will be used for sample data double buffering control. Bit n is for channel n. 0:Before ESO/2 1:From ESO/2 to ESO WHEN CHANNEL N IS STOPPED, BIT N WILL BE RESET TO '0.

CEBC (Current Envelope Buffer Control) (for Bank A only) Register 94h

Default Value Access:	e: 00000000 Read/Wri	Dh te
Bit	Access	Description
31:0	R/W	Reading from this register will return current envelope buffer flags of 32 channels of Bank A, which indicate currently envelope engine is using parameters from EBUF1 or EBUF2. Bit n is for channel n.
		0:Buffer 1 1:Buffer 2 Writing '1' to bit n of this register will toggle the flag in channel n and force envelope engine to change buffer. Writing '0 to bit n

323

Preliminary V.10 Oct.07,1999

SiS630 Slot 1/Socket 370 2D/3D Ultra-AGP[™] Single Chipset

	won' t change anything in channel.
	0:Ignore
	1:Toggle
	When channel n is stopped, bit n will be reset to ' ${\tt 0}$.

Register 98	h_AINT_A	Bank A address engine interrupt)
Default Value	e: 00000000)h/
Access:	Read/Wri	te
Bit	Access	Description
31:0	R/W	Any bits toggled from '0' to '1' will result in a IRQ. Reading from this I/O port will return the address INT status of Bank A's 32 channels. Bit n is for channel n. 0:No INT 1:INT This bit will be set in 2 cases:
		When CSO (current sample offset) >= ESO (end sample offset), and ENDLP_IE (end of loop INT enable bit in Global Control register) =1 and AINTEN_A bit n is set 1
		When CSO (current sample offset) >= ESO/2 (middle of ESO), and MIDLP_IE (middle of loop INT enable bit in Global Control register) =1 and AINTEN_A bit n is set 1 for channel n.
		Writing '1' to bit n of this register will reset this bit.
		0:Ignore.
		A '0 written to bit n will not change the status of this bit. 1:reset
		A '1' written to bit n will reset this bit.

Register 9Ch EINT(Envelope engine interrupt register) (for Bank A only)

Default Value	e: 00000000)h
Access:	Read/Wri	te
Bit	Access	Description
31:0	R/W	Any bits toggled from '0' to '1' will result in a IRQ.
		Reading from this I/O port will return the envelope INT status of 32 channels of Bank A. Bit n is for channel n.

Preliminary V.10 Oct.07,1999

	0:No INT 1:INT This bit will be set in 2 cases: When envelope buffer toggled, and ETOG_IE (envelope toggle
R	INT enable bit in Global Control register) =1. When Ec (current envelope) <= FFFh (-63.984375 dB), and EDROP_IE (envelope dropping to -63.984375dB INT enable bit in Global Control register) =1.
	Writing '1' to bit n of this register will reset this bit. 0:Ignore.
	 A '0 written to bit n will not change the status of this bit. 1: reset A '1' written to bit n will reset this bit.

Register A0h	GC & CIR (Glo	bal Ç	ontrol	& Cha	annel Index
	00000000		\sim / ,	/ /]	>

Bit	Access	Description	
31:30	R/W	are used to control Legacy Recording channel when record to mono sample.	
		00:left	
		01:right	
		10: (left+right+1)/2	
		11: Reserved.	
29:28	R/W	are IO 0008-read handling control bits.	
		00:never assert StatusRDY	
		01:StatusRDY = DMATCReached	
		10:StatusRDY = DMATCReached LegacyDRQ	
		11:in this case, handshaking with StatusWR and manipulation or return byte should been done.	
		StatusRDY keep '0 when initialization.	
		If(StatusWR ==1) {	
		StatusRDY = 1;	
		if(DMAChannel==0) {	
		ReturnByte[7:0] =	
		{InputByte[7:5], DMAR8[4], InputByte[3:1], DMAR8[0]};	

325

		}
		else {
		ReturnByte[7:0] =
		{InputByte[7:6], DMAR8[5], InputByte[4],
	\frown	InputByte[3:2], DMAR8[1], InputByte[0]};
	(Ω)	}
	$ \land \land \land \land$	}
		if(DMASNOOPCS_==0 & ADR[7:0] = 8 & Data_rdy_ == 0 & StatusRDY==1)
		StatusRDY = 0;
27	R/W	Test_loopback: This bit is used for wave engine loopback testing.
		0:normal
		1:force recording engine get new data from playback FIFO instead of aclink.
26	R/W	Debugging Mode
		0:Normal
		1:Chip is in Debugging Mode.
		In Debugging Mode, 20 pins (including 8 pins of GPIO, 1 pin of SPDIF, 6 pins of I2S and 5 NC pins) are used as output to monitor 40 internal important signals.
		Detail in Appendix B.
25:24	R/W	EXPROM Map Mode
		00: 000h-1FFh of EXPROM is mapped to AudioMemBase 800h-FFFh low 16 bits;
		800h-9FFh of EXPROM is mapped to AudioMemBase 800h- FFFh high 16 bits;
		01: 200h-3FFh of EXPROM is mapped to AudioMemBase 800h-FFFh low 16 bits;
		A00h-BFFh of EXPROM is mapped to AudioMemBase 800h- FFFh high 16 bits;
		10: 400h-5FFh of EXPROM is mapped to AudioMemBase 800h-FFFh low 16 bits;
		C00h-DFFh of EXPROM is mapped to AudioMemBase 800h-FFFh high 16 bits;
		11: 600h-7FFh of EXPROM is mapped to AudioMemBase 800h-FFFh low 16 bits;
		E00h-FFFh of EXPROM is mapped to AudioMemBase 800h-

Preliminary V.10 Oct.07,1999

326

		FFFh high 16 bits.
23	R/W	EXPROM Dump Mode Enable
		0:Disable
		1:Enable
	\frown	If enabled, EXPROM(4096x12bit) is mapped to AudioMemBase
		according to bit[25:24], i.e. the content of EXPROM can be read
	$ \land \land \lor \land$	out through AudioMem Read cycle.
22:21	((R/W)	Test mode bits
		00:normal mode (chip works normally in this mode)
		01:test mode 1
		10:test mode 2
		11/test mode 3
		The detail descriptions on test mode 1, 2, and 3 are given in Appendix B.
20	R/W	Main Mixer Output Control
		0:Main Mixer L/R \rightarrow PCM L/R Output FIFO
		1:Main Mixer L/R → MMC L/R Output Buffer
19	R/W	S/PDIF Out Control
		0 S/PDIF L/R Output Buffer \rightarrow S/PDIF L/R transmitter
		1:PCM L/R Output FIFO \rightarrow S/PDIF L/R transmitter
18	R/W	I2S Out Control
		0:I2S L/R Output Buffer → I2S transmitter
		1:SURR L/R Output FIFO + I2S transmitter
17	R/W	PCMIN_B Mixing Enable/Disable
		0:PCMIN_B Mixing Disable
		1:PCMIN_B Mixing Enable
		Note: Controlled by PCMIN_SEL in Reg48h, either of Primary
		CODEC PCMIN slot or Secondary CODEC PCMIN slot will come
		Into 3-level PCMIN_A buffer. And t-PCMIN_B Mixing bit is
		will be mixed into Main Mixer.
16	R/W	64-Channel Mode
		0:Legacy Mode
		1:64 Channel Mode
15	R/W	is INT enable bit for current envelope dropping to -63.984375dB.
		0:disable
		1:enable
14	R/W	is INT enable bit for envelope buffer toggling.
Preliminary	V.10 Oct.07,	1999 327 Silicon Integrated Systems Corporation

		0:disable
		1:enable
13	R/W	is INT enable bit for middle of loop.
		0:disable
	\frown	1:enable
12	R/W	is INT enable bit for end of loop.
		0:disable
		1:enable
11	R/W	is INT enable bit for playback underrun.
		0:disable
		1:enable
		When playback FIFO is empty, if this bit is set as '1', a IRQ will be
		issuéd.
10	R/W	is INT enable bit for recording overrun.
		0:disable
		1:enable
		When recording FIFO is full, if this bit is set as '1', a IRQ will be
		issued.
9	R/W	is Pause/Resume command bit.
		Read 0:Engine hasn't been paused yet.
		1:Engine has been paused already.
		Write 0:Resume Engine.
		1:Pause Engine.
		When host writes '1', this bit may not show '1' immediately. Engine
		paused already, this bit will be set to '1'. Once host writes '0', this
		bit will be reset to '0' immediately and engine will work normally.
8	R/W	is used to reset playback sample timer counter.
		When read, return 0;write 1 will reset STimer.
5:0	R/W	is the channel index which is used to select a channel for access.
		00h selects channel 0, 1Fh selects channel 31, 3Fh selects channel 63.

All other bits are reserved.

Register A4h	AINTEN_A(Bank A Address Engine Interrupt Enable)
--------------	--

Preliminary	V.10 Oct.07,	999 328	Silicon Integrated Systems Corporation
Bit	Access		Description
Access:	Read/Wri	е	
Default Value	e: 00000000	า	

31:0	R/W	This register will control address engine interrupt for each channel of Bank A. Bit n is for channel n.
		0:disable address engine interrupt for channel n
		1:enable address engine interrupt for channel n

Register A8h MUSICVOL & WAVEVOL(Global Music Volume & Global Wave Volume) Default Value: 00008080h

	1	2 \		. <	
Access:	(Paar	ł٨	∧ <i>li</i> rit)	è
AUUESS.	(INDAU	<i>II</i> \		۲

Bit	Access	Description
31:24	R/W/	music right volume
		0 OdB(no attenuation)
		FFh -63.75dB(mute)
23:16	R/W	music left volume
		0 0dB(no attenuation)
		FFh -63.75dB(mute)
15:8	R/W	wave right volume
		0 0dB(no attenuation)
		80h -32dB (default)
		FFh -63.75dB(mute)
7:0	R/W	wave left volume
		0 0dB(no attenuation)
		80h -32dB (default)
		FFh -63.75dB(mute)

Register Ach SBDELTA/DELTA_R (Sample Change Step for Legacy Playback & **Recording**) 1

Default	Value:	00000000h

Access: Read/Write

Bit	Access		Description
31:16	R/W	Reserved.	
15:0	R/W	SBDELTA: Fs	s/F48k in 4.12 format.
		SBDELTA_R: F4	48k/Fs in 4.12 format.

Register B0h MISCINT (Miscellaneous Int & Status)

Default Value:	00000000h
A	

Access:	Read/Write		
Bit	Access		Description
Preliminary	/ V.10 Oct.07,1	999 329	Silicon Integrated Systems Corporation

24	R/W	(ACGPIO_IRQ) is AC97 GPIO interrupt request.
		ACGPIO_IRQ = Reg4Ch[1] & Reg4Ch[3] Reg4Ch[2] & Reg4Ch[4].
23	R/W	(ST_IRQ_En) is ST IRQ enable bit.
		0:disable
	$\left(\right)$	1:enable
17	R/W	(opltimer_ie) is OPL3 timer interrupt enable bit.
	\bigcup	0:disable
		1:enable
16	R/W	(PB_24K_MODE) is playback 48k/24k mode control bit.
		0:(default)Wave engine drives sample to CODEC at 48Khz
		1:Wave engine drives sample to CODEC at 24Khz(in this mode, Delta should be programmed twice as that in 48Khz mode).
15	R/W	(ST_TARGET_REACHED) is a flag with '1' indicates STIMER counter has been equal to ST_TARGET.
		This bit will be set to '1' once STIMER counter is equal to ST_TARGET.
		Write '1' will clear this bit.
11	R/W	(mixer_overflow_flag) is a flag which indicates the result of mixer accumulator exceeds 7FFFh.
		This bit will be set to 1 once accumulator overflows.
		Write '1' will clear this bit.
10	R/W	(mixer_underflow_flag) is a flag which indicates the result of mixer accumulator is less than 80000h.
		This bit will be set to '1' once accumulator underflows.
		Write '1' will clear this bit.
9	R/W	(REC_OVERUN) is recording overrun status bit. Active high.
		This bit will be set to '1' if recording is running & rec_req_ is active & data_rdy_haven't come.
8	R/W	(PB_UNDERUN) is playback FIFO underrun status bit. Active high.
		This bit will be set to '1' if playback is running & FIFO is empty & f48 clock is coming.
7	R/W	(ST_IRQ) is Sample Timer IRQ bit. Active high.
		Bit[7] = ST_IRQ_En ST_TARGET_REACHED
6	R/W	(ENVELOPE_IRQ) is Wave-table Envelope Engine IRQ bit. Active
	D 444	Bit[6] = EIN1[31:0]
5	R/W	I(ADDRESS_IRQ) is Wave-table Address Engine IRQ bit. Active
Preliminary	V.10 Oct.07,	1999 330 Silicon Integrated Systems Corporation

		high.		
		Bit[5] = (AINT_A[31:0]) (AINT_B[31:0])		
4	R/W	(OPL3_IRQ) is OPL3 timer IRQ bit. Active high.		
		Bit[4] = timerirq & opltimer_ie		
3	R/W	(MPU401_IRQ) is MPU401 IRQ bit. Active high.		
		Bit[3] = mpu401irq (signal from Legacy Audio block)		
2		(SB_IRQ) is sound blaster IRQ bit. Active high.		
	$(\cup) \land$	Bit[2] = sbirq (signal from Legacy Audio block)		
1	R/W	(REC_OVERUN_IRQ) is recording overrun IRQ bit. Active high.		
		Bit[1] = OVERUN_IE & Bit[9].		
0	R/W	(PB_UNDERUN_IRQ) is playback FIFO underrun IRQ bit. Active		
		high. ()		
		Bit[0] = UNDERUN_IE & Bit[8].		

All other bits are reserved bits.

Register B4h STAR_B (START command and status register for Bank B)

Bit	Access	Description
31:0	R/W	This register and STOP_B are used as Bank B channel start/stop command register when they are written, and used as Bank B channel running/stopped status register when they are read. bit n is for channel n.
		Reading from this I/O port will return the running/stopped status of Bank B 32 voice channels. 0:Stopped.
		When bit n is read as '0', it means any operation of channel n, including address generation, sample data fetching, interpolation, and envelope calculation is stopped. And this channel has no contribution to the digital mixer. This bit will be reset from '1' to '0 in four cases.
		when a '1' is written to the corresponding bit in register STOP_B.
		when out of data, i.e. when sample loop disabled and CSO (Current Sample Offset) >= ESO (End Sample Offset).
		when Ec (current envelope) drops down to -63.984375 dB.
		when current envelope buffer is in delay-stop mode, and EDLY count down to ' ${\rm 0}$.
		1:Running.

331

Preliminary V.10 Oct.07,1999

	When bit n is read as '1', it means channel n is working.
	This bit will be set from '0' to '1' only when a '1' is written to the corresponding bit in register START_B.
	Writing to this I/O port means issuing a start command to address engine and envelope engine in expected channel.
\mathcal{S}	0:Ignore. A [•] 0 written to bit n will not change the status of channel n. 1;Start.
	A virtual written to bit n will start channel n's address engine and envelope engine and also set the status bit n to '1'.

Register B8h STOP_B (Channel STOP command and status register for Bank B)

Default Value	e: 0000h	
Access:	Read / W	rite
Bit	Access	Description
31:0	R/W	Reading from this I/O port will return the same value as from the last register START_B.
		Writing to this I/O port means issuing a stop command to address engine and envelope engine
		in expected channel. 0:Ignore.
		A '0 written to bit n will not change the status of channel n. 1:Stop.
		A '1' written to bit n will stop channel n's address engine and envelope engine, and also reset the corresponding status bit to '0 .

Register BCh CSPF_B(Bank B Current Sample Position Flag)

Default Value	e: 0000000)h		
Access:	Read only	y		
Bit	Access			Description
31:0	RO	This re- sample ESO/2 will be channe	gister will show is in a range l (ESO is offset used for samp l n.	a flag which indicates the Bank B's current between ESO/2 to ESO or in a range before from loop begin to loop end). And this flag le data double buffering control. Bit n is for
		0: Be	efore ESO/2	20
1: From ESO/2 to ESO				
Preliminary	Preliminary V.10 Oct.07,1999 332 Silicon Integrated Systems Corporation			

			When channel n is stopped, bit n will be reset to '0'.
--	--	--	--

Register C0h SBBL & SBCL (Sound Blaster Base Block Length & Current Block Length)

Default Valu	ie: 0000000)h
Access:	Read/Wri	te
Bit	Access	Description
31:0	(R/W)	SBBL(Bit 31-16) is sound blaster base block length
		SBCL(Bit 15-0) is current value of sound blaster block length counter
		If sound blaster DMA loop is enabled(SBCTRL[3]=1), every time when SBCL changed from 0 to FFFFh, a INT will be issued, the contents of SBCL is reloaded from SBBL, and DMA operation continues.
		If sound blaster DMA loop is not enabled(SBCTRL[3]=0), every time when SBCL changed from 0 to FFFFh, a INT will be issued, the contents of SBCL is reloaded from SBBL, and set LegacyCMD to 101(pause).
		SBCTRL bit 7 is used to determine the counter operation mode (byte count or word count). The counter is a count down counter.

Register C4h SBCTRL & SBE2R & SBDD (Sound Blaster Control)

Default Value	e: 0000000		
Access:	Read/Wr	ite	
Bit	Access	Description	
31:24	R/W	is sound blaster DMA testing byte command data port(write only) Any time after Bit31-24 has ever been written, E2Status (source from wave engine) will be set high. E2Status will be cleared after the testing byte has been sent to the system location.	
15:8	R/W	is sound blaster direct mode playback data port	
7:0	R/W	is legacy sound blaster voice in/out control register	
7	R/W	0:8 bit data format 1:16 bit data format	
6	R/W	0:mono 1:stereo	
5	R/W	0:unsigned data format 1:signed data format	
4	R/W	0:playback	

333

Preliminary V.10 Oct.07,1999

		1:recording		
3	R/W	sound blaster DMA loop enable control		
		0:loop disabled.		
		1:loop enabled.		
2:0	R/W	LegacyCMD		
	$\Delta(R)$	000 stop : No any operation. No contribution to Digital Mixer		
	$\left(\begin{array}{c} 0 \end{array} \right)$	001 run : Normal operation.		
		010 silent_DMA : SBCL will count; CA, CBC won't count. No data fetching. No interpolation. No contribution to Digital Mixer		
		011 reserve		
		100 silent_SB : SBCL, CA & CBC will count as the same as run mode. No data fetching. No interpolation. No contribution to Digital Mixer		
		101 pause : SBCL, CA & CBC don't change.		
		let SBALPHA unchanged, CACHE_HIT=1		
		drive current LD (or LD_L, LD_R) to Digital Mixer		
		110 reserve		
		111 Direct_playback : SBCL, CA & CBC don't change.		
		drive SBDD to Digital Mixer		

Register C8h STimer (Playback Sample Timer)

Default Value:	00000000h
A	

Access:	Read only	
Bit	Access	Description
31:0	RO	Bit 31-0 (STimer) will show current state of the sample timer counter which will count up every f48k clock and will be reset when RST_Stimer bit being written. Active high.

Register CCh LFO_B And I2S_DELTA (Bank B Low Frequency Oscillator Control)

Default Value: 0000000h

Access:	Read/Wr	ite
Bit	Access	Description
31:27	R/W	Reserved – Read Only 00000b
26:16	R/W	is used for Bank B LFO control
26	R/W	(LFO_E_B) is Bank B LFO enable bit.
		0:disabled

334

Preliminary V.10 Oct.07,1999

		1:enabled
25:24	R/W	(LFO_R_B) is clock rate select of Bank B LFO counter.
		00:LFO counter clock rate is 48kHz
		01:LFO counter clock rate is 48kHz/4
	\frown	10:LFO counter clock rate is 48kHz/16
	$\left(\right)$	11:LFO counter clock rate is 48kHz/64
23:16	R/W	(LFO_INIT_B) is the initial value of the Bank B LFO counter which will count down to 0 then reload.
15:13	R/W	Reserved.
12:0	R/W	(I2S_DELTA) (Read only) This register returns the auto-detected DELTA of I2S input ($f_{i_{2S}}/f_{_{48K}}$).
12:0	R/W	(I2S_DELTA) (Read only) This register returns the autoeted DELTA of I2S input ($f_{i_{28}}/f_{48K}$).

Register D0h ST_TARGET (Sample Timer Target)

Default Value: 00000000h

ccess:	Read/Wri	te
Bit	Access	Description
31:0	R/W	Bit 31-0 (ST_TARGET) is used to store a pre-set value. Once STIMER counter reaches that value, an IRQ called ST_IRQ will be issued if $ST_IRQ_En = 1$.

Register D8h	AINT_B (Bank B address	s engine interrupt)

Default Valu	e: 0000000	Dh Y
Access:	Read/Wr	te
Bit	Access	Description
31:0	R/W	Any bits toggled from '0' to '1' will result in a IRQ.
		Reading from this I/O port will return the address INT status of Bank B's 32 channels. Bit n is for channel n.
		0:No INT 1:INT
		This bit will be set in 2 cases:
		When CSO (current sample offset) >= ESO (end sample offset), and ENDLP_IE (end of loop INT enable bit in Global Control register) =1 and AINTEN_B bit n is set 1
		for channel n.
		When CSO (current sample offset) >= ESO/2 (middle of ESO), and MIDLP_IE (middle of loop INT enable bit in Global Control register) =1 and AINTEN_B bit n is set 1 for channel n.

Preliminary V.10 Oct.07,1999

	Writing '1' to bit n of this register will reset this bit.
	0:Ignore.
	A ' 0 written to bit n will not change the status of this bit.
	1:reset
	A '1' written to bit n will reset this bit.
$ \langle \langle \rangle \rangle $	A

Register DCh	AINTEN B(Bank B	B Address Engine Interrug	ot Enable)

-	
(
Default Value	00000000
	000000000
2 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	

Access:	Read/Wri	te
Bit	Access	Description
31:0	R/W	This register will control address engine interrupt for each channel of Bank B. Bit n is for channel n. 0:disable address engine interrupt for channel n
		1:enable address engine interrupt for channel n

Register E0h E0h (CSO & ALPHA & FMS) (for Bank A & Bank B)

Default Value	e: XXXXXX	XXh ////
Access:	Read/Wr	ite
Bit	Access	Description
31:16	R/W	(CSO) is the offset of current sample relative to loop begin sample.
15:4	R/W	(ALPHA) is sample interpolation coefficient, which stands for the linear interpolation ratio between current sample and the next one.
3:0	R/W	(FMS) is Frequency Modulation Step.
Register E4	n (LBA)(f e: XXXXXX	for Bank A & Bank B) XXh

Register E4h (LBA) (for Bank A & Bank B)

Access:	Read/Wr	ite
Bit	Access	Description
31	R/W	(CPTR) is reserved for internal use of cache control
30:0	R/W	is the linear address of loop begin sample.
		It should be word aligned when sample type is 16-bit Mono or 8-bit Stereo;
		and should be double word aligned when sample type is 16-bit Stereo.

Register E8h (ESO & DELTA) (for Bank A & Bank B)

Preliminary V.10 Oct.07,1999

Default Value: XXXXXXXXh				
Access:	Read/Wri	te		
Bit	Access	Description		
31:16	R/W	(ESO) is the offset of loop end sample relative to loop begin sample.		
15:0	R/W	(DELTA) is sample change step in format 4.12 (Four bits integer, 12 bits fraction), which stands for the frequency ratio: Fs/48KHz, while Fs is the sum of sample rate and pitch shifting rate		
	∇			

Register Ech	(Bank A LFO_CTRL & LFO_CT & FMC & RVOL & CVOL) (Bank A Only)
Default Value:	XXXXXXXXh
A	

Access:	Read/Wr	ite
Bit	Access	Description
31:28	R/W	(SIN) Sine wave value.
27	R/W	(SIN_S) sign bit of sine wave.
		0:positive
		1:negative
26	R/W	(SIN_D) counter direction bit.
		0:up
		1:down
25:24	R/W	(LFO_R) LFO counter clock rate select bits.
		00:48kHz
		01:48kHz/4
		10:48kHz/16
		11:48kHz/64
23:16	R/W	(LFO_CT)LFO working counter.
15:14	R/W	(FMC) FM modulation control bits.
		00:FMA = (FMS * SIN) >> 3
		01:FMA = (FMS * SIN) >> 2
		10:FMA = (FMS * SIN) >> 1
		11:FMA = (FMS * SIN) >> 0
13:7	R/W	(RVOL)Reverb Send Linear Volume
		format: 1.6, 7Fh stands for 2x gain, 40h stands for no gain no attenuation, 00h stands for mute.
6:0	R/W	Chorus Send Linear Volume
		format: 1.6, 7Fh stands for 2x gain, 40h stands for no gain no attenuation, 00h stands for mute.

Preliminary V.10 Oct.07,1999

Register FCh	(Bank B ATTRIBUTE & FMC & RVOL & CVOL) (Bank B Only)
Register EUR	(Dalik D ATTRIBUTE & FIVIC & RVUL & CVUL) (Dalik D Ulily)

Default Valu	e: XXXXXX	XXh
Access:	Read/Wr	ite
Bit	Access	Description
31:19	R/W	(ATTRIBUTE) Channel attribute
31:30		PB/REC Select
	$\left(O \right) $	00:(Normal PB) Normal playback
		This is a normal playback channel in Bank B with Global Volume, Channel Volume, PAN, SRC, FM/AM features. In this case, bit[29:19] doesn' t matter.
		01:(Special PB) Special playback
		This channel can be one of several kinds of special playback channels. Bit[29:26] is used to select special playback type; bit[25:24] is used to select data flow from channel to FIFO; and bit[23:19] is used to enable/disable individual functions.
		10:(REC) Recording to system memory
		This channel can be one of several kinds of recording channels. Bit[29:26] is used to select recording type; bit[25:24] is used to control how MONO sample is generated when recording; bit[23] is used to enable/disable SRC; bit[22:19] doesn't matter.
		11:(REC_PB) Recording to system memory and playback to mixer
		This channel is a Recording channel which records sample data to system memory and playback to Main Mixer in the mean time. In this case, bit[29:26] is used to select recording type; bit[25:24] is used to control how MONO sample is generated when recording; and bit[23:19] is used to enable/disable individual functions.
29:26	R/W	Channel Type Select
		when Bit[31:30] is 00: (Normal PB)
		xxxx reserverd
		when Bit[31:30] = 01: (Special PB)
		0000 playback to MODEM LINE1 Output FIFO
		0001 playback to MODEM LINE2 Output FIFO
		0010 playback to PCM L/R Output FIFO
		0011 playback to HSET Output FIFO
		0100 playback to I2S L/R Output Buffer
		0101 playback to CENTER/LFE Output FIFO

338

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

		0110 playback to SURR L/R Output FIFO
		0111 playback to SPDIF L/R Output FIFO
		other reserved
		when Bit[31:30] = 1x: (REC or REC_PB)
		0000 recording from MODEM LINE1 Input
	$\left(\right)$	FIFO
	(\mathcal{S})	0001 recording from MODEM LINE2 Input FIFO
		0010 recording from PCM L/R Input FIFO
		0011 recording from HSET Input FIFO
		0100 recording from I2S L/R Input FIFO
		0101 recording from MIC Input FIFO
		0110 main mixer capture from PCM L/R Output
		0111 main mixer capture from MMC L/R
		1000 Reverb Send
		1001 Chorus Send
		otherreserved
25:24	R/W	Special Playback Channel to FIFO data flow select / Recording to MONO control
		When channel is in Special PB mode, this register is used to select input source of a stereo playback slot pairs such as PCM L/R, SURR L/R, CENTER/LFE, I2S L/R and SPDIF L/R. The input source of L/R can be from one channel or can be from two independent channels.
		When channel is in REC or REC_PB mode, this register is used to control how MONO sample is generated.
		when Bit[31:30] = 00 (Normal PB)
		xx never used
		when Bit[31:30] = 01 (Special PB)
		00 Channel L/R to FIFO L/R
		In this case, channel is acting as a stereo channel, data flow is like
		Channel Left → FIFO Left
		Channel Right → FIFO Right
		01 Channel L to FIFO L
		Data flow:

 Preliminary V.10 Oct.07,1999
 339
 Silicon Integrated Systems Corporation

		Channel Left \rightarrow FIFO Left
		10 Channel R to FIFO R
		Data flow:
		Channel Right \rightarrow FIFO Right
		11 reserved
	$ \land \land \lor$	when Bit[31:30] = 1x (REC or REC_PB)
	$\left(\begin{array}{c} 0 \end{array} \right) $	00: left,
		01 right
		10: (left+right+1)/2
		11: reserved
23	R/M	SRC Enable
25		0.disable
		1:enable
22	R/W	FM and AM Enable
		0:disbale
		1:enable
21	R/W	PAN Enable
		0:disable
		1:enable
20	R/W	Channel Volume Enable
		0:disable
	544	
19	R/W	
18.16	R/\/	Reserved
15:14	R/W	FM modulation control bits
10.11		00:FMA = (FMS * SIN) >> 3
		01:FMA = (FMS * SIN) >> 2
		10:FMA = (FMS * SIN) >> 1
		11:FMA = (FMS * SIN) >> 0
13:7	R/W	Reverb Send Linear Volume
		format: 1.6, 7Fh stands for 2x gain, 40h stands for no gain no attenuation, 00h stands for mute.
<u></u>		Chorus Send Linear Volume

format: 1.6, 7Fh stands for 2x gain, 40h stands for i attenuation, 00h stands for mute.	no gain no
---	------------

Register F0h (Bank A GVSEL & PAN & VOL & CTRL & Ec) (for Bank A only)

Default Value	e: XXXXXX	XXh	
Access: Read/Write			
Bit	Access	Description	
31	R/W	(GVSEL) is global volume select bit.	
	\Box	0;select MUSICVOL	
		1:select WAVEVOL	
30:24	R/W	(PAN) is Positioning attenuation control.	
30	R/W	selects attenuated channel. 0: left, 1: right	
29:24	R/W	is the attenuation value in format of 4.2. 3Fh stand for mute.	
23:16	R/W	(VOL) is channel volume attenuation in format of 5.3. 00h stands for 0 dB attenuation, FFh stands for mute.	
15:12	R/W	are control bits.	
15	R/W	selects 8/16 bit sample data	
		0:8-bit data	
		1:16-bit data	
14	R/W	selects mono/stereo sample data	
		0:mono	
		1:stereo	
13	R/W	selects unsigned/signed sample data	
		0:unsigned	
		1:signed	
12	R/W	is loop mode enable bit.	
		0:disable	
		1:enable	
11:0	R/W	is current envelope in format of 6.6 (Six bits integer and six bits fraction). 00h stands for 0dB, FFh stands for -63.984375 dB.	

Default Value	e: XXXXXX	XXh
Access:	Read/Wr	ite
Bit	Access	Description
31	R/W	(GVSEL) is global volume select bit.
		0:select MUSICVOL
		1:select WAVEVOL

341

Preliminary V.10 Oct.07,1999

30:24	R/W	(PAN) is Positioning attenuation control.
30	R/W	selects attenuated channel. 0: left, 1: right.
29:24	R/W	is the attenuation value in format of 4.2. 3Fh stand for mute
23:16	R/W	(LFO_INIT) is Bank A per channel LFO counter initial and reload value.
	Δ	Note:Any time when host write to RegECh[26:16] (LFO_CT), LFO_INIT should be written with the same value.
15:12	(R/W/	are control bits.
15	R/W	selects 8/16 bit sample data
		0:8-bit data
		1:16-bit data
14	R/W	selects mono/stereo sample data
		0;mono
		1:stereo
13	R/W	selects unsigned/signed sample data
		0:unsigned
		1:signed
12	R/W	is loop mode enable bit.
		0:disable
		1:enable
11:0	R/W	(VOL) is channel volume attenuation in format of 6.6. 000h
		stands for 0 dB attenuation, FFFh-stands for mute.
Register F4	h (FR	(UF1) (Bank A Only)
Default Value		
Access:	Read/Mri	te
/ 1000033.		

(EBUF1) (Bank A Only) Register F4h

Access:	Read/Wri	te
Bit	Access	Description
31:30	R/W	(AMS_H) is Amplitude Modulation Step High part.
29:28	R/W	(EMOD) define operation mode.
		00:DEC mode (ramp from 0dB to -64dB)
		In this mode, bits 7-0 of this register are used as ECNT which stores current state of a
		8-bit counter; bits 15-8 of this register are used as EINIT which provides initial value of
		that 8-bit counter; bits 27-16 of this register are used as EAMT which is the absolute ramping amount with range from 0dB to 63 and 63/64 dB. Every 48KHz clock, ECNT decrease 1; every time when ECNT=00h, it reload EINIT, EAMT decrease 1, and Ec
Preliminary	V.10 Oct.07,	1999 342 Silicon Integrated Systems Corporation

Preliminary V.10 Oct.07,1999

		decrease 1; every time when EAMT=00h, envelope engine will toggle buffer flag in global register CEBC.
		01:INC mode (ramp from -64dB to 0dB)
		In this mode, the layout of this register is completely the same as in DEC mode. Engine works in the same way except that the ramp direction is from -64dB to 0dB.
	$\wedge (R)$	_ 10:Delay mode
(In this mode, bits 27-26 are used to select sub-mode:
	\square	00:Delay_hold
		01;Delay_start
	Č (C	10:Delay_stop
		11:reserved
		19-0 is used as EDLY which store the current state of a 20-bit delay counter, bits 25-20 are of no use. Every 48 KHZ clock, EDLY decrease 1. During all the time this buffer active, Ec keep unchanged.
		In Delay_hold sub-mode, when EDLY =00000h, engine will toggle current buffer flag in global register CEBC.
		In Delay_start sub-mode, when EDLY =00000h, engine will reset DLY flag register.
		In Delay_stop sub-mode, when EDLY =00000h, engine will reset start/stop flag register.
		11:Still mode
		In this mode, Ec keep unchanged, buffer never toggle automatically. Only when CEBC is written, buffer may toggle.
Register F8h	(EBUF2)	(Bank A Only)
Default Value:	XXXXXXX	KXh ///
1	Deed//////	

Register F8h (EBUF2) (Bank A Only)

Access:	Read/Wri	te 🔨 📈
Bit	Access	Description
31:0	R/W	EBUF2 is totally as the same as EBUF1except that bits 31-30 are AMS_L (Amplitude Modulation Step Low part).

343

15 Register Summary / Description – SMBus

Offset	Byte Length	Access	Name	Abbreviate
80	1/ (R/WC	SMBUS Status	SMB_STS
81	\land	R/W	SMBUS Enable	SMB_EN
82		R/W	SMBUS Control	SMB_CNT
83	1	(R/W	SMBUS Host Control	SMBHOST_CNT
84	1 (OR/W	SMBUS Address	SMB_ADDR
85	1	R/W	SMBUS Command	SMB_CMD
86	1	RO	SMBUS Processed Byte Count	SMB_PCOUNT
87	1	R/W	SMBUS Byte Count	SMB_COUNT
88	8	R/W 🧹	SMBUS Byte0~7	SMB_BYTE0~7
90	1	R/W	SMBUS Device Address	SMBDEV_ADDR
91	1	R/W	SMBUS Device Byte 0	SMB_DB0
92	1	R/W	SMBUS Device Byte 1	SMB_DB1
93	1	R/W	SMBUS Host Slave Alias Address	SMB_SAA

344

15.1 SMBUS Control Registers

16 Register Summary / Description – ACPI Summary

Offset	Byte Length	Access	Name	Abbreviate
00	2	R/WC	Power Management Status	PM1_STS
02	2	R/W	Power Management Enable	PM1_EN
04	2	R/W	Power Management Control	PM1_CNT
06	2	RO	Reserved	
08	4 (RO	Power Management Timer	PM_TMR
0C	4	RO /	Reserved	
10	4	R/W	Processor Control	P_CNT
14	1	RØ	Processor Power State Level 2	P_LVL2
15	1	RO	Processor Power State Level 3	P_LVL3
16	4	RO	Reserved	
1A	2	R/W	Fix Feature Control	FIX_CNT
1C	2	WO	PM1_STS Write Port	PM1_PORT
1E	2	RO	Reserved	
20	2	R/WC	General Purpose Event 0 Status	GPE0_STS
22	2	R/W	General Purpose Event 0 Enable	GPE0_EN
24	4	R/W	GPE0 Interrupt Routing	GPE0_ROUT
28	2	R/W	GPE0 Trigger Mode Select	GPE0_TRG
2A	2	R/W	General Purpose Event Control	GPE_CNT
2C	2	WO	GPE0_STS Write Port	GPE0_PORT
2E	2	RO	Reserved	
30	2	R/WC	General Purpose Event 1 Status	GPE1_STS
32	2	R/W	General Purpose Event 1 Enable	GPE1_EN
34	4	R/W	GPE1 Interrupt Routing	GPE1_ROUT
38	2	R/W	GPE1 Trigger Mode Select	GPE1_TRG
ЗA	2	R/W	GPE1 Pin Level	GPE1_LVL
3C	2	R/W	GPE1 I/O Mode Select	GPE1_IO
3E	2	R/W	GPE1 Input Polarity Select	GPE1_POL
40	2	R/WC	Legacy Event Status	LEG_STS
42	2	R/W	Legacy Event Enable	LEG_EN
44	2	R/W	Device Activity Status	DEVACT_STS

345

16.1 ACPI Configuration Registers

Preliminary V.10 Oct.07,1999

46	2	RO	Reserved	
48	1	R/W	SMI# Command Port	SMICMD_PORT
49	1	R/W	Mail Box	MAIL_BOX
4A	1	R/W	SFTMR Initial Value	SF_TMR
4B	1	R/W	Software Watchdog Timer Control	SFTMR_CNT
4C	4	RO	High Resolution Timer Value	HR_TMR
50	2	R/W	PIO Port Trap 0 Address	IOTRAP0_PORT
52	2	R/W	PIO Port Trap 1 Address	IOTRAP1_PORT
54	1	R/W	PIO Port Trap 0 Mask	IOTRAP0_MASK
55	1 (⊖r/w	PIÔ Port Trap 1 Mask	IOTRAP1_MASK
56	2	R/W	Legacy Event Control	LEG_CNT
58	2	wo	LEG_STS Write Port	LEG_PORT
5A	2	R/W	IRQ/NMI Wake Control	IOQWAK_CNT
5C	2	RO	I/O Address Track for SMI#	ADDR_TRACK
5E	1	RO	I/O C/BE#/Track for SMI	CBE_TRACK
5F	1	R/W	I2C Bus Control	I2C_CNT
60	2	RO	System Wakeup From S5 Status	S5WAK_STS
62	2	R/W	System Wakeup From S5 Control	S5WAK_CNT

Pin Name	MUX Function Default		MUX Func. Selection	
	Input	Output		
GPIO0	GPI0	GPO0 🗸	GPIØ	APC3B4
	PCIREQ3#	<	\vee // $>$	APC3B5
	OC0#		\sim	
GPIO1	GPI1	GPO1	GPI1	APC3B4
	OC1#	PCIGNT3#		APC3B5
GPIO2	GPI2/INST_OFF#	GPO2	GPI2	APC3B6
	LDRQ1#			APC3B7
	OC3#			
GPIO3	GPI3	GPO3	GPI3	APC2B0
	EEDO			APC3B0
				APC3B1
GPIO4	GPI4	GPO4	GPI4	APC2B1

346

Preliminary V.10 Oct.07,1999

				APC3B0
				APC3B1
GPIO5	GPI5	GPO5	GPI5	APC2B1
		AUXGPO5		APC3B0
				APC3B1
GPIO6	GPI6	GPO6	GPI6	APC2B1
()	$\langle \rangle$	AUXGPO6		APC3B0
				APC3B1
GPIO7	GPI7	GPO7	GPI7	APC2B2
		S/PDIF		APC3B0
				APC3B1
GPIO8	GPI8	GPO8	GPI8	APC2B3
	OC2#	AUXGPO8		APC2B4
		PLED0#		
GPIO10	GPI10	GPO10	GPI10	APC2B5
	KB DAT			APC2B6
GPIO11	GPI11	GPO11	GPI11	APC2B5
	KB CLK			APC2B6
GPIO12	GPI12	GPO12	GPI12	APC2B5
	PS/2 MOUSE DAT			APC2B6
GPIO13	GPI13	GPO13	GPI13	APC2B5
	PS/2 MOUSE CLK			APC2B6
GPIO14	GPI14	GPO14	GPI14	APC2B5
	KB LOCK#		7//~	APC2B6
GPIO15	GPI15	GPO15	GPI15	APC2B7
	SMBALT#		\checkmark // $>$	APC3B0
	I2CALT#			APC3B1

1. All IO buffers for GPIOx are in the auxiliary power plane, except for GPIO0, GPIO1, GPIO2, and GPIO7.

All GPIOx are general bidirection I/O buffers. The decision on pull-up register or pull-down register depends on the usage of the GPIOx pin.

347

The detail description could be found in the section "PIN DESCRIPTION".

16.2 GPIOx Logic

SiS630 supports a variety of General-Purpose Input/Output pins that are also MUXed with other signals as they are shown above with a couple of properties. When they are used as GPIx or GPOx, they can only valid

in main power plane. All GPIx can be used as wake-up events or trigger off power management interrupts (SCI#, SMI#, IRQ). The following table and block diagram give a brief of description,

Figure 16.2-1 GPIOx Logic

16.3 ACPI Register

The following registers located at I/O base address <Base> + the indicated offset value

 Preliminary V.10 Oct.07,1999
 348
 Silicon Integrated Systems Corporation

<Offset>. The base address is programmed in the Register PCI Configuration space.

Register 00h~01h Power Management Status Register (PM1_STS)

Default Value: 0000h

Access: Read/Write Clear

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields.

Bit	Access	Description
15	R/WC	Wake up Status (WAK_STS)
		This bit is set when the system is in the sleeping state (S1/S2) and an enabled wake-up event occurs. Upon setting this bit, the system will translate form sleep state to S0 state.
14:12	RO	Reserved
11	R/WC	Ignored (Power Button Override Status)
10	R/WC	RTC Status (RTC_STS)
		This bit is set when the RTC generates an IRQ8# in S0/S1/S2. While both RTC_EN bit and RTC_STS bit are set, a power management event is raised.
9	RO	Reserved
8	R/WC	Power Button Status (PWRBTN_STS)
		This bit is set when the power button is pressed (the PWRBTN# signal is asserted Low). If PWRBTN_STS and PWRBTN_EN are both set under S0 state, then a SCI or SMI# is raised. If PWRBTN_STS bit is set under sleeping state (S1/S2), a WAKE event will be generated.
7:6	RO	Reserved
5	R/WC	Global Status (GBL_STS) When the ACPI software attemps to gain the ownership of the Global Lock, this bit would be set by the access to the BIOS_RLS.
4	R/WC	Bus Master Status (BM_STS)
		This is the bus master status bit. This bit is set when a system bus master is requesting the system bus.
3:1	RO	Reserved
0	R/WC	Power Management Timer Status (PMTMR_STS)
		This bit will be set if the MSB of PM_TMR is changed from '1' to '0' or '0' to '1'. While PMTMR_STS and PMTMR_EN bit are set, a power management event (SCI or SMI#) is raised.

Register 02h~03h Power Management Enable Register (PM1_EN)

349

Preliminary V.10 Oct.07,1999

Default Value	e: 0000h	
Access: Read/Write		
Bit	Access	Description
15:11	RO	Reserved
10	R/W	RTC Enable (RTC_EN)
	$ \langle R \rangle $	This bit is used to enable the assertion of the RTC_STS to generate a power management event (Wake and SCI/SMI#).
9	RO	Reserved
8	R/W	Power Button Enable (PWRBTN_EN)
		This bit is used to enable the assertion of the PWRBTN_STS bit to generate a power management event (SCI/SMI#). The system always can wake up from Sx by Power Button regardless of the value of this bit.
7:6	RO	Reserved
5	R/W	Global Enable (GBL_EN)
		When the BIOS drive releases the lock, this bit is used to enable the assertion of the GBL_STS to generate a SCI.
4:1	RO	Reserved
0	R/W	Power Management Timer Status (PMTMR_EN)
		This is PMTMR enable bit. If this bit and PMTMR_STS bit are set, then a power management event is generated (SCI/SMI#).

Register 04h~05h Power Management Control Register (PM1_CNT)

Default Value: 0000h

Access:	Read/Wr	
Bit	Access	Description
15:14	RO	Reserved
13	WO	Sleep Enable (SLP_EN)
		This is a wirte only bit and always returns a zero when read. Setting this bit to one will cause the system to enter the sleep state defined by the SLP_TYP field.

350

1	T	
12:10	R/W	Sleeping Type (SLP_TYP)
		Define the power-saving mode that the system should enter when the SLP_EN bit is set to one.
		000 : S0 state (<i>Working</i>)
	\frown	001 : S1 state (STPCLK#)
	$\left(\right)$	010 : S2 state (STPCLK# and/or CPUSLP#)
	\land	011 : S3 state (Suspend To RAM)
		100 : S4 state (Suspend To Disk)
		101/: S5 state (Soft_Off)
9:3	RO	Reserved
2	wo	Global Release (GBL_RLS)
		This bit is used by the ACPI software to raise a SMI# to the BIOS software. Writing a one to this register will generate a BIOS event to set BIOS_STS in LEG_STS.
1	R/W	Bus Master Reload Enable (BM_RLD)
		If enabled, a bus master request will cause any processor in the C3 state to transition to the C0 state.
		0 : Disable
		1 : Enable
0	R/W	SCI Enable (SCI_EN)
		Selects the power management event in PM1 to be either SCI or SMI#. When this bit is set, a power management event will generate SCI. When this bit is reset, a power management event will generate SMI#.

Register 06h~07h Reversed

Register 08h~0Bh ACPI Power Management Timer Register (PM_TMR)

Default Value: Free Running

Access:	Read On	у
Bit	Access	Description
31:24	RO	Reserved
23:0	RO	Power Management Timer Value
		This read-only field reflects the current counting of the power management timer. The PM_TMR value will be reset when the system enter one of the sleeping state (S1~S5). Reading to this field will stop the running of PM_TMR.

351

Register 0Ch~0Fh Reversed

Preliminary V.10 Oct.07,1999

Register 10h~13h ACPI Processor Control Register (P_CNT)

Default Value	e: 0000 000	0
Access:	Read/Wri	te
Bit	Access	Description
31:5	RO	Reserved
4	R/W	Throttling Function Enable
	$ \land \land \lor$	This bit enables the C0 clock throttling function.
3:1	R/W	Throttling Duty Cycle Control
		This 3-bit field determines the duty cycle of the STPCLK# signal when the system is in the C0 throttling mode.
		Bits Performance Rate
		000 100%
		001 12.5%
		010 25%
		011 37.5%
		100 50%
		101 62.5%
		110 75%
		111 87.5%
0	RO	Reserved

Register 14h ACPI Processor Power State Level 2 (P_LVL2)

Default Value: 00

Access:	Read On	ly (
Bit	Access	Description
7:0	RO	Enter C2 Power State Register
		Reading to this register returns all zeros; writes to this register have no effect. Reads to this register will also generate a " Enter C2 power state " event.

Register 15h ACPI Processor Power State Level 3 (P_LVL3)

Default Value: 00

Access:	Read On	ly
Bit	Access	Description
7:0	RO	Enter C3 Power State Register
		Reading to this register returns all zeros; writes to this register have no effect. Reads to this register will also generate a " Enter C3 power state " event.

352

Preliminary V.10 Oct.07,1999

Register 16h~19h Reversed

Register 1Ah~1Bh ACPI Fix Feature Control Register (FIX_CNT)

Default Valu	e: 0040	
Access:	Read On	у
Bit	Access	Description
15:10	RO	Reserved
9	R/W	PM Timer Test Mode Enable
	\bigcup	0 : Disable
		K:Énable
8	R/W	ACPI Fix Feature Test Mode Enable
		0 : Dişable
		1 : Enable
7	R/W	PM1_STS Write Port Enable (PM1PORT_EN)
		If this bit is enabled, writing a one to PM1_PORT register will cause the corresponding bit in PM1_STS to be set.
		0 : Disable
		1 : Enable
6	R/W	Power Button Override Function Enable
		When this bit is reset, the power button override function will be disabled.
		0 : Disable
		1 : Enable
5:4	R/W	Power Button Trigger Mode Selection
		The value in this field can select the trigger mode of power button. If the level mode is selected, PWRBTN_STS will always be set during the period of pressing power button. If the edge mode is selected, PWRBTN_STS can only be set once according to the power button is pressed or released.
		00 : Level Mode
		01 : Button press edge mode
		10 : Button release edge mode
		11 : Reversed
3	R/W	CPUSLP# Enable
		If this bit is set, CPUSLP# can be asserted for PII system to enter deep sleep state under S2.
		0 : Disable
		1 : Enable

Preliminary V.10 Oct.07,1999

2	RO	Reserved
1	WO	BIOS Release (BIOS_RLS)
		The ACPI software can set GBL_STS by writing a one to this field.
0	RO	Reserved

Register 1Ch~1Dh (PM1_STS Write Port (PM1_PORT)

Default Value: 0000

Access:	Write Onl	Ý C
Bit	Access	Description
15:0	Wo	PM1_STS Write Port Writing a one to this register will cause the corresponding field of PM1_STS to be set. Before writing to this register, PM1PORT_EN must be set.

Register 1Eh~1Fh Reversed

Register 20h~21h General Purpose Event 0 Status Register (GPE0_STS)

Default Value: 0000h

Access: Read/Write Clear

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields. When one of status and their corresponding enable bits are set in S1/S2, a wakeup event is generated. If the status and the corresponding rerouting bits are set during working state (S0), an SCI/SMI#/IRQ will be generated. Note that IRQWAK_STS, USBWAK_STS, and EXTSMIWAK_STS can only be set during sleeping state.

Bit	Access	Description
15	R/WC	IRQ Wake Status (IRQWAK_STS)
		This bit is set when one of the enabled 8259 IRQ wakeup events is generated in S1/S2 state.
		Note: The IRQ wake-up events are defined in IRQWAK_CNT register.
14	R/WC	USB Wake Status (USB3_STS)
		This bit is set when ACPI circuit detects a wake up event in sleeping state (S1/S2). The wake-up event is occurred from USB port0,1,2.
13	RO	Reserved
12	R/WC	MAC Power Management Event Status (MACPME_STS)
		This bit is set when internal MAC power management event is generated.

Preliminary V.10 Oct.07,1999

11	R/WC	PCI Power Management Event Status (PCIPME_STS)
		This bit is set when PCI power management event is asserted for more than 4ms.
10	R/WC	BS-Audio Power Management Event Status (BSAUDPME_STS)
	$\wedge (\mathbb{R})$	This bit is set when an internal Baseline Audio power management event is generated.
9	R/WC	Keyboard Controller Status (KBC_STS)
		This bit is set when an internal keyboard controller hotkey event (CTRL+ALT+Backspace) is generated.
8	R/WC	Ring Indication Status (RING_STS)
		This bit is set when the RING goes active for more than 4ms. This bit can be choosed as quite or noise mode in GPECNT register. In quite mode, RING_STS can only be set during sleeping state (S1/S2). In noisy mode, RING_STS can be set in working and sleeping states.
7	R/WC	SMBus Interrupt/I2C Alert Status (SMBINT_STS/I2CALT_STS)
		If SMBus mode is selected, this bit will be set when a SMB interrupt is generated. If I2C mode is selected, this bit will be set when I2CALT# goes active.
6	RO	Reserved
5	R/WC	Audio Controller Power Management Event Status (AUDPME_STS)
		This bit is set when an internal AC'97 power management event is generated.
4	R/WC	USB Wake Status (USBWAK2_STS)
		This bit is set when internal USB host controller detects a wake up event in sleeping state (S1/S2). The wake-up event is occurred from USB port3,4.
3	R/WC	EXTSMI# Wake Status (EXTSMIWAK_STS)
		This bit is set when EXTSMI# goes active in sleeping state (S1/S2).
2	R/WC	EXTSMI# Status (EXTSMI_STS)
		This bit is set when EXTSMI# goes active in working state (S0).
1	R/WC	Thermal Event Override Status (THRMOR_STS)
		This bit is set when THERM# goes active for more than 2 seconds. If THRMOR_DTY and THRMOR_THT are set, the system will enter thermal throttling mode.

Preliminary V.10 Oct.07,1999

355

0	R/WC	Thermal Event Status (THRM_STS)
		This bit is set when THERM# goes active.

Register 22h~23h General Purpose Event 0 Enable Register (GPE0_EN)

Default Valu	ie: 0000h	
Access:	Read/Wri	te
Bit	Access	Description
15	R/W	IRQ Wake Enable (IRQWAK_EN)
14	R/W	USB Wake Enable (USB3WAK_EN)
13	RO	Reserved
12	R/W	MAC Power Management Event Enable (MACPME_EN)
11	R/W	PCI Power Management Event Enable (PCIPME_EN)
10	R/W	BS-Audio Controller PowerManagement Event Enable (BSAUDPME_EN)
9	R/W	Keyboard Controller Enable (KBC_EN)
8	R/W	Ring Indication Enable (RING_EN)
7	R/W	SMBus Interrupt/I2C Alert Enable (SMBINT_EN/I2CALT_EN)
6	RO	Reserved
5	R/W	Audio Controller Power Management Event Enable (AUDPME_EN)
4	R/W	USB Wake Enable (USB2WAK_EN)
3	R/W	EXTSMI# Wake Enable (EXTSMIWAK_EN)
2	R/W	EXTSMI# Enable (EXTSMI_EN)
1	R/W	Thermal Event Override Enable (THRMOR_EN)
0	R/W	Thermal Event Enable (THRM_EN)

Register 24h~27h General Purpose Event 0 Interrupt Routing Register (GPE0_ROUT)

Default Value: 0000 0000h

Access: Read/Write

The following registers are GPE0 routing registers. If one of GPE0_STS is set and its corresponding GPE0_ROUT register is routing to SCI/SMI#/GPEIRQ, an SCI/SMI#/GPEIRQ will be generated.

	Bit	Access	Description
--	-----	--------	-------------

356

Preliminary V.10 Oct.07,1999

31:30	R/W	IRQ Wake Route (IRQWAK_ROUT)
		00 : No effect
		01 : SMI#
		10 : SCI
		11 : GPEIRQ
29:28	R/W	USB Wake Route (USBWAK3_ROUT)
27:26	RO	Reserved
25:24	R/W	MAC Power Management Event Route (MACPME_ROUT)
23:22	R/W	PC Power Management Event Route (PCIPME_ROUT)
21:20	RO	BS-Audio Controller Power Management Event Route
		(BSAUDPME_ROUT)
19:18	R/W	Keyboard Controller Route (KBC_ROUT)
17:16	R/W	Ring Indication Route (RING_ROUT)
15:14	R/W	SMBus/I2C Route (SMBINT_ROUT/I2CALT_ROUT)
13:12	RO	Reserved
11:10	R/W	Audio Controller Power Management Event Route (AUDPME_ROUT)
9:8	R/W	USB Wake Route (USB2WAK_ROUT)
7:6	R/W	EXTSMI# Wake Route (EXTSMIWAK_ROUT)
5:4	R/W	EXTSMI# Route (EXTSMI_ROUT)
3:2	R/W	Thermal Event Override Route (THRMOR_ROUT)
1:0	R/W	Thermal Event Route (THRM_ROUT)

Register 28h~29h General Purpose Event 0 Trigger Mode Selection (GPE0_TRG) Default Value: 0000h

Access: Read/Write

If GPE0 is set to level trigger mode, the GPE0_STS will always be set by the active event as long as the event is not de-asserted. If GPE0_TRG is set to be edge trigger mode, the active event can only set GPE0_STS once before the active event is de-asserted.

Bit	Access	Description
15	R/W	IRQ Wake Trigger (IRQWAK_TRG)
		0 : Level trigger mode
		1 : Edge trigger mode
14	R/W	USB Wake Trigger (USB3WAK_TRG)

357

Preliminary V.10 Oct.07,1999

13	RO	Reserved
12	R/W	MAC Power Management Event Trigger (MACPME_TRG)
11	R/W	PCI Power Management Event Trigger (PCIPME_TRG)
10	R/W	BS-Audio Power Management Event Trigger (BSAUDPME_TRG)
9	R/W	Keyboard Controller Trigger (KBC_TRG)
8	R/W	Ring Indication Trigger (RING_TRG)
7	R/W	SMBus/I2C Trigger (SMBINT_TRG/I2CALT_TRG)
6	RO	Reserved
5	R/W	Audio Controller Power Management Event Trigger (AUDPME_TRG)
4	R/W	USB Wake Trigger (USB2WAK_TRG)
3	R/W	EXTSMI# Wake Trigger (EXTSMIWAK_TRG)
2	R/W	EXTSMI# Trigger (EXTSMI_TRG)
1	R/W	Thermal Event Override Trigger (THRMOR_TRG)
0	R/W	Thermal Event Trigger (THRM_TRG)

Register 2Ah~2Bh General Purpose Event Control (GPE_CNT)

Default Value: 0000h

Access:	Read/Wr	
Bit	Access	Description
15:8	RO	Reserved
7	R/W	GPE0_STS Write Port Enable (GPE0PORT_EN)
		If this bit is enabled, writing a one to GPE0_PORT register will cause the corresponding bit in GPE0_STS to be set.
		0 : Disable
		1 : Enable
6	R/W	RING Indication Quite/Noisy Mode Control (RING_CNT)
		If RING is set to be quite mode, RING_STS can only be set in sleeping state (S1/S2). If the noisy mode is selected, RING_STS can be set in working and sleeping state.
		0 : Noisy mode
		1 : Quite mode

358

5	R/W	SMBus/I2C Function Select (SMB_SEL)
		If this bit is set to one, SMBDAT/I2CDAT, SMBCLK/I2CCLK, and SMBALT#/I2CALT# will be switched as I2C mode. Otherwise, they will be selected as SMBus mode.
	\frown	0 : SMBus mode select
		1 : I2C mode select
4		Reserved
3	R/W	Thermal Override Throttling Function Enable (THRMOR_THT)
		This bit enables the thermal override throttling function.
	\sim	0 : Disable
		1 : Enable
2:0	R/W	Thermal Override Throttling Duty Cycle Control
		This 3-bit field determines the duty cycle of the STPCLK# signal when the thermal override event is generated.
		Bits Performance Rate
		000
		001 12.5%
		010 25%
		011 37.5%
		100 50%
		101 62.5%
		110 75%
		111 87.5%

Register 2Ch~2Dh GPE0_STS Write Port (GPE0_PORT)

Default Value: 0000

Access: Write Only

Bit	Access	Description
15:0	WO	GPE0_STS Write Port
		Writing a one to this register will cause the corresponding field of GPE0_STS to be set. Before writing to this register, GPE0PORT_EN must be set.

Register 2Eh~2Fh Reversed

Register 30h~31h General Purpose Event 1 Status Register (GPE1_STS)

359

Default Value: 0000h

Access: Read/Write Clear

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields. When one of status and their corresponding enable bits are set in S1/S2, a wakeup event is generated. If the status and the corresponding rerouting bits are set during working state (S0), an SCI/SMI#/IRQ will be generated. Not that if GPIO[n] are selected as output mode or their mux-ed function, their corresponding status bits must be ignored. So do their enable and route registers must be set to zero.

Bit	Access	Description
15:3	R/WC	GPIO[15:0] Status (GPIO[15:3]_STS) This bit is set when one of GPIO[15:0] event goes active.
2	R/WC	GPIO2Status/InstantPower-offStatus(GPIO2_STS/INSTOFF_STS)This bit is set when GPIO2 event goes active. If LPC bridge configuration register 48h[05] is enabled, the assertion of GPIO2_STS would power off the machine compulsively.
1:0	R/WC	GPIO[1:0] Status (GPIO[1:0]_STS) This bit is set when one of GPIO[1:0] event goes active.

Register 32h~33h General Purpose Event 1 Enable Register (GPE1_EN)

Default Value: 0000h

Access:	Read/Wri	te V/A
Bit	Access	Description
15:0	R/W	GPIO[15:0] Enable (GPIO[15:0]_EN)

Register 34h~37h General Purpose Event 1 Interrupt Routing Register (GPE1_ROUT) Default Value: 0000 0000h

Access: Read/Write

The following registers are GPE1 routing registers. If one of GPE1_STS/is set and its corresponding GPE1_ROUT register is routing to SCI/SMI#/GPEIRQ, an SCI/SMI#/GPEIRQ will be generated.

Bit	Access	Description
31:30	R/W	GPIO15 Route (GPIO15_ROUT)
		00 : No effect
		01 : SMI#
		10 : SCI
		11 : GPEIRQ
29:0	R/W	GPIO[14:0] Route (GPIO[14:0]_ROUT)
		See ths pattern of GPIO15_ROUT.

Register 38h~39h General Purpose Event 1 Trigger Mode Selection (GPE1_TRG)

Preliminary V.10 Oct.07,1999360Silicon Integrated Systems Corporation

Default Value: 0000h

Access: Read/Write

If GPE1 is set to level trigger mode, the GPE1_STS will always be set by the active event as long as the event is not de-asserted. If GPE1_TRG is set to be edge trigger mode, the active event can only set GPE1_STS once before the active event is de-asserted.

Bit	Access	Description
15:0	R/W	GPIO[15:0] Trigger (GPIO[15:0]_TRG)
	$\langle \rangle \rangle \rangle \times$	0 : Level trigger mode
		1 : Edge trigger mode

Register 3Ah~3Bh General Purpose Event 1 Pin Level (GPE1_LVL)

Default Value: 0000h

Access: Read/Write

If GPIO[n] is set to input mode, the input level of its corresponding GPIO pin can be read from this register. If GPIO[n] is set to output mode, the output level can be control through this register. Note that the output value of GPIO[n] must be written to this register before GPIO[n] is switch to output mode.

Bit	Access	Description
15:0	R/W	GPIO[15:0] Pin Level (GPIO[15:0]_LVL)
		0 : Pin input level low/Pin output level low
		1 : Pin input level high/Pin output level high

Register 3Ch~3Dh General Purpose Event 1 Input/Output Mode Select (GPE1_IO) Default Value: FFFFh

Access: Read/Write

ALLESS.	Reau/WI	
Bit	Access	Description
15:0	R/W	GPIO[15:0] Input/Output Mode Select (GPIO[15:0]_IO)
		0 : Output Mode
		1 : Input Mode

Register 3Eh~3Fh General Purpose Event 1 Input Polarity Select (GPE1_POL) Default Value: 0000h

Access: Read/Write

Bit	Access	Description
15:0	R/W	GPIO[15:0] Input Polarity Select (GPIO[15:0]_POL)
		0 : Active low
		1 : Active high

Register 40h~41h Legacy Event Status Register (LEG_STS)

Preliminary V.10 Oct.07,1999361Silicon Integrated Systems Corporation

Default Value: 0000h

Access: Read/Write Clear

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields.

Bit	Access	Description	
15	R/WC	Software Watch Dog Timer Event 1 Status (SFTMR1_STS)	
		This bit is set when the software watchdog timer expires the second time. This status bit does not have its corresponding enable bit and can survive under PCIRST#.	
14	R/WC	Software Watch Dog Timer Event 0 Status (SFTMR1_STS)	
		This bit is set when the software watchdog timer expires the first time. This status bit does not have its corresponding enable bit and can survive under PCIRST#.	
13	R/WC	General Purpose Event Status (GPESMI_STS)	
		This bit is set when the SMI# is caused by GPE0 or GPE1. This status bit does not have its corresponding enable bit.	
12	R/WC	Power Management Status (PM1SMI_STS)	
		This bit is set when the SMI# is caused by PM1. This status bit does not have its corresponding enable bit.	
11	R/WC	Legacy USB Status (LEGUSB_STS)	
		This bit is set when a legacy USB SMI# is activated and only used for port 0,1,2.	
10	R/WC	Legacy USB Status (LEGUSB_STS)	
		This bit is set when a legacy USB SMI# is activated and only used for port 3,4.	
9	R/WC	Serial IRQ SMI# Status (SIRQSMI_STS)	
		This bit is set when internal Serial IRQ decoder asserts an SMI#.	
8	R/WC	LPC SMI# Status (LPCSMI_STS)	
		This bit is set when internal LPC controller asserts an SMI#.	
7	R/WC	One Minute Status (ONEMIN_STS)	
		This bit is set every one minute. In legacy power management, ONEMIN_STS and ONEMIN_EN can be used to monitor the device status every one minute.	
6	R/WC	RTC Year 2000 Roll Over Status (RTCY2K_STS)	
		This bit is set when the 9 th bit of RTC time register rolls from 99 to 00. This bit can be used to monitor the Y2K event.	

362

Preliminary V.10 Oct.07,1999

5	R/WC	SMI# Command Status (SMICMD_STS)
		This bit is set when OS write a value to SMI# command port.
4	R/WC	BIOS Status (BIOS_STS)
		This bit is set when the BIOS driver write a one to GBL_RLS in PM1_CNT register.
3	R/WC	Input/Output Trap 1 Status (IOTRAP1_STS)
		This bit is set when software initiates an I/O access to the range of IOTRAP1_PORT and IOTRAP1_MASK
2	R/WC	Input/Output Trap 0 Status (IOTRAP0_STS)
		This bit is set when software initiates an I/O access to the range of IOTRAP0_PORT and IOTRAP0_MASK
1	RO	Reserved
0	R/WC	SMI# Status (SMI_STS)
		This bit is set when one of the SMI# source is activated. The SMI# will be masked for 128 PCI clock after clearing this bit.

Register 42h~43h Legacy Event Enable Register (LEG_EN)

Default Value	e: 0000h Read/Wri	ite
Bit	Access	Description
15:12	RO	Reserved
11	R/W	USB PORT 0,1,2 SMI# Enable
10	R/W	USB Port 3,4 SMI#
9	R/W	Serial IRQ SMI# Enable (SIRQSMI_EN)
8	R/W	LPC SMI# Enable (LPCSMI_EN)
7	R/W	One Minute Enable (ONEMIN_EN)
6	R/W	RTC Year 2000 Roll Over Enable (RTCY2K_EN)
5	R/W	SMI Command Enable (SMICMD_EN)
4	R/W	BIOS Enable (BIOS_EN)
3	R/W	Input/Output Trap 1 Enable (IOTRAP1_EN)
2	R/W	Input/Output Trap 0 Enable (IOTRAP0_EN)
1	RO	Reserved
0	R/W	SMI Enable (SMI_EN)

363

Preliminary V.10 Oct.07,1999

Register 44h~45h Device Activity Status Register (DEVACT_STS)

Default Value: 0000h

Access: Read/Write Clear

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields.

Bit	Access	Description
15	R/WC	Primary IDE Activity Status (IDEPACT_STS)
	\bigcirc	This bit is set when software initiates an I/O access to the range of 170h-177h and 376h.
14	R/WC	Secondary IDE Activity Status (IDESACT_STS)
		This bit is set when software initiates an I/O access to the range of 1F0h~1F7h and 3F6h.
13:12	RO	Reserved
11	R/WC	Sound Blaster Activity Status (SBACT_STS)
		This bit is set when software initiates an I/O access to the range of 220h~233h, 240h~253h, 260h~273h, and 280h~293h.
10	R/WC	Microsoft Sound Activity Status (MSSACT_STS)
		This bit is set when software initiates an I/O access to the range of 530h~537h, 604h~60Bh, E80h~E87h, and F40h~F47h.
9	R/WC	MIDI Activity Status (MIDIACT_STS)
		This bit is set when software initiates an I/O access to the range of 300h~303h, 310h~313h, 320h~323h, and 330h~333h.
8	R/WC	Keyboard Controller Activity Status (KBCACT_STS)
		This bit is set when software initiates an I/O access to the range of 60h and 64h.
7	R/WC	Game Port Activity Status (GAMEACT_STS)
		This bit is set when software initiates an I/O access to the range of 200h~207h and 388h~38Bh.
6	R/WC	Floopy Activity Status (FLPYACT_STS)
		This bit is set when software initiates an I/O access to the range of 3F0h~3F7h and 370h~377h.
5	R/WC	Serial Port Activity Status (SERACT_STS)
		This bit is set when software initiates an I/O access to the range of 2E8h~2EFh, 2F8h~2FFh, 3E8h~3EFh, and 3F8h~3FFh.
4	R/WC	Parallel Port Activity Status (PARLACT_STS)
		This bit is set when software initiates an I/O access to the range of 278h~27Fh, 378h~37Fh, and 3BCh~3BEh.
Preliminary	V.10 Oct.07,	1999 364 Silicon Integrated Systems Corporation

3	R/WC	INTD# Activity Status (INTDACT_STS)
	5440	This bit is set when FCI in D# goes active.
2	R/WC	This bit is set when PCI INTC# goes active.
1	R/WC	INTB# Activity Status (INTBACT_STS)
		This bit is set when PCI INTB# goes active.
0	R/WC	INTA# Activity Status (INTAACT_STS) This bit is set when PCI INTA# goes active.

Register 46h~47h Reversed

Register 48h SMI# Command Port Register (SMICMD_PORT)

Default Value: 00h

A	Pood///rito
ALLESS.	Reau/white

Bit	Access	Description
7:0	R/W	SMI# Command Port Value
		Writing to this register will generate an SMI# command event.

Register 49h Mail Box Register (MAIL_BOX)

Default Value: 00h

Access: Read/Write

Bit	Access		Description
7:0	R/W	Read/Write Free Byte	

Register 4Ah Software Watchdog Timer Initial Value (SF_TMR)

Default Value:	FFh
Access:	Read/Write

Bit	Access	Description
7:0	R/W	Software Watchdog Timer Initial Value
		Writing to this register will reload the software watchdog timer with the value specified in this register. If the software watchdog timer expires the first time, the expired event will set the SFTMR0_STS and the timer will reload its initial value and count again. If the timer expire the second time, the expired event will set the SFTMR1_STS. The timer value can't be read from this field.

Register 4Bh Software Watchdog Timer Control Register (SFTMR_CNT)

Default Value: 00h

Preliminary V.10 Oct.07,1999365Silicon Integrated Systems Corporation

Access:	Read/Wr	ite
Bit	Access	Description
7	R/W	Software Watchdog Timer Counting Enable
		The software watchdog timer will start to count when this bit is set to one.
6	RO	Reserved
5:4	R/W	Software Watchdog Timer Clock Select 00 : 4ms 01 : 1sec 10 : 1min 11 : 1hour
3:2	R/W	Software Watchdog Timer Expiration Event 1 Routing Select When SFTMR1_STS is set to one, an SMI#/SFTIRQ/PCIRST# will be generated according to the following combination. 00 : No effect 01 : SMI# 10 : SFTIRQ 11 : PCIRST#
1:0	R/W	Software Watchdog Timer Expiration Event 0 Routing Select When SFTMR0_STS is set to one, an SMI#/SFTIRQ/PCIRST# will be generated according to the following combination. 00 : No effect 01 : SMI# 10 : SFTIRQ 11 : PCIRST#

Register 4Ch~4Fh High Resolution Timer Counting Value (HR_TMR)

Default Value	Default Value: 0000 0000h		
Access:	Read Onl	у	
Bit	Access	Description	
31:0	RO	High Resolution Timer Value	
		This read-only field reflects the current counting of HR_TMR. The clock source can be applied from MAC or AC'97. If this tmer is disabled, the counting value will be reset to zero.	
		Note: The control register of PM_TMR is located in LEG_CNT.	

Preliminary V.10 Oct.07,1999

Register 50h~51h Programmable 16-bits I/O Port Trap 0 Address (IOTRAP0_PORT) Default Value: 0000h

Access: Read/Write

Bit	Access	Description	
15:0	R/W	I/O Port Trap 0 Address	
	$\wedge \mathbb{R}$	Any I/O access to the range of IOTRAP0_PORT and IOTRAP0_MASK will cause IOTRAP0_STS to be set to one.	

Register 52h~53h Programmable 16-bits I/O Port Trap 1 Address (IOTRAP1_PORT) Default Value: 0000h

	\sim / / \
Access:	Read/Write

Bit	Access		Description	
15:0	R/W	I/O Port Trap Any I/O a IOTRAP1_M	1 Address ccess to the range of IOTRAP1_PORT ASK will cause IOTRAP1_STS to be set to one.	and

Register 54h Programmable 16-bits I/O Port Trap 0 Mask (IOTRAP0_MASK)

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
7:0	R/W	I/O Port Trap 0 Mask
		A one in this register will select the low 8-bit mask for IOTRAP0_PORT.

Register 55h Programmable 16-bits I/O Port Trap 1 Mask (IOTRAP1_MASK)

Default Value: 00h

Access: Read/Write

Bit	Access	Description		
7:0	R/W	I/O Port Trap 0 Mask		
		A one in this register will select the low 8-bit mask for IOTRAP1_PORT.		

Register 56h~57h Legacy Event Control (LEG_CNT)

Default Value: 0000h

Access:	Read/Wri	te
Bit	Access	Description
15:8	RO	Reserved

367

Preliminary V.10 Oct.07,1999

7	R/W	LEG_STS Write Port Enable (LEGPORT_EN)	
		If this bit is enabled, writing a one to LEG_PORT register will cause the corresponding bit in LEG_STS to be set.	
		0 : Disable	
	\frown	1 : Enable	
6:4	RO	Reserved	
3:2	R/W	High Resolution Timer Clock Source Select	
		00 : MAC 25MHz/25 (1MHz)	
		Q1 : Reserved	
		10 : AC' 97 12.288MHz/12 (1024KHz)	
		11 : AC' 97 12.288MHz/16 (768KHz)	
1	R/W	High Resolution Timer Counting Enable	
		If HR_TMR is disabled, the HR_TMR value will be reset to zero.	
		0 : Disable	
		1 : Enable	
0	R/W	SMI# Mask Interval Select	
		If SMI_STS is cleared, the SMI# will be masked a certain time according to this register.	
		1:8 PCICLK	

Register 58h~59h LEG_STS Write Port (LEG_PORT)

Default Value: 0000h

Access: Write Only

Bit	Access	Description
15:0	WO	LEG_STS Write Port
		Writing a one to this register will cause the corresponding field of LEG_STS to be set. Before writing to this register, LEGPORT_EN must be set.

Register 5Ah~5Bh IRQ and NMI Enable for Wake-up Event Control (IRQWAK_CNT)

Default Value: 0000h Access: Read/M

Access: Read/Write		
Bit	Access	Description
15:3	R/W	Correspond to the enable bits for IRQ[15:3] to generate a wake-up event

368

Preliminary V.10 Oct.07,1999

2	R/W	Correspond to the enable bits for NMI to generate a wake-up event
1:0	R/W	Correspond to the enable bits for IRQ[1:0] to generate a wake-up event

Register 5Ch~5Dh I/O Address Track for SMI# (ADDR_TRACK)

Default Value: 0000h

Houge	
Access	Description
RO	I/O Address Track
	The reading value in this register reflects the address of last I/O cycle from CPU before the system enter SMI# handler.
	Access RO

Register 5Eh~5Fh I/O Command/Byte Enable Track for SMI# (CBE_TRACK)

Default Value: 0000h

Access.	Read On	
Bit	Access	Description
15:10	RO	Reserved
9	R/W	I2C DATA
		When Register 2A[5] is selected as I2C mode, the level of pin SMBDAT is controlled by this bit.
8	R/W	
		When Register 2A[5] is selected as I2C mode, the level of pin SMBCLK is controlled by this bit.
7:4	RO	I/O Command Track
		The reading value in this register reflects the command of last I/O cycle from CPU before the system enter SMI# handler.
3:0	RO	I/O Byte Enable Track
		The reading value in this register reflects the byte enable of last I/O cycle from CPU before the system enter SMI# handler.

Register 60h~61h System Wakeup form S3/S4/S5 Status Register (S5WAK_STS)

Default Value: 0000h

Access: Read Only

The following registers are all located in resume well. They can survive as long as the stanby power exists. The only way to clear the register is to write S5WAK_CLR or deassert AUXOK.

Bit	Access	Description

369

Preliminary V.10 Oct.07,1999

15	RO	Power Button Wakeup Status (PWRBTN_S5WAK_STS)
		This bit will be set if power button wakes up the system from S3/S4/S5.
14	RO	RTC Wakeup Status (RTC_S5WAK_STS)
		This bit will be set if a RTC IRQ8# wakes up the system from S3/S4/S5.
13	RO	RING Wakeup Status (RING_S5WAK_STS)
	\bigcirc	This bit will be set if RING wakes up the system from S3/S4/S5.
12	RO	MACPME Wakeup Status (MACPME_S5WAK_STS)
		This bit will be set if MAC power management event wakes up the system from S3/S4/S5.
11	RO	PCIPME Wakeup Status (PCIPME_S5WAK_STS)
		This bit will be set if PCI power management event wakes up the system from \$3/\$4/\$5.
10	RO	AUDPME Wakeup Status (AUDPME_S5WAK_STS)
		This bit will be set if AC'97 power management event wakes up the system from \$3/\$4/\$5.
9	RO	Keyboard Password/Hotkey Wakeup Status (KBC_S5WAK_STS)
		This bit will be set if keyboard password or hotkey wakes up the system from S3/S4/S5.
8	RO	USB Wakeup Status (USB_S5WAK_STS)
		This bit will be set if USB wakes up the system from S3/S4/S5.
7	RO	SMBALT# Wakeup Status (SMBALT_S5WAK_STS)
		This bit will be set if SMBALT# wakes up the system from S3/S4/S5.
6	RO	Power Supply Resume to Previous State Status (RSM_S5WAK_STS)
		This bit will be set if power supply resume function wakes up the system from S5.
5:2	RO	Reserved
1	RO	System Suspend to DRAM State Status (S3OFF_STS)
		This bit will be set if the system enters to S3 state.
0	R/W	Instant Off status (INSTOFF_STS)
		This bit will be set if the system is powered off due to the assertion of GPE1B2_STS.
Preliminary V.10 Oct.07.1999 370 Silicon Integrated Systems Corporation		

Preliminary V.10 Oct.07,1999

Register 62h~63h System Wakeup form S3/S4/S5 Control Register (S5WAK_CNT)

Default Value: 0000h

Access: Read/Write

The following registers are all located in resume well. They can survive as long as the stanby power exists.

Bit	Access	Description
15:13		Reserved
12	R/W	AUXGPO6_EN If GPIO6 is selected as GPO6 by APC register, the assertion of this bit would make GPO6 pin alive without main power.
11	R/W	AUXGP05_EN If GPI05 is selected as GP05 by APC register, the assertion of this bit would make GP05 pin alive without main power.
10	R/W	AUXGP08_EN If GPIO8 is selected as GPO8 by APC register, the assertion of this bit would make GPO8 pin alive without main power.
9:8	R/W	Wake Block Counter Test Enable 0: Disable 1: Enable
7:6	RO	ACPILED Output State Control The output state of ACPILED can be controlled by the following combination when system is in S0/S1/S2/S3 states. If the system is in S4/S5 state, ACPILED will be set to high impedience. 00 : Output low 01 : Blink 10 : High impedience 11 : Reversed
5:4	RO	Reserved
3	R/W	AUXGPO6 If the GPIO6 is selected as GPO6 and AUXGPO6_EN is set, then the value of GPO6 pin would be controlled by this bit. The pin can be alive when main power disappears.
2	R/W	AUXGP05 If the GPI05 is selected as GP05 and AUXGP05_EN is set, then the value of GP05 pin would be controlled by this bit. The pin can be alive when main power disappears.

Preliminary V.10 Oct.07,1999

1	R/W	AUXGPO8
		If the GPIO8 is selected as GPO8 and AUXGPO8_EN is set, then the value of GPO8 pin would be controlled by this bit. The pin can be alive when main power disappears
0	R/W	S5WAK_STS Clear Status (S5WAK_CLR)
	$\wedge (\mathbb{R})$	If this register is set to one, all register in S5WAK_STS will be reset to zero

Register 64h~7Fh Reversed

Register 80h SMBus Status (SMB_STS)

Default Value: 00h

Access: Read/Write Clear

The following registers are all sticky bits and only can be cleared by writing a one to their corresponding fields.

Bit	Access	Description
7	R/WC	SMBus Slave Alert (SMBALT_STS)
		This bit is set when the SMBALT# is active.
6	R/WC	HIT SLAVE Alias Address (SMBALIAS_STS)
		This bit is set when the Host Slave received a Write Word from a device master and the address field match the Slave Alias Address register. If this bit is set to one, on more Write Word transaction can be received by SMBus Slave until this bit is cleared to zero.
5	R/WC	HIT Host Slave (SMBSLAVE_STS)
		This bit is set when the Host Slave received a Write Word from a device master and the address field is 10h If this bit is set to one, on more Write Word transaction can be received by SMBus Slave until this bit is cleared to zero.
4	R/WC	Block Array (SMBARY_STS)
		This bit is set when he SMBus Host has finished 8 bytes transition for Block Protocol. If the byte count of the Block protocol is 32, then total 4 Interrupt request will occur during the entire block transition. For the first three Interrupt, the service TRGine should program the following 8 data bytes as soon as possible, or the total transfer time may violate SMBus SPEC 1.0 (Timeout < 10ms). After the next eight bytes data are programmed to the SMB_BYTE0~7, the service TRGine should clear this status bit to initiate the following block transition.

Preliminary V.10 Oct.07,1999

3	R/WC	Host Master (SMBMAS_STS) This bit is set when the SMBus Host Master transition is complete.
2	R/WC	SMBus Collision (SMBCOL_STS) This bit is set when a SMBus Collision condition occurs and SMBus Host loses in the bus arbitration. The software should clear this bit and re-start SMBus operation.
1	RAWC	Device Error (SMBERR_STS) This bit is set when a Device Error condition occur. The Device Errors may cause by: Host asserts an unclaimed slave address/data. Host detects a Slave Timeout—may be a Slave error condition Slave detects a Master Timeout
0	RO	SMBus Interrupt Status (SMBINTR_STS) A one in this field indicates a SMBus interrupt is generated by any of above Interrupt source.

Register 81h SMBus Enable (SMB_EN)

Default Value: 00h

Access: Read/Write

A SMBus Interrupt can be generated if Register 81h, bit 0 is enabled and the Interrupt Status bit with associated enable bits are set to one.

Bit	Access	Description
7	R/W	SMBus Slave Alert Interrupt Enable (SMBALT_EN)
		When this bit is enabled, a SMBus Interrupt will be generated by the active SMBALERT#.
		0 : Disable
		1 : Enable
6	R/W	SMBus Slave Alias Address Interrupt Enable(SMBALIAS_EN)
		When this bit is enabled and the Device Address field of the Write Word Protocol received by Host Slave match the Slave Alias Address, a SMBus Interrupt will be generated.
		0 : Disable
		1 : Enable

373

5	R/W	SMBus Slave Interrupt Enable(SMBSLAVE_EN)
		When this bit is enabled and the Device Address field of the Write Word Protocol received by Host Slave is 10h, a SMBus Interrupt will be generated.
	\frown	0 : Disable
		1 : Enable
4	R/W	Block Array Interrupt Enable (SMBARY_EN)
		When this bit is enabled and the Host Master has finished 8 bytes transition for Block Protocol, a SMBus Interrupt will be generated.
		0 : Disable
		1 : Enable
3	R/W	Host Master Interrupt Enable (SMBMAS_EN)
		When this bit is enabled and the Host Master transition is complete, a SMBus Interrupt will be generated.
		0 : Disable
		1 : Enable
2	R/W	SMBus Collision Interrupt Enable (SMBCOL_EN)
		0 : Disable
		1 : Enable
1	R/W	Device Error Interrupt Enable (SMBERR_EN)
		0 : Disable
		1 : Enable
0	R/W	SMBus Interrupt Enable (SMBINTR_EN)
		This bit is used to enable the SMBus interrupt generation.
		0 : Disable
1		

Register 82h SMBus Control (SMB_CNT)

Default Value: 00h Access: Pood/M/rite

Access.	Reau/White	
Bit	Access	Description
7	R/W	Host Slave Timeout Enable (SLTO_EN)
		When this bit is enabled and the Host Slave transition time is over specification, a SMBus Interrupt will be generated.
		0 : Disable
		1 : Enable

Preliminary V.10 Oct.07,1999

6	R/W	Host Master Timeout Enable (MSTO_EN)
		When this bit is enabled and the Host Master transition time is over specification, a SMBus Interrupt will be generated.
		0 : Disable
	\frown	1 : Enable
5	R/W	SMBus Host Master Clock Selection (SMBCLK_SEL)
	$ \land \land \land \land$	0 : 14KHz
		1:56KHz
4:2	RO	Reserved
1	R/W	Slave Busy (SL_BUSY)
		Indicate the Host Slave is in idle or active state.
		1 : Active
		0 : Idle
0	R/W	Host Busy (HOST_BUSY)
		Indicate the Host Master is in idle or active state. When Host
		Master is in IDLE state, the Host Master is free for software to control.
		1 : Active
		0 : Idle

Register 83h SMBus Host Control (SMBHOST_CNT)

Default Value: 00h

Write Only, Read/Write Access: Bit Description Access 7:6 RO Reserved 5 WO Kill (SMB_Kill) This bit is set to stop all SMBus operation, including Host master and slave, all activities are set to initial state. This operation won't effect the values in R/W registers. WO 4 Start (SMB_START) Writing a 1 to this bit which initiate the SMBus Host transition. The SMBus Command Protocaol bits (SMB_PTL) and the associated registers should be properly programmed before this bit is set to 1. This is a write-only bit. R/W 3 Reserved

375

Preliminary V.10 Oct.07,1999

2:0	R/W	SMBus Comm	and Protocol (SMB_PTL)
		Selecting the Reading or W register bit 0 (F	Protocol that SMBus Host is going to execute. riting transition is determined by SMBus Address R/W bit).
	\sim	Bit[3:1]	Protocol
	$\left(\right)$	000	Quick command
	$ \land \land \land \lor \lor$	001	Send/Receive Byte
	$\left(\begin{array}{c} 0 \end{array} \right)$	010	Read/Write Byte Data
		(011)	Read/Write Word Data
		100	Process Call
		101	Read/Write Block Data
		110 🔿 🖯	Reserved
			Reserved

Register 84h	SMBus Address (8	SMB_ADDR)
Default Value:	00h	$(\sim) / / \sim$
	-	

Access:	Read/Wr	ite
Bit	Access	Description
7:1	R/W	SMBus Address (SMB_ADDRESS)
		The field is the slave address to target device.
0	R/W	SMBus Read/Write (SMB_RW)
		1 : Execute a read protocol
		0 : Execute a write protocol
		This bit doesn't effect Process Call protocol.

Register 85h SMBus Command (SMB_CMD)

Default Value: 00h

Access:	Read/Write

Bit	Access	Description
7:0	R/W	SMBus Command (SMB_COMMAND)
		This register contains the command code and will be sent to device.

SMBus Processed Byte Count (SMB_PCOUNT) Register 86h

Default Value: 00h Read Only Access: Bit Access Description 376

Preliminary V.10 Oct.07,1999

7:5	RO	Reserved
4:0	RO	SMBus Processed Byte Count (SMB_PCNT)
		The field is the byte count that Host has transferred for block protocol. The SMBus Interrupt TRGine can read this register to know how many bytes are not transferred yet when the SMB_CNT is over 8 bytes. A 'zero' indicates a maximun of 32 data bytes has transferred.

Register 87h SMBus Byte Count (SMB_COUNT)

Default Value: 00h

Access:	Read/Wri	te
Bit	Access	Description
7:5	RO	Reserved
4:0	R/W	SMBus Byte Count(SMB_CNT)
		The field is the byte count for Block Read/Write protocol. The byte count can not be 0.
(.	•	

Register 88h~8Fh SMBus Byte0~7 (SMB_BYTE0~7)

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
7:0	R/W	SMBus Byte0~7 (SMB_BYTE0~7)
		These seven bytes are the data byte field for Block Read/Write protocol. The Byte0 is also used in Byte protocol, including Received Byte, Read/Write Data Byte protocol. In addition, the Byte0 (low byte) and Byte1 (high byte) are combined as word during word protocol, including Read/Write Word, Process Call protocol.

Register 90h SMBus Device Address (SMBDEV_ADDR)

Default Value: 00h

Access: Read/Write

Bit	Access	Description
7:0	R/W	SMBus Device Address (SMBDEV_ADDR)
		This field stores the Device Address when Host Slave received a Write Word protocol from other SMBus master.

Register 91h SMBus Device Byte0 (SMB_DB0)

Default Value: 00h

 Preliminary V.10 Oct.07,1999
 377
 Silicon Integrated Systems Corporation

Access:	Read/Write	
Bit	Access	Description
7:0	R/W	SMBus Device Byte 0 (SMB_DB0)
		This field stores the Data Low Byte when Host Slave received a Write Word protocol from other SMBus master.

Default Value: 00h				
Access: Read/Write				
Bit	Access	Description		
7:0	R/W	SMBus Device Byte 1 (SMB_DB1)		
		This field stores the Data High Byte when Host Slave received a Write Word protocol from other SMBus master.		

Register 93h SMBus Host Slave Alias Address (SMB_SAA)

Default Value: 00h

Access:	Read/W	rite
Bit	Access	Description
7:1	R/W	SMBus Host Slave Alias Address (SMB_ALIAS)
		When Host Slave receives a Device Address the same as the address in these seven bits and bit 0 is '0, an interrupt will be raised if Alias Interrupt is also enabled.
0	R/W	Read as '0. The Host Slave accepts master Write Word protocol only.

378

Register 94h~9Fh Reversed

Register Ssummary / Description – Automatic Power Control 17 Summary

Address	Access	Register Name		
00h	R/W	APC Register 00h		
01h	R/W	APC Register 01h		
02h	R/W	APC Register 02h		
03h	R/W	APC Register 03h		
04h	R/W	APC Register 04h		
05h	R/W	APC Register 05h		
06h	R/W	APC Register 06h		
07h	R/W	APC Register 07h		
08h	R/W	APC Register 08h		
09h	R/W	Reserved		
17.1.1 RTC	17.1.1 RTC Registers			

17.1 Automatic Power Control (APC) Registers

17.1.1 RTC Registers

Address	Access	Register Name
00h	R/W	Seconds
01h	R/W	Seconds Alarm
02h	R/W	Minutes
03h	R/W	Minutes Alarm
04h	R/W	Hours
05h	R/W	Hours Alarm
06h	R/W	Day of the Week
07h	R/W	Day of the Month
08h	R/W	Month
09h	R/W	Year
0Ah	R/W	Register A
0Bh	R/W	Register B (bit 3 must be set to 0)
0Ch	R/W	Register C

379

Preliminary V.10 Oct.07,1999

0Dh	R/W	Register D
7Eh	R/W	Day of the Month Alarm
7Fh	R/W	Month Alarm

17.2 APC Register

The following registers located at RTC power well. Before access to these registers, the APCRAM_EN must be set to one and EXPRAM_EN must be set to zero.

Register 00h CPU Frequency and Power Supply Resume Control

Access: Read/Write				
Bit	Access	De	scription	
7:4	R/W	Multiplication of CPU Core F	requency to Bu	s Frequency
		0000 : 2/1 0100 : 5/2	1000 : 6/1	1100 : 13/2
		0001 : 3/1 0101 /: 7/2	1001 : 7/1	1101 : 15/2
		0010 : 4/1 0110 : 9/2	1010 : 8/1	1110 : 3/2
		0011 : 5/1 0111 : 11/2	1011 : Rev	1111 : 2/1
3	R/W	CPU Frequency Ratio Control	ol Selection	
		0 : By Hardware Trap		
		1 : By bit7~4 of this register	Δ	
2	R/W	Jumperless Reset Counter E	inable	
		If CPU frequency ratio is s jumperless reset counter will active. When the counter exp switched to hardware trap set	elected as jump start to count w ired, the CPU fre ting.	perless setting, the while PWROK goes quency ratio will be
		0 : Disable 1 : Enable		
1:0	R/W	Power Supply ON/OFF State	Resume Contro	ol
		The value in this field determi standby is suddenly off.	nes the power su	pply state once the
		00 : Always Off		
		01 : Reversed		
		10 : Always On		
		11 · Keep previous state		

380

Preliminary V.10 Oct.07,1999

Register 01h MAC and RTC Test Mode Enable				
Default Value: 00h				
Access:	Access: Read/Write			
Bit	Access	Access Description		
7	R/W	MAC Serial ROM Autoload Function Enable		
		0 : Disable		
	$ \land [\lor] \land [\lor] \land [\land] : : : : : : : : : : : : : : : : : :$	1 : Enable		
6		MII Test Mode Enable		
		This bit is only for internal use.		
		0 : Disable		
		1 : Enable		
5	R/W	Reserved.		
		Warning: This bit should be set to 0.		
4	R/W	RING Input Polarity Control		
		0 : Active high		
		1 : Active low		
3	R/W	Reserved		
2	R/W	Select the frequency of the KBC		
		This bit controls the length of the period which the KBC drives the clock line low after transmitting a byte of data.		
		0: SYSCLK= 8.1Khz		
		1: SYSCLK1=16.2Khz		
1	R/W	Deassert CKE_S		
		After this bit translates to 1 from 0, a pulse would be generated to deassert CKE_S. CKE_S is used in S3 and converts the DRAM to self-refresh mode.		
0	R/W	Test Pin for KBC.		
		When this bit is set, the clock of KBC can be inputed from GPIO3. This bit is used to test the power-on function.		

Register 02h Mux-ed Function Select

Default Value: 00h		
Access:	Read	Write
Bit	Access	Description

381

Preliminary V.10 Oct.07,1999

7	R/W	GPIO15/SMBALT# Function Select
		0: GPIO15 function select
		1: SMBALT# function select
6:5	R/W	GPIO[14:10]/KBC Function Select
		00: GPIO[14:10] function select
	$ \land \{$	01: Reserved
		10 KBC function select
		11: Reserved
4:3	R/W	GPIO8/PLED0/OC2# Function Select
		00: GPIO8 function select
		01: Reserved
		10: OC2# function select
		11: PLED0 function select
2	R/W	GPIO7/SPDIF Select
		0: GPIO7 function select
		1: SPDIF test function select
1	R/W	GPIO[6:4] Select
		0: GPIO[6:4] function select
		1: Reserved
0	R/W	GPIO3/EEDO Function Select
		0: GPIO3 function select
		1: EEDO function select
Register 03h Mux-ed Function Select		

Register 03h Mux-ed Function Select

Default Value: 00h Access: Read/Write

7:6	R/W	GPIO2/LDRQ#/OC3# Function Select
		00: GPIO2 function select
		01: Reserved
		10: OC3#
		11: LDRQ# function select

382

Preliminary V.10 Oct.07,1999

5:4	R/W	GPIO[1:0]/OC[1:0]/PCI Master Function Select			
		01: Reserved			
		0: OC[1:0]			
		11; PCI Master function select			
3	R/W	USB Test Function Enable			
		0: Disable			
		1: Enable			
2	R/W	Keyboard ROM Data Test Function Enable			
		0: Disable			
		1: Enable			
1:0	R/W	MII Operation Mode Select			
		00: Normal mode			
		01: Probe mode			
		10: MAC test mode			
		11: PHY test mode			

Register 04h System Power-Off Control

Default Value: 00h

Access:	Read/Wr	ite
Bit	Access	Description
7:3	R/W	Reserved
2	R/W	USB Plug-in/Pluck-out Wake up from S3/S4/S5
		If this bit and the corresponding bit in APC6h are set, the system will be powered due to the "plug-in/pluck-out" action of the usb device.
1	R/W	ACPI S5 Function Enable (S5OFF_EN)
		0 : Disable
		1 : Enable
0	R/W	ACPI S3 Function Enable (S3OFF_EN)
		0 : Disable
		1 : Enable

383

Register 05h GPE Wakeup Enable

Default Value: 00h

Preliminary V.10 Oct.07,1999

Access:	Read/Wr	ite				
Bit	Access	Description				
7	R/W	RTC IRQ8 Wake from S3/S4/S5 Enable (RTC_S5WAK_EN)				
		0 : Disable				
		1 : Enable				
6	R/W	RING Wake from S3/S4/S5 Enable (RING_S5WAK_EN)				
		∕0 : Disable				
	(O)/	1. Enable				
5	R/W	MACPME Wake from S3/S4/S5 Enable (MACPME_S5WAK_EN)				
		0 : Disable				
		1 : Enable				
4	R/W	PCIPME Wake from S3/S4/S5 Enable (PCIPME_S5WAK_EN)				
		0. Disable				
		1 : Enable				
3	R/W	SMBALT# Wake from \$3/\$4/\$5 Enable (SMBALT_\$5WAK_EN)				
		0 : Disable				
		1 : Enable				
2	R/W	Keyboard Password Wake from S3/S4/S5 Enable (KBPS_S5WAK_EN)				
		0 : Disable				
		1 : Enable				
1	R/W	Keyboard Hotkey Wake from S3/S4/S5 Enable (KBHK_S5WAK_EN)				
		0 : Disable				
		1 : Enable				
0	R/W	Keyboard 8MHz Clock Shutdown				
		Switch the enable bit of the KBC internal 8Mhz clock generator.				
		0 : Clock Running				
		1 · Clock shutdown				

Register 06h Audio and USB Wakeup Enable

Default Value: 00h

Access:	Read/Wr	te
Bit	Access	Description
7	R/W	CODEC1 Wake from S3/S4/S5 Enable (CODEC1_S5WAK_EN)
		0 : Disable
		1 : Enable

Preliminary V.10 Oct.07,1999

6	R/W	CODEC0 Wake from S3/S4/S5 Enable (CODEC0_S5WAK_EN)
		0 : Disable
		1 : Enable
5	R/W	AUDPME Wake from S3/S4/S5 Enable (AUDPME_S5WAK_EN)
	\frown	0 : Disable
	$\left(\right)$	1 : Enable
4	R/W	USB Port4 Wake from S3/S4/S5 Enable (USB4_S5WAK_EN)
		0 : Disable
		R: Enable
3	R/W	USB Port3 Wake from S3/S4/S5 Enable (USB3_S5WAK_EN)
		0 : Disable
		17: Enable
2	R/W	USB Port2 Wake from S3/S4/S5 Enable (USB2_S5WAK_EN)
		0 : Disable
		1 : Enable
1	R/W	USB Port1 Wake from \$3/\$4/\$5 Enable (USB1_\$5WAK_EN)
		0 : Disable
		1 : Enable
0	R/W	USB Port0 Wake from \$3/\$4/\$5 Enable (USB0_\$5WAK_EN)
		0 : Disable
		1 : Enable

Register 07h The Parameters of RTC Oscillator

Default Value: 00h Access: Read/Write

The following registers are used to modulate the oscillator. The detailed description can be found in another application Note.

7:4	R/W	Cout[3:0]
		These four bits are used to modulate the oscillator capacity.
3:0	R/W	Cin[3:0]
		These four bits are used to modulate the oscillator capacity.

Register 08h The Parameters of RTC Oscillator

Default Value: 00h

Access:	Read	Write
7:6	R/W	Reserved.

385

Preliminary V.10 Oct.07,1999

5:3	R/W	SR[2:0] for oscillator.
2	R/W	OSCSEL
1	R/W	OSC ATE
0	R/W	OSCPROBEN.

Register 09h

Default Va	alue: 00h Read/V	(rite		
7:0	R/W	leserved.		
7:0	<u>R/W</u>	eserved.		

386

Preliminary V.10 Oct.07,1999

18 Electrical Characteristics

18.1 Absolute maximum Ratings

Parameter	Min.	Max.	Unit
Ambient operation temperature	0	70	°C
Storage temperature	-40	125	٥C
Input voltage	-0.3	Vcc+0.3	V
Output voltage	-0.5	Vcc	V

Table 18.1-1	Absolute	Maximum	Ratings
--------------	----------	---------	---------

NOTE:

Stress above these listed may cause permanent damage to device. Functional operation of this device should be restricted to the conditions described under operating conditions.

18.2 DC Characteristics

18.2.1 DC Characteristics

Ta=0-70°C, Gnd=0V, Vcc3=3.3V±5%, vcc18=1.8V±5%, V_{TT} = 1.5v±10%,

Table18.2-1 DC Characteristics of Host, DRAM, PCI and IDE Interface

Symbol	Parameter	Min	Max	Unit	Notes
V_{IH_GTL}	GTL+ Input High Voltage	2/3 V π +0.2		V	
$V_{\text{IL}_{GTL}}$	GTL+ Input High Voltage		2/3Vπ ⁻ 0.2	X	
V_{IH_TTL}	TTL Input High Voltage	2	VCC3+0. 3	V	
V _{IL TTL}	TTL Input Low Voltage	-0.3	0.8 🔨	v	
V_{IH}	RTC Input High Voltage	1.4	VCC18+0 .3	V	
V _{IL}	RTC Input Low Voltage	-0.3	0.4	V	
V _{ol gtl}	GTL+ Output Low Voltage		0.6	V	
V _{ol ttl}	TTL Output Low Voltage		0.45	V	
V _{REF}	GTL+ Reference Voltage	2/3 V π- 2%	2/3 V π+2 %	V	
I _{ol gtl}	GTL+ Output Low Current		36	mA	
	TTL Output High Current	-4		mA	

387

Preliminary V.10 Oct.07,1999

I _{ol ttl}	TTL Output Low Current	4	mA	
I _{IL}	Input Leakage Current	±10	mA	

18.2.2 DC Characteristics for DAC (Analog Output Characteristics)

Table 18.2-1 Table of DC Characteristics for DAC							
Description	Min	Typical	Max	Unit			
Black Level	$\left \left(- \right) \right $	0	-	V			
White Level	<u> </u>	700	-	mV			
ILE	(^O -1,0	-	+1.0	LSB			
DLE	-0.5) -	+0.5	LSB			
1 LSB	-	2.734	-	mV			
Iref	-	8.40	-	mA			

388

Preliminary V.10 Oct.07,1999

19 Mechanical Dimension

389

Preliminary V.10 Oct.07,1999

20 Power Sequence in SiS630

If the system doesn't support AUXVDD, AUXOK must be connected with PWROK. There is no well-defined sequence for RTCVDD, AUXVDD, and VDD. Note that AUXOK and PWROK signal pins are powered by RTCVDD. These two pins must have their own pull-down resistors to prevent them from floating if AUXVDD or VDD is not presented.

In SiS630, BATOK is used to reset some power management registers in RTC power plane. If it goes low, all registers in RTC power plane will be reset. By the time of next booting up, the BIOS will shows "CMOS Checksum Fail" to indicate that the RTCVDD had been absent.

AUXOK is used to reset the power management registers in AUX power plane. If AUXOK goes low for some reason, the registers in AUX power plane will be reset to their default state. If the system is in power-off state, only PWRBTN# can power up the system under this circumstance. If the system is ON and AUXOK go low for some strange reason, the power will be shutdown immediately.

Finally, PWROK is used to generate CPURST# and PCIRST#. If this signal is de-asserted, PCIRST# and CPURST# will be asserted and the system will be reset by these two reset signal. Note that CPURST# and PCIRST# won't reset the registers which locate in RTC and AUX power planes.

390

Preliminary V.10 Oct.07,1999

20.1 630 Package on 4 Layer PCB

Condition : Room Temperature 30C (Still air) With 38mm*38mm Aluminum Heat Sink

Theda ja 13.8 C/W Maximum Power Dissipation = 4.3W

Tcase : Temperature at the of molding compound Surface

Tbutton : Temperature at the back side of PCB where thermal balls are directly attached

391

20.2 630 Package on 4 Layer PCB

Condition : Room Temperature 30C (Still air) Without Heat Sink

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

Figure 20.2-1 630 A Temp vs Power(2)

Theda ja 17.7 C/W

Maximum Power Dissipation =3.4W

Tcase : Temperature at the of molding compound Surface

Tbutton : Temperature at the back side of PCB where thermal balls are directly attached

392

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation

21 Copyright Notice

Copyright 1999, Silicon Integrated Systems Corp. All rights reserved.

This manual is copyrighted by Silicon Integrated Systems Corp. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Silicon Integrated Systems Corp.

Trademarks

SiS is a registered trademark of Silicon Integrated Systems Corp.

All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

Disclaimer

Silicon Integrated Systems Corp. makes no representations or warranties regarding the contents of this manual. We reserve the right to revise the manual or make changes in the specifications of the product described within it at any time without notice and without obligation to notify any person of such revision or change.

The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Silicon Integrated Systems Corp. To respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph O(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.277-701

393

SiS630 Slot 1/Socket 370 2D/3D Ultra-AGP[™] Single Chipset

394

Preliminary V.10 Oct.07,1999

Silicon Integrated Systems Corporation