

QUADRUPLE LINE RECEIVER

DESCRIPTION

The M75189AP/AFP is a semiconductor integrated circuit containing 4 line receivers for use with unbalanced digital data transmission, which meets EIA Standards RS-232-C.

FEATURES

- Input characteristics meet EIA Standards RS-232-C
- Input resistance of $3k$ to $7k\Omega$ ($V_i = -3$ to $-25V/3$ to $25V$)
- Input voltage range from -30 to $+30V$
- Input hysteresis is $1.0V$ typ.
- Response control provides :
 - input threshold shifting,
 - input noise filtering.
- Output characteristics are compatible with TTL circuits
- Operates from single $5V$ power supply

APPLICATION

For use as a data transmission interface in digital equipment.

FUNCTIONAL DESCRIPTION

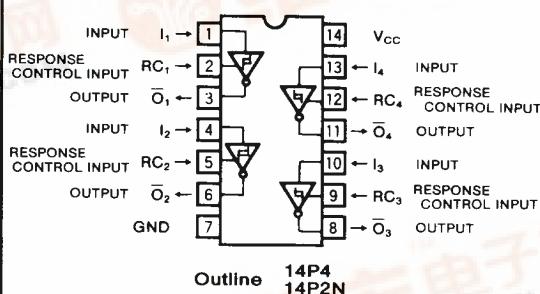
A $4k\Omega$ (typ) resistor is connected in series with input I and the input impedance is $3k$ to $7k\Omega$, (the applied input voltage V_i equalling -3 to $-25V$ or 3 to $25V$).

A resistor or a resistor and bias voltage can be connected between RC and GND to shift the input threshold voltage levels.

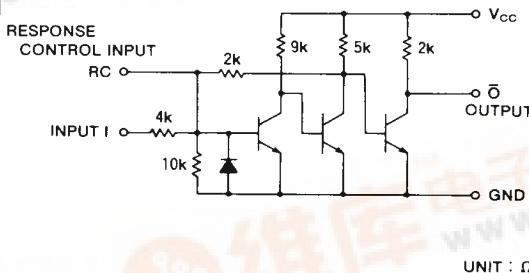
The input hysteresis is set to $1.0V$ (typ).

Input noise can be rejected by connecting a capacitor between RC and GND. Refer to TYPICAL APPLICATION b).

Output \bar{O} is pulled up by $2k\Omega$ resistor to V_{CC} so that the AND tie can be made, and can drive TTL circuits directly.


The supply voltage is from a single $5V$ power supply.

This integrated circuit is suitable for data transmission interface in digital equipment since the input characteristics meet EIA Standards RS-232-C. Refer to Table 1, which shows the EIA Standards RS-232-C. M75188P may be used as a driver which meets these standards. An unbalanced form of transmission is used. Refer to TYPICAL APPLICATION a) for further information.


Table 1 Eia standards RS-232-C

Parameter		RS-232-C	M75189AP Corresponding Parameters (Symbol)
Common	Transmission form	Unbalanced	Input I
	Maximum transmission distance	15m	
	Maximum transmission speed	20kbit/s	
Driver	Maximum output voltage (no load)	$\pm 25V$	
	Minimum output voltage (loaded)	$\pm 5 \sim \pm 15V$	
	Minimum output resistance (power off)	$R_O = 300\Omega$	
	Maximum short-circuit output current	$\pm 500mA$	
	Slew rate	Maximum $30V/\mu s$	
Receiver	Input resistance	$3k \sim 7k\Omega$	
	Maximum input threshold	$-3 \sim +3V$	V_{T+}, V_{T-}
	Maximum input voltage	$-25 \sim +25V$	I_{IH}, I_{IL}

PIN CONFIGURATION (TOP VIEW)

CIRCUIT DIAGRAM (EACH CIRCUIT)

UNIT : Ω

MITSUBISHI DIGITAL ASSP
M75189AP/APP

QUADRUPLE LINE RECEIVER

ABSOLUTE MAXIMUM RATINGS ($T_a=0\sim75^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions			Ratings	Unit
V_{CC}	Supply voltage				-0.5~+10	V
V_I	Input voltage				-30~+30	V
I_O	Output current	When output is low			0~20	mA
P_d	Power dissipation	DIP	$T_a=25^\circ\text{C}$ (Note 1)		1000	mW
		SOP	$T_a=25^\circ\text{C}$ (Note 2)		570	
T_{STG}	Storage temperature range				-65~+150	°C

Note 1 : A derating of $9.1\text{mW}/^\circ\text{C}$ should be made when $T_a \geq 40^\circ\text{C}$

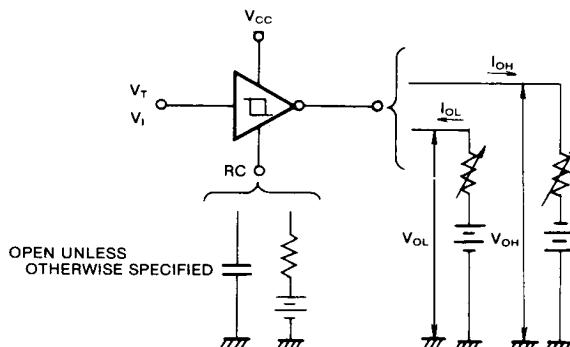
2 : A derating of $4.5\text{mW}/^\circ\text{C}$ should be made when $T_a \geq 25^\circ\text{C}$

RECOMMENDED OPERATING CONDITIONS

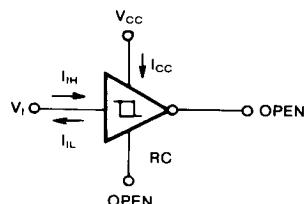
Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
V_{CC}	Supply voltage	4.75	5	5.25	V
V_I	Input voltage	-15		15	V
T_{OPR}	Operating free-air ambient temperature range	0		75	°C

ELECTRICAL CHARACTERISTICS ($V_{CC}=5\text{V}$, $T_a=0\sim75^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit	Measurement circuit
			Min	Typ*	Max		
V_{T+}	Positive-going threshold voltage	$T_a=25^\circ\text{C}$	1		1.5	V	1
			0.9		1.6		
V_{T-}	Negative-going threshold voltage	$T_a=25^\circ\text{C}$	0.75		1.25	V	1
			0.65		1.25		
$V_{T+}-V_{T-}$	Hysteresis	$T_a=25^\circ\text{C}$	0	0.25	0.75	V	1
V_{OH}	High-level output voltage	$V_I=0.75\text{V}$, $I_{OH}=-0.5\text{mA}$	2.6	4	5	V	1
		V_I : Open, $I_{OH}=-0.5\text{mA}$	2.6	4	5		
V_{OL}	Low-level output voltage	$V_I=3\text{V}$, $I_{OL}=10\text{mA}$		0.2	0.45	V	1
I_{IH}	High-level input current	$V_I=25\text{V}$	DIP	3.6	8.3	mA	2
		$V_I=15\text{V}$	SOP		5.0		
		$V_I=3\text{V}$		0.43			
I_{IL}	Low-level input current	$V_I=-25\text{V}$	DIP	-3.6	-8.3	mA	2
		$V_I=-15\text{V}$	SOP		-5.0		
		$V_I=-3\text{V}$		-0.43			
I_{OS}	Short-circuit output current	$V_I=0\text{V}$, $V_O=0\text{V}$		-1.6	-2.5	-5	mA
I_{CC}	Supply current	$V_{CC}=5\text{V}$, $V_I=5\text{V}$			20	26	mA

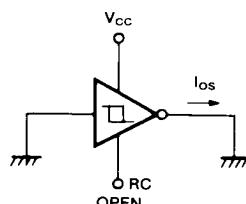

* : All typical values are at $V_{CC1}=5\text{V}$, $T_a=25^\circ\text{C}$.

SWITCHING CHARACTERISTICS ($V_{CC}=5\text{V}$, $T_a=25^\circ\text{C}$, unless otherwise noted)

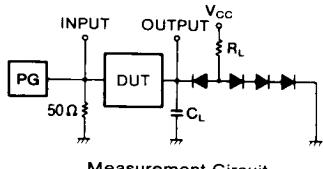

Symbol	Parameter	Test conditions	Limits			Unit	Measurement circuit
			Min	Typ	Max		
t_{PLH}	Low-to-high-level, high-to-low-level output propagation time, from input I to output O	$C_L=15\text{pF}$, $R_L=3.9\text{k}\Omega$		25	85	ns	4
		$C_L=15\text{pF}$, $R_L=390\Omega$		25	50	ns	
t_{TLL}	Low-to-high-level output transition time	$C_L=15\text{pF}$, $R_L=3.9\text{k}\Omega$		120	175	ns	
		$C_L=15\text{pF}$, $R_L=390\Omega$		10	20	ns	

QUADRUPLE LINE RECEIVER

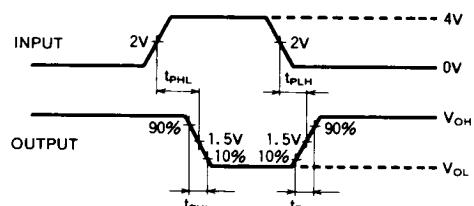
MEASUREMENT CIRCUITS



Measurement Circuit for V_{T+} , V_{T-} , V_{OH} , V_{OL}

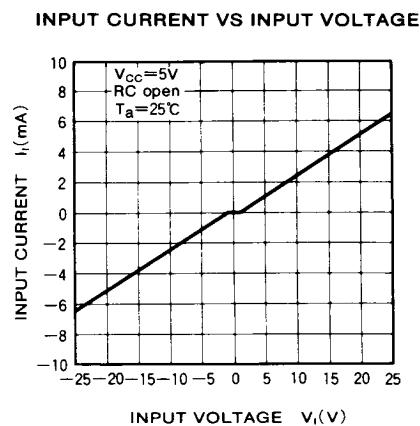
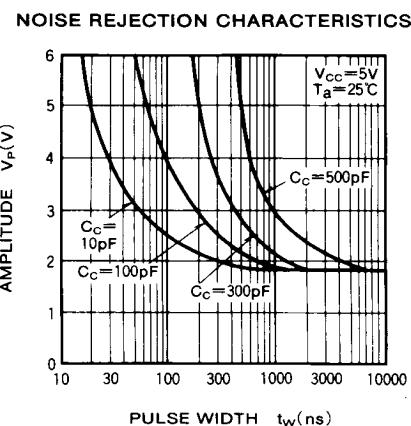
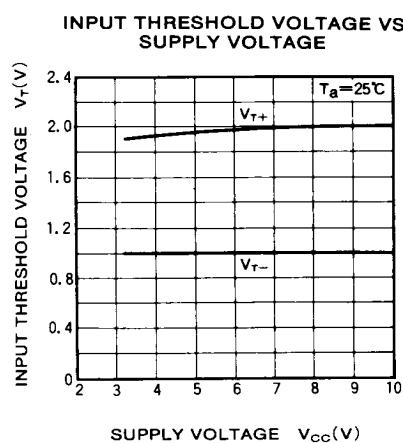
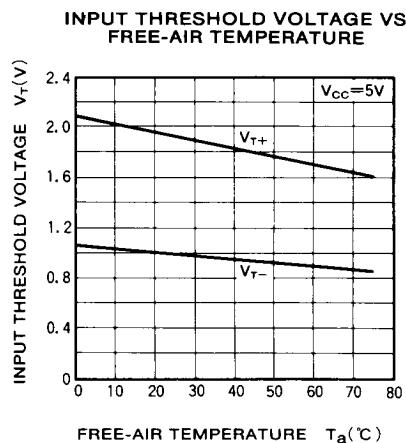
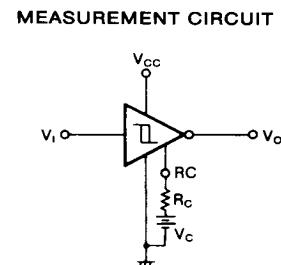
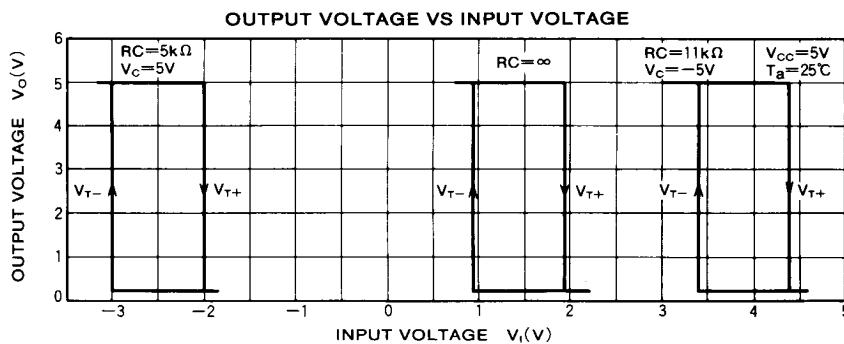


Note : I_{CC} is measure for all 4 circuits simultaneously.


Measurement Circuit for I_{CC} , I_H , I_L

Measurement Circuit for I₀

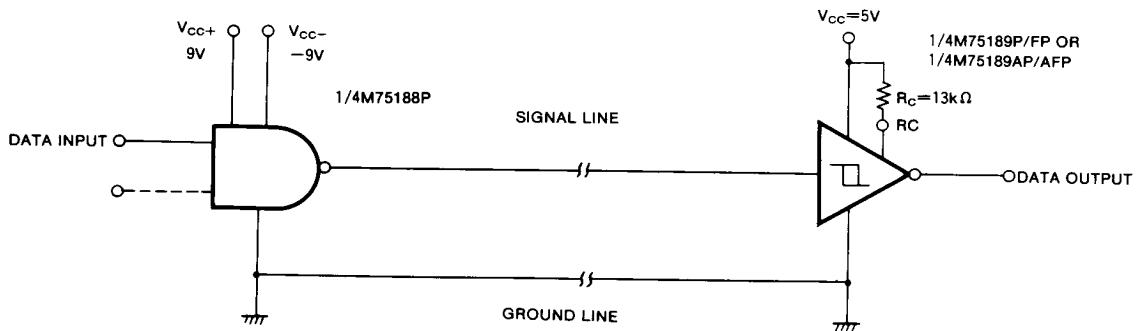
Measurement Circuit

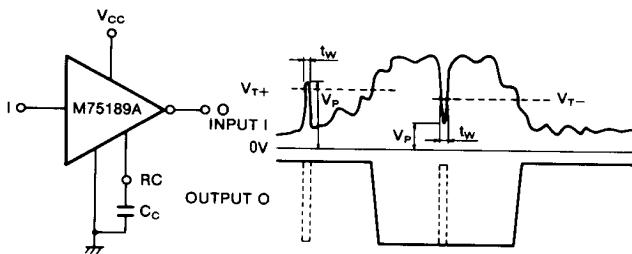







1. The pulse generator (PG) has the following characteristics :
 $PRR=1\text{MHz}$, $t_{\text{f}} \leq 10\text{ns}$, $t_{\text{r}} \leq 10\text{ns}$, $t_{\text{PW}}=500\text{ns}$, $V_p=4V_p$, $Z_0=50\Omega$
2. All diodes are high-speed switching diodes ($t_{\text{rr}} \leq 4\text{ns}$)
3. C_L includes probe and jig capacitance.
4. RC is open.

Measurement Circuit for switching characteristics and voltage waveform.

QUADRUPLE LINE RECEIVER


TYPICAL CHARACTERISTICS


QUADRUPLE LINE RECEIVER

TYPICAL APPLICATION

a) COMBINATION OF DRIVER AND RECEIVER

b) WAVEFORM RESTORATION AND NOISE REJECTION

As in the above diagram, in preventing inversion of output O by input pulse, whose width t_w and amplitude greater than V_{T+} or less than V_{T-} , connect capacitor C_c , the value of which can be obtained from a noise rejection characteristics table. Shorten the rise and fall time of input I if C_c is connected.