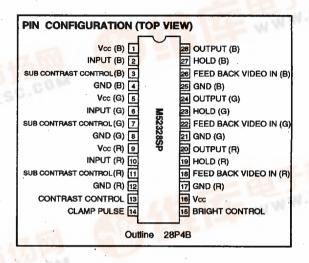
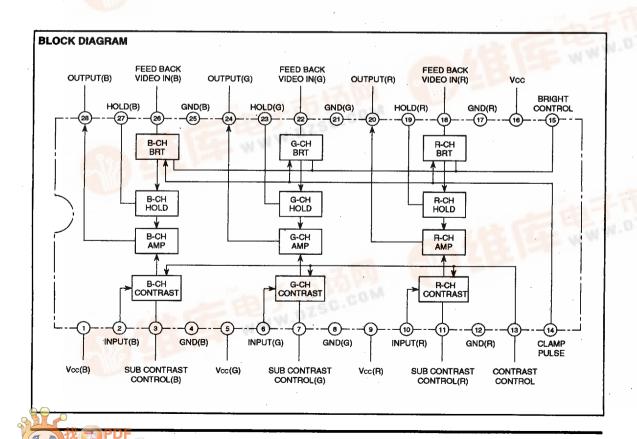


DESCRIPTION

M52328SP semiconductor integrated circuit is a wideband video amplifier. Its family products include M51392P, M51399P, M51387P and M52307P. This IC has a 130MHz band and 3 built-in channels. Each channel is provided with a wideband amplifier, contrast controls (main and sub), and brightness controls.


This IC is optimal for high-resolution color displays.

FEATURES


- Produced by a new bipolar water processing method, this IC has 3 built-in channels, and operates with low power dissipation. (Vcc = 12 V lcc = 63 mA)
- Input: 0.7 VP-P (typ)
 Output: 4.5 VP-P (max)
 Frequency band: 130 MHz (3 V P-P)
- Contrast and brightness can be controlled with a main control. The main control changes contrast or brightness of 3 channels simultaneously. The sub control changes contrast of each chan -nel independently.

APPLICATION

Cathode-ray tube displays

RECOMMENDED OPERATING CONDITION

M52328SP

WIDEBAND 3-CHANNEL VIDEO AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	13.0	V
Pd	Power dissipation	1580	mW
Торг	Operating temperature	-20~+85	ಌ
Tstg	Storage temperature	-40~+150	r
Vopr	Recommended operating supply voltage	12.0	٧
Vopr	Recommended operating supply voltage range	11.5~12.5	٧
Surge	Electrostatic discharge	±200	V

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=12V unless otherwise noted.)

		Test			Tes	t conditi	ons			Limits			
Symbol	Parameter	point	SW10 R-ch	SW6 G-ch	SW2 B-ch	V3	V13	V15	SW14	Min.	Тур.	Max.	Unit
lcc	Circuit current	Α	a -	a -	a 	10	10	5.0	b SG6	45	72	100	mA
Vomax.	Output dynamic range	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	5.0	5.0	Variable	αl	5.8	6.8	9.0	VP-P
Vimax.	Maximum allowable input	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	5.0	2.0	Variable	a l	1.9	2.4	2.9	VP-P
Gv	Maximum gain	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	5.0	5.0	VT	a -	13.0	17.0	20.0	dB
ΔGv	Relative maximum gain		R	elative v	alues to	the me	sureme	ents abov	/e	0.8	1.0	1.2	
VcR1	Contrast control characteristic (typ)	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	5.0	2.0	Vτ	a -	6.7	8.5	11.2	dΒ
∆VcR1	Relative contrast control characteristic (typ)		P	lelative v	alues to	the me	asurem	ents abov	ve	0.8	1.0	1.2	-
VcR2	Contrast control characteristic (min)	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	5.0	0	νт	<u>a</u>	10	140	500	mVp-p
ΔVcR2	Relative contrast control characteristic (min)		Я	elative v	alues to	the me	asureme	ents abov	/e	8.0	1.0	1.3	-
VscR1	Sub contrast control characteristic (typ)	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	2.0	5.0	VT	a -	6.5	8.4	11.2	dB
∆VscR1	Relative sub contrast- control characteristic (typ)		R	elative v	alues to	the me	asureme	ents abov	/e	0.8	1.0	1.2	_
VscR2	Sub contrast control characteristic (min)	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	0	5.0	Vτ	a -	10	140	500	mVP-P
∆Vscn2	Relative sub contrast- control characteristic (min)		Relative values to the measurements above						0.8	1.0	1.2	_	
Vcn ₃	Contrast/Sub contrast control characteristic (typ)	T.P20 T.P24 T.P28	b SG1	b SG1	b SG1	2.5	2.5	VT	a -	800	1200	1600	mVP-P
ΔVcR3	Relative contrast · sub contrast control characteristic (typ)		Relative values to the measurements above						0.8	1.0	1.2	_	

ma Pa

M52328SP

WIDEBAND 3-CHANNEL VIDEO AMPLIFIER

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test		T	7	st condi	tions	,			Limits		
Cyrricol	raidileter	point	SW10 R-ch	SW6 G-ch	SW2 B-ch	V3	V13	V15	SW14	Min,	Тур.	Max.	Unit
V _{B1}	Brightness control characteristic	T.P20 T.P24 T.P28	a	a -	a —	5.0	5.0	5.5	b SG6	3.7	4.3	4.9	V
△VB1	Relative brightness control characteristic		F	Relative	values t	o the me	asurem	ents abo	ove	-100.0	0.0	100.0	mV
Fc ₁	Frequency characteristic I (f=50MHz, max)	T.P20 T.P24 T.P28	b SG3	b SG3	b SG3	5.0	4.0	VT	a -	-2	-1	3	dB
△Fc1	Relative frequency characteristic I (f=50MHz, max)		F	lelative '	values to	o the me	asurem	ents abo	ove ·	-1.0	0.0	1.0	dB
Fc1	Frequency characteristic I (f=130MHz, max)	T.P20 T.P24 T.P28	b SG4	b SG4	b SG4	5.0	4.0	V T	a -	3	-2	3	dB
△Fc1	Relative frequency characteristic I (f=130MHz, max)		В	elative v	alues to	the me	asureme	ents abo	ve	-1.0	0.0	1.0	dB
FC2	Frequency characteristic II (f=50MHz, typ)	T.P20 T.P24 T.P28	b SG3	b SG3	b SG3	5.0	2.5	V T	a	-1	0	3	dB
Fc2	Frequency characteristic II (f=130MHz, typ)	T.P20 T.P24 T.P28	b SG3	b SG3	b SG3	5.0	2.5	Vτ	a -	-2.5	0	3	dB
Fcs	Frequency characteristic III (f=50MHz, min)	T.P20 T.P24 T.P28	b SG3	b SG3	b SG3	5.0	0.5	VT	a _	-0.5	0	2	dB
Fcs	Frequency characteristic III (f=130MHz, min)	T.P20 T.P24 T.P28	b SG4	b SG4	b SG4	5.0	0.5	Vī	a -	-0.5	0	2	dB
C.T.1	Cross talk I (f=50MHz)	T.P20 T.P24 T.P28	b SG3	. а —	a _	5.0	5.0	VT	a -	-	-32	-20	dB
C.T.1	Cross talk I (f=130MHz)	T.P20 T.P24 T.P28	b SG4	a -	a -	5.0	5.0	V T	a -	-	-22	-15	dB
C.T.2	Cross talk II (f=50MHz)	T.P20 T.P24 T.P28	a _	b SG3	a -	5.0	5.0	V T	a 		-32	-20	dB
C.T.2	Cross talk II (f=130MHz)	T.P20 T.P24 T.P28	a -	b SG4	a _	5.0	5.0	VT	a	-	-22	-15	dB
C.T.3	Cross talkⅢ (f=50MHz)	T.P20 T.P24 T.P28	a —	a _	b SG3	5.0	5.0	Vτ	a -	-	-32	-20	dB
C.T.3 (Cross talk皿 (f=130MHz)	T.P20 T.P24 T.P28	a -	a _	b SG4	5.0	5.0	Vī	a 	-	-22	-15	dB
T _r	Pulse characteristic I	T.P20 T.P24 T.P28	b SG5	b SG5	b SG5	5.0	3.5	9.5	b SG6	_	2	4	nsec
Γr p	Pulse characteristic II	T.P20 T.P24 T.P28	b SG5	b SG5	b SG5	5.0	3.5	9.5	b SG6	-	3	6	nsec
/1410h i	Clamp pulse threshold voltage	T.P20 T.P24 T.P28	a _	a -	a -	5.0	5.0	9.5	b SG6	0.7	1.5	2.5	Vpc

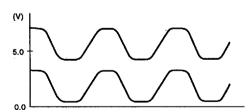
ELECTRICAL CHARACTERISTICS (cont.)

Symbol		Test point	Test conditions						Limits				
	Parameter		SW10 R-ch	SW6 G-ch	SW2 B-ch	V3	V13	V15	SW14	Min.	Тур.	Max.	Unit
W14	Clamp pulse operating minimum width	T.P20 T.P24 T.P28	<u>a</u>	a 	a -	5.0	5.0	9.5	b SG6	-	0.3	1.0	μsec
V27	Hold voltage	T.P19 T.P23 T.P27	a -	a —	a	5.0	5.0	9.5	b SG6	3.6	4.3	4.9	VDC

Note

- Only external power supply switch numbers are mentioned in the notes because the signal input pin switch numbers and pulse input pin switch numbers are specified in the electrical characteristic table.
- Sub contrast voltages V3, V7 and V11 are always set to the same level, and V3 represents the other two in the electrical characteristic table.

ELECTRICAL CHARACTERISTIC TEST METHOD


lcc

- 1. Set SW19, SW23 and SW27 to "b."
- Set other conditions as specified in the electrical characteristic table. Set SW1 to "a" and measure current with ammeter A.

Vo max

- 1. Set SW19, SW23 and SW27 to "b."
- 2. Set V15 in the following procedure.
 - a) Input SG1 to pin ® (pin ®, pin ②). Increase V15 gradually, and read V15 when T.P20(T.P24, T.P28) output waveform peak distortion starts. This voltage is referred to as V TR1(VTG1/ VTB1).

Next, decrease V15 gradually, and read V15 when T.P20 (T. P24, T.P28) output waveform pedestal distortion starts. This voltage is referred to as VTR2(VTG2, VTB2).

T.P20 Output Waveform (T.P24 and T.P28 waveforms are the same.)

b) VT (VTP/VTo/VTB) can be calculated with the measured voltages, as follows:

$$V_{TR} (V_{TG}, V_{TB}) = \frac{V_{TR1}(V_{TG1}, V_{TB1}) + V_{TR2}(V_{TG1}, V_{TB1})}{2}$$

Use adequate voltages according to the output pin:

T.P20 output is tested → VTR1

T.P24 output is tested → VTG1

T.P28 output is tested → VTB

 After setting VTR (VTG,VTB), increase SG1 amplitude gradually starting from 700 mV, and read output amplitude when T.P20 (T.P24,T.P28) output waveform peak and pedestal distortion starts.

Vı max

Starting from a Vo max state, change V13 to 2.0 V as specified in the electrical characteristic table. Increase input signal amplitude gradually, starting from 700 mVP-P, and read input signal amplitude when output signal distortion starts.

Gv and △ Gv

- SW19, SW23 and SW27 are all set to "b." Other conditions are as specified in the electric characteristic table.
- Input SG1 to pin[®] (pin [®]), pin[®]), and read output amplitude of T.P20 (T.P24, T.P28). The amplitude is referred to as V on (Vog1 or Vog1).
- 3. Maximum gain Gv is calculated using the equation shown below:

 Relative maximum gain △Gv is calculated using the equation shown below:

△Gv = VOR1/VOG1, VOG1/VOB1, VOB1/VOR1

VcR1 and △VcR1

- Test conditions are the same as specified in the electrical characteristic table, except that V13 is set to 2.0V.
- Read T.P20(T.P24, T.P28) output amplitude. This amplitude is referred to as Vonz(Vocz,Vonz).
- Contrast control characteristic V cn₁ and relative contrast control characteristic △Vcn₁ are calculated as shown below:

$$VCR1 = 20 log \frac{VOR2 (VOG2, VOB2) [VP-P]}{0.7 [VP-P]}$$

△VCR1 = VOR2/ VOG2, VOG2/ VOB2, VOB2/ VOR1

VcR₂ and △VcR₂

- Test conditions are the same as specified in the electrical characteristic table, except that V13 is set to 0V.
- 2. Read T.P20(T.P24, T.P28) output amplitude. This amplitude is referred to as Vors(Vogs, Vors), and is evaluated as Vors.
- Relative contrast control characteristic △Vcn₂ is calculated as follows:

VscR1 and △ VscR1

- Test conditions are the same as specified in the electrical characteristic table, except that V3, V7 and V11 are set to 2.0V.
- 2. Read T.P20(T.P24, T.P28) output amplitude. This amplitude is called Vor4(Vog4,Vog4).
- Sub contrast control characteristic Vscn₁ and relative sub contrast control characteristic △Vscn₁ are calculated as shown below:

$$V_{SCR1} = 20 log \frac{V_{OR4} (V_{OG4}, V_{OB4}) [V_{P-P}]}{0.7 [V_{P-P}]}$$

△VSCR1 = VOR4/ VOG4, VOG4/ VOB4, VOB4/ VOR4

VscR2 and △ VscR2

- Test conditions are the same as specified in the electrical characteristic table, except that V3, V7 and V11 are set to 0V.
- Read T.P20(T.P24, T.P28) output amplitude. This amplitude is called Vons(Voos, Voos), and is evaluated as V scrz.
- Relative sub contrast control characteristic △Vscn₂ is calculated as shown below:

△VCR2 = VOR5/ VOG5, VOG5/ VOB5, VOB5/ VOR5

VcRs and △VcRs

- Test conditions are the same as specified in the electrical characteristic table, except that V3, V7 and V11 are set to 2.5V and V13 to 6.0V.
- Read T.P20(T.P24, T.P28) amplitude. This amplitude is called Vons (Voes, Voss).
- The gain and relative gain of contrast and sub contrast controls at the standard level are calculated as shown below

VCR3 = 20 log VORs (VOGs, VOBs) [VP-P]
0.7 [VP-P]

△VCR3 = VOR6/ VOG6, VOG6/ VOB6, VOB6/ VOR6

VB1 and △VB1

- The test conditions are the same as specified in the electrical characteristic table.
- 2. Read T.P20(T.P24, T.P28) output voltage. This voltage is called Von7 (Voor, Voer), and is evaluated as V_{B1}.
- The relative brightness control characteristic is obtained by calculating the difference among the channels with V ont, Voor and Voor.

△VB1 = VOR7 - VOG7 [mV]

= Vog7 - Vog7

= VOB7 - VOR7

Fc1, △Fc1, Fc1' and △Fc1'

- Set SW19, SW23 and SW27 to "a." Other test conditions are as specified in the electrical characteristic table.
- SG3 and SG4 are input. Measure T.P20 (T.P24, T.P28) output waveform amplitude in the same way as G v and \(\triangle \text{GV}\) testing procedure.
- 3. This measured value is referred to as:

 Output amplitude Von: (Voa:/Vob:)(when SG1 is input),

 Output amplitude Von: (Voa:/Vob:)(when SG3 is input),or

 Output amplitude Von: (Voa:/Vob:)(when SG4 is input).

 Frequency characteristics Fc1 and Fc1 are calculated as follows:

Fc1' = 20 log $\frac{\text{VoR9 (Vog9,Vog9) [VP-P]}}{\text{VoR1 (Vog1,Vog1) [VP-P]}}$

4. To obtain relative frequency characteristics \(\Delta \text{Fc1} \) and \(\Delta \text{Fc1}, \) calculate difference between Fc1 and Fc1 for each channel.

Fc2 and Fc2

The testing conditions are the same as those for testing F c₁ and Fc₁,except that CONTRAST (V13) is set to 2.5V

Fcs and Fcs

The testing conditions are the same as those for testing F c_1 and Fc1, except that CONTRAST (V13) is set to 0.5V

C.T.1 and C.T.1'

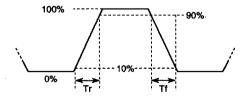
 Set SW19, SW23 and SW27 to "a." Other test conditions are as specified in the electrical characteristic table.

- 2. Input SG2 (or SG4) to pin [®] (R-ch) only, and measure T.P20 (T.P24, T.P28) output waveform amplitude. The measurement is called Von, Vog, Vog.
- 3. Cross talk C.T.I is calculated as shown below:

C.T.2 and C.T.2'

1.Change input pin from [®] (R-ch) to pin [®] (G-ch). Read output in the same manner as that for C.T.I and C.T.I '.

Coss talk C.T.II is calculated as shown below:


C.T.3 and C.T.3'

1.Change input pin from [®] (R-ch) to pin [®] (B-ch). Read output in the same manner as that for C.T.I and C.T.I '.

Tr and Tf

- 1.SW18, SW22 and SW26 are set to "b." Other test conditions are as specified in the electrical characteristic table.
- 2.Read rise time Tr1 and fall time Tf1 with an active probe, while input pulse is fluctuating between 10% ~90%.
- 3.Read rise time Tr₂ and fall time Tf₂ with an active probe, while changing output pulse between 10% ~90%.
- 4. Pulse characteristics Tr and Tf are calculated as follows:

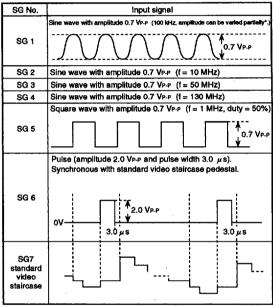
Tr (ns) =
$$\sqrt{(Tr2)^2 - (Tr1)^2}$$

Tf (ns) = $\sqrt{(Tf2)^2 - (Tf1)^2}$

V14th

- 1.SW19, SW23 and SW27 are set to "b." Other test conditions are as specified in the electrical characteristic table.
- 2.Monitoring output (2.0 Vpc), lower the SG6 level, and measure the the level when output is 0 V.

Wia


Under the same conditions as for V14th measurement, decrease SG6 pulse gradually, monitoring output.

Measure the SG6 pulse width when output is 0 V.

V27

- 1. Set SW19, SW23 and SW27 to "b."
- 2. Read T.P19, T.P23 and T.P27 outputs with voltmeter.

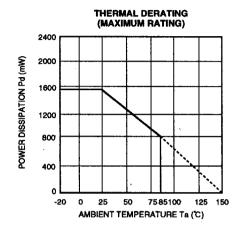

INPUT SIGNALS

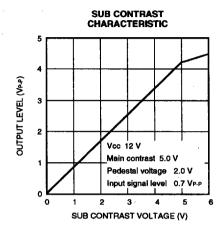
* Refer to the electrical characteristic test procedure.

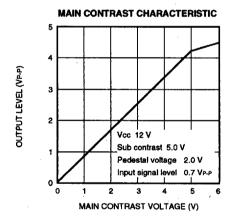
as for the same

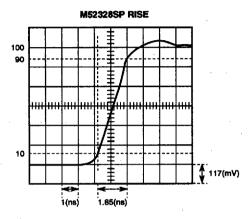
TEST CIRCUIT

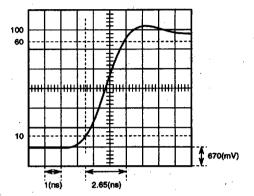
% Capacitor is 0.01 μ F unless otherwise specified.


Units Resistance : Ω


Capacitance: F

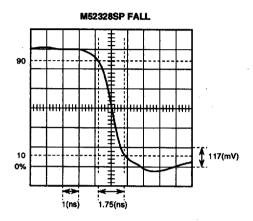



TYPICAL CHARACTERISTICS

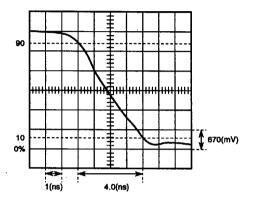


TYPICAL CHARACTERISTICS (cont.)

Input signal
Square wave
Input amplitude 0.70(VP-P)
Tr in 1.85(ns)



Output signal
Output amplitude 4.0(VP-P)
Tr out 2.65(ns)
Vcc = 12 V
Main contrast 4.6 V
Sub contrast 5.0V
Pedestal voltage 2.0 V

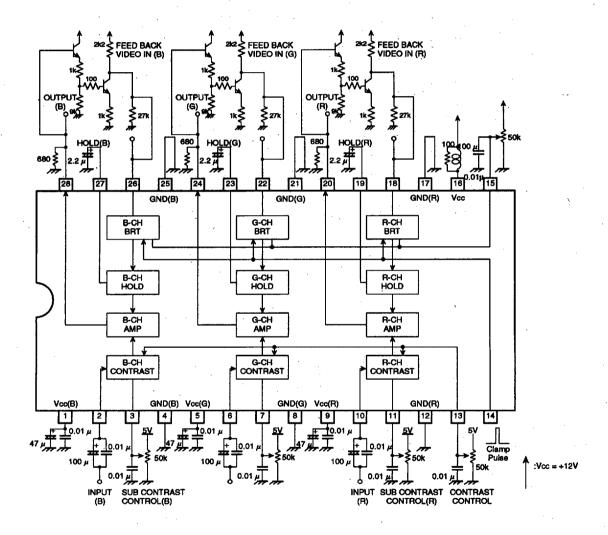


Tr =
$$\sqrt{(\text{Tr out})^2 - (\text{Tr in})^2}$$

= $\sqrt{2.65^2 - 1.85^2}$
 $= 1.9 \text{ (ns)}$

TYPICAL CHARACTERISTICS (cont.)

Input signal
Square wave
Input amplitude 0.70(VP-P)
Tf in 1.75(ns)



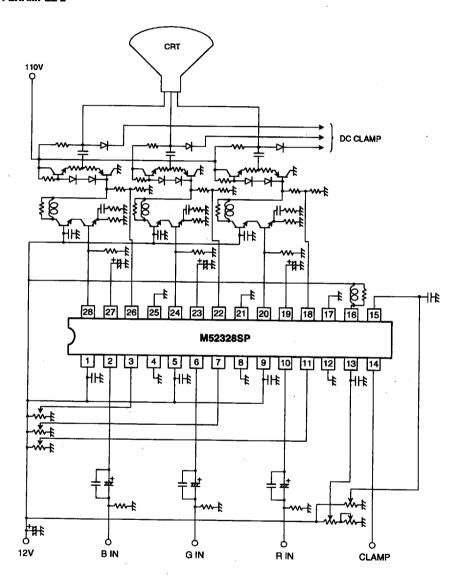
Output signal
Output amplitude 4.0(VP-P)
Tf out 4.0(ns)
Vcc = 12 V
Main contrast 4.6 V
Sub contrast 5.0V
Pedestal voltage 2.0 V

Tr =
$$\sqrt{(Tf \text{ out})^2 - (Tf \text{ in})^2}$$

= $\sqrt{4^2 - 1.75^2}$
= 3.6 (ns)

APPLICATION EXAMPLE 1

Units Resistance : Ω


Capacitance: F

M52328SP

WIDEBAND 3-CHANNEL VIDEO AMPLIFIER

APPLICATION EXAMPLE 2

* Capacitor is 0.01 μF unless otherwise specified.

Units Resistance : Ω

Capacitance : F

28 Pen

M52328SP

WIDEBAND 3-CHANNEL VIDEO AMPLIFIER

DESCRIPTION OF PIN

Pin No.	Name	Voltage and wave information	Peripheral circuit of pins	Remark
① ⑤ ⑨	Vcc(B-ch) Vcc(G-ch) Vcc(R-ch)	12V		Apply equivalent voltage to 3 channels.
② ⑥ ⑩	B-IN G-IN R-IN	2.9V	Vcc 1k ≥ 24.7k W 3.6k GND	
3 7 10	B SUB CONTRAST G SUB CONTRAST R SUB CONTRAST	2.5V	4.5k 000 000 000 000 000 000 000 0	
4 8 9 0 0 0	GND(B-ch) GND(G-ch) GND(R-ch)	GND	GND ———	
© ©	GND(R-ch) CONTRAST	2.5V	4.5k	
99	CLAMP PULSE			

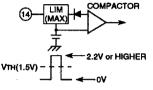
M52328SP

WIDEBAND 3-CHANNEL VIDEO AMPLIFIER

Pin No.	N OF PIN (con Name	Voltage and wave information	Peripheral circuit of pins	Remark
(5)	BRIGHT		30k Vcc	
16	Vcc	12V		
(B) 22) 28)	R FEED BACK VIDEO IN G FEED BACK VIDEO IN B FEED BACK VIDEO IN		30k Vcc Solve Solv	
(B) (3) (7)	R HOLD G HOLD B HOLD	Variable	72k Voc	
20 20 39	R OUT G OUT B OUT	Variable	Vcc 50	Resistance is necessary on the GND side. Set the resistance for current to be no more than 15mA, according to the driver capacity.

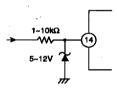
INSTRUCTIONS

1) Clamp puise Input

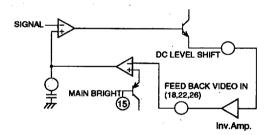

The clamp pulse is wired as shown in the illustration. The inputs are:

Voltage in excess of 2.2V is suppressed.

The recommended voltage level is as shown in the illustration on the right.

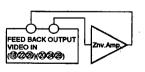

The recommended pulse width is as follows:

1.0 μ sec or more at 15kHz 0.5 μ sec or more at 30kHz 0.3 μ sec or more at 64kHz



The clamp pulse wiring is usually long in TV sets. It is sometimes led from the bigh voltage side, or

led from the high voltage side, or connected indirectly to an external pin. Under such conditions, the wiring may possibly be exposed to high surge voltage. It is recommended that a safety circuit be provided as shown in the illustration on the right.


2) Brightness control

The mechanism is as shown in the illustration above. This IC operates by the external feedback mechanism, and requires DC data from outside.

2-1) Feed back pin

Signals are output to pins @, @ and @, and are feed back to pins ®, @ and @ through an external circuit as shown in the Illustration.

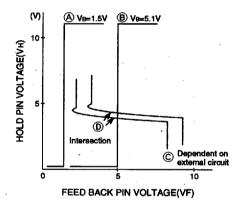
For the feed back signals, only

the pedestal potential is sampled by clamp pulse of pin 8. It is retained by holding capacitors of pins 9, 3 and 2. Output pin video signal pedestal potential is also retained.

FEED BACK characteristics are explained below, with reference to the diagram.

When FEED BACK VIDEO IN pin voltage (VF) is varied while pin (\$\)(bright) voltage (VB) is set to 1.5V and 5.1V, the HOLD pin voltage (VH) changes as lines (A) and (B) show in the diagram.

As shown by line (A), VH changes around VF = 5.1V point.


When VH is varied without input, VF changes as line c indicates in the diagram.

This diagram shows the variation of voltages that are output from OUTPUT pin Vo and then let through an external inversion amplifier. Their characteristics differ depending on the external amplifier, as can be seen from the diagram. The clamp point is intersection

where line
or
meets line ©.

No intersection may appear depending on VB and the external circuit.

The VB operation range is around 2.5 \sim 7.5V when VF changes as line \odot shows while VH is variable. Investigate VF variation characteristics, and lay out the external circuit for VB to be within the control range.It is recommended that output pedestal potential be between 2.0V \sim 3.0V.

2-2) Hold capacitor

Capacitance of no less than 1,000p is required when fH is 15 kHz. However, the required capacitance varies depending on the hold period (operating period except during clamping). Larger capacitance may be necessary if the hold period is longer.

The smaller the capacitance, the quicker the response, and the larger the capacitance, the stable the response. Set the capacitance according to clamp pulse conditions (especially vertical sync timing pulse conditions).

M52328SP Cross talk

Measuring conditions

Main: Contrast pin voltage 5.0V Sub: Contrast pin voltage 5.0V

Input signal 0.7VP-P sine wave

		Input frequency							
		10MHz	50MHz	75MHz	100MHz	Unit			
	R→G	-45	-29	-23	-18	dB			
CT1	R→B	-60	-38	-30	-20	ďΒ			
	G→R	-60	-34	-23	-18	dB			
CT2	G→B	-45	-26	-20	-18	₫B			
СТЗ	B→R	-65	-35	-23	-19	dB			
	B→G	-60	-40	-29	-26	dB			

Cross talk Ct1 inputs signals only to pin ((R-ch)). The output waveform amplitudes at pin ((a), ((a)) and ((a)) are called, respectively, Vor. Voe and Vos.

Cross talk CT2 can be calculated in the same way, except that signals are input to pin (§ (G-ch).

$$CT2 = 20log \frac{VOR \text{ or VOB [VP-P]}}{Vog [VP-P]} [dB]$$

Cross talk CT3 can be calculated in the same way, except that signals are input to pin ② (B-ch).

CIRCUIT BOARD PRODUCTION INSTRUCTIONS

This IC has a built-in wideband amplifier, therefore oscillation may be generated depending on the circuit board wiring layout. Follow the instructions listed below to prevent it.

- Make wiring between output pin and resistance as short as possible.
- Minimize output pin loading capacitance.
- Provide Vcc-GND, line and DC line bypass capacitors close to the pin.
- Use a stable supply for Vcc. (The four supplies are desired to be independent of each other.)
- To reduce oscillation, connect a resistance of dozens of ohms between each output pin and the next stage.
- Connecting a coil and a resistor to pin ® Vcc may also be effective depending on the circuit board.

- Check if signals are not deviated from the power stage.
- GND should be as wide as possible. It should be an allover spread GND pattern as a matter of rule.
- Hold capacitance should be connected to stable GND to be as close to the pin as possible.

IC OPERATION REMARKS

- It is recommended to control pedestal voltage between 2V ~3V for reduction of distortion.
- Apply sufficiently low impedance to each input.