

Features

- □ Fully integrated, PLL-stabilized VCO
- □ Flexible frequency range from 310 MHz to 440 MHz
- ASK achieved by on/off keying of internal power amplifier
- □ FM possible with external varactor
- □ Wide power supply range from 2.2 V to 5.5 V
- High over-all frequency accuracy
- Very low standby current

- Adjustable output power range from -15 dBm to -1 dBm
- Adjustable current consumption from
 4.8 mA to 11.5 mA
- □ Single-ended RF output
- □ Clock output for µC drive
- Conforms to EN 300 220 and similar standard

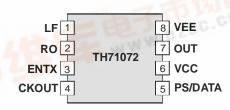
Ordering Information

Part No.

Temperature Code

Package Code

TH71072


E (-40 C° to 85 °C)

DC (SOIC8)

Application Examples

- Keyless car and central locking
- □ Low-power telemetry
- □ Alarm and security systems
- General digital data transmission
- General analog audio signal transmission
- Local oscillator signal generation

Pin Description

General Description

The TH71072 ASK transmitter IC is designed for applications in the European 433MHz industrialscientific-medical (ISM) band, according to the EN 300 220 telecommunications standard. It can also be used for any other system with carrier frequencies ranging from 310 MHz to 440 MHz (e.g. for applications in the US 315MHz ISM band). The transmitter's carrier frequency f_c is determined by the frequency of the reference crystal f_{ref} that is used. The integrated PLL synthesizer ensures that each RF value, ranging from 310 MHz to 440 MHz, can be achieved by using a crystal with reference frequency according to: $f_{ref} = f_c/N$, where N = 32 is the PLL feedback divider ratio.

Theory of Operation

General

As depicted in Fig.1, the TH71072 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump. An external loop filter at pin LF determines the dynamic behaviour of the PLL and suppresses reference spurious signals.

The VCO's output signal feeds the power amplifier (PA). RF signal power P_o can be adjusted in six steps from P_o = -15 dBm to -1 dBm, either by changing the value of resistor R₁ or by varying the voltage V_{PS} at pin PS/DATA. The open-collector output (OUT) can be used to either drive a loop antenna or to feed a single-ended load impedance. This could be, for example $\lambda/4$ monopol antenna or a 50 Ω output port. In any case, an impedance matching network should be added in order to achieve maximum available RF power.

Bandgap biasing ensures stable operation of the IC at a power supply range of 2.2 V to 5.5 V.

Clock Output

The TH71072 feature a clock output (CKOUT) that can be used to drive a μ C. The frequency at CKOUT is f_{ref}/4. The clock output is slew-rate limited in order to keep spurious signal emission as low as possible. The voltage swing at CKOUT depends on the capacitive loading at this pin.

It is approximate 2 V_{pp} at $C_{load} = 5 \text{ pF}$

ASK Modulation

The TH71072 can be ASK-modulated by applying data directly at pin PS. This turns the PA on and off and therefore leads to an ASK signal at the output.

LO Source

Many applications require a stable RF source. For this purpose, the TH71072 can be used without modulation as an easy-to-use, PLL-stabilized, continuous wave (CW) generator.

Frequency Modulation (FM)

For FM operation an external varactor is required. It simply acts as a pulling capacitor connected in series to the crystal. Then the analog modulation signal, applied through a series resistor, directly modulates the XOSC.

Mode Control Logic

The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating.

ENTX	Mode	Description
0	TX disabled	whole circuit in standby
1	TX enable	TX active

Table 1: Modes of operation

Block Diagram

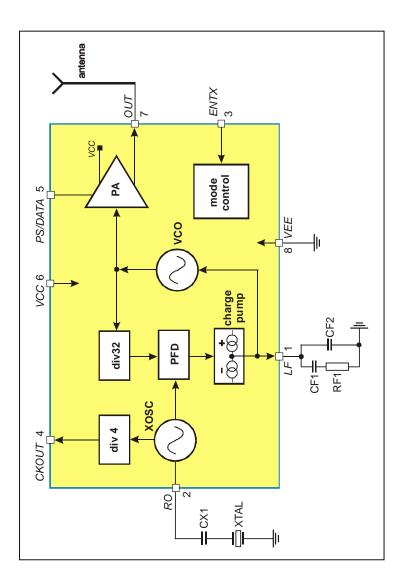


Fig. 1: TH71072 block diagram with external components

Pin Definition and Description

Pin No.	Name	I/O Type	Functional Schematic	Description
1	LF	analog I/O		connection to loop filter, charge pump output, VCO tuning input
2	RO	analog I/O		XOSC connection to XTAL, Colpitts type crystal oscillator
3	ENTX	input		mode control input, CMOS- compatible with internal pull- down
4	СКОИТ	output		clock output, CMOS-compatible
5	PS/DATA	analog I/O		power-select and ASK input, high-impedance comparator logic
6	VCC	supply		positive power supply
7	OUT	output		Power amplifier output, open collector
8	VEE	ground		negative power supply

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V _{cc}		-0.3	7.0	V
Input voltage	Vin	ENTX pin	-0.3	VCC+0.3	V
Input current	l _{in}	ENTX pin	-1.0	1.0	mA
Storage temperature	T _{STG}		-40	150	°C
Electrostatic discharge	V _{ESD}	human body model, MIL STD 833D method 3015.7	-1.0	+1.0	kV

Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V _{cc}		2.2	5.5	V
Operating temperature	T _a		-40	85	°C
XOSC frequency	f _{ref}	set by the crystal	9.7	13.75	MHz
VCO frequency	f _c	$f_c = 32 \bullet f_{ref}$	310	440	MHz
Clock frequency	f _{clk}	$f_{clk} = f_{ref} / 4$	2.4	3.4	MHz

DC Characteristics

all parameters under normal operating conditions, unless otherwise stated;

typical values at T_a = 23 °C and $V_{\rm cc}$ = 3 V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Standby current	I _{SBY}	ENTX=0		0.05	0.1	μA
Operating current	I _{cc}	ENTX=1, V _{PS} =1.1V	6	9	12	mA
Input HIGH voltage	V _{HIGH}	ENTX pin	0.7^*V_{cc}		V _{cc} +0.3	V
Input LOW voltage	V _{LOW}	ENTX pin	-0.3		0.3*V _{cc}	V
Input current	l _{in}	ENTX=0	-1		1	μA
Pull down current	I _{pd}	ENTX=1	2	8	15	μA

AC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at $T_a = 23$ °C and $V_{cc} = 3$ V; ENTX = 1, $V_{PS} = 1.1V$, $f_c = 433.6$ MHz, test circuit shown in Fig. 2

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output power	Po			-4		dBm
FM deviation	Δf_{FM}	adjustable with varactor and V_{FM}		±6		kHz
Modulation frequency FM	f _{mod}			5		kHz
Data rate ASK	R _{ASK}			40		kbit/s
Reference spurs	P _{ref}	@ $f_c \pm f_{ref}$		-44		dBm
Harmonic content	P_{harm}	@ 2f _c , 3f _c , 4f _c		-40		dBm
Spurious output signal	P _{off}	$V_{PS} \le 0.1V$		-60		dBm
Phase noise	PN	@ f _c ±500kHz		-83	-79	dBc/Hz
VCO gain	K _{VCO}			200		MHz/V
Charge pump current	I _{CP}			±260		μA
Clock voltage swing	V _{CKOUT}	$C_{load} = 5 pF$		2		V _{pp}
Start-up time	t _{on}	from "all OFF" to any other mode		1.2		ms

Output Power Selection

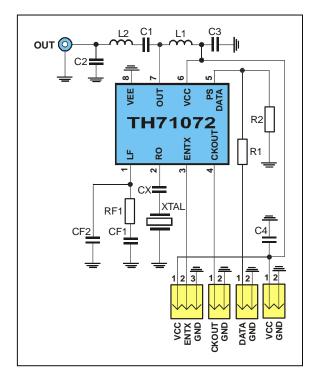
typical values at T_a = 23 °C and V_{cc} = 3 V: ENTX = 1, f_c = 433.6 MHz, test circuit shown in Fig. 2

, ,			0			
R1 / kΩ	0	7.5	11	15	24	43
R2 / kΩ	8	4.7	4.7	4.7	4.7	4.7
V _{PS} / V	≥2	1.1	0.9	0.7	0.5	0.3
I _{cc} / mA	11.5	8.6	7.3	6.2	5.3	4.8
P_o / dBm	2	-1	-4	-7	-10	-12
P _{harm} / dBm	≤-40	≤-40	≤-40	≤-45	≤-45	≤-50

If the transmitter is operated at any supply voltage V_{cc} , the values for R_1 and R_2 can be calculated as allows:

$$R_1 = R_2 \bullet \left(\frac{V_{cc}}{V_{PS}} - 1\right)$$

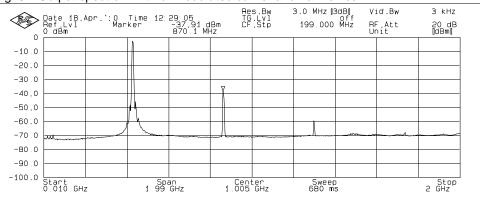
Crystal Parameter

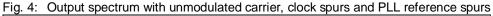

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f _{crystal}	fundamental mode, AT	9.7	13.75	MHz
Load capacitance	Cload		10	15	pF
Static capacitance	C ₀			7	pF
Resonance resistance	R _m			60	Ω

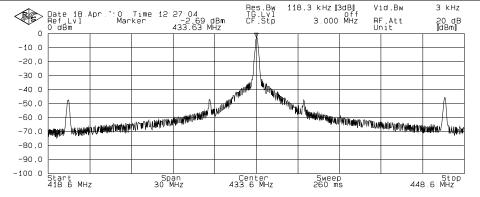
Test Circuit

Fig. 2: Test circuit for ASK with 50Ω matching network

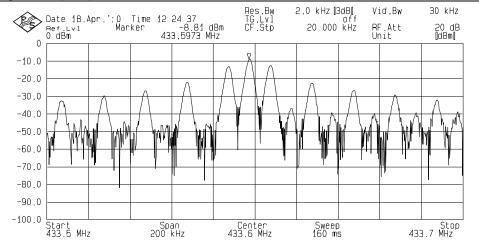
Test circuit component list to Fig. 2


Part	Size	Value	Tolerance	Description
CF1	0603	10 nF	±10%	loop filter capacitor
CF2	0603	150 pF	±10%	loop filter capacitor
CX	0603	120 pF	±10%	XOSC capacitor
C1	0603	1 nF	±5%	impedance matching capacitor
C2	0603	3.3 pF	±5%	impedance matching capacitor
C3	0603	330 pF	±10%	blocking capacitor
C4	0805	33 nF	±10%	blocking capacitor
L1	0603	270 nH	±5%	impedance matching inductor
L2	0603	56 nH	±5%	impedance matching inductor
RF1	0603	470 Ω	±10%	foop filter resistor
R1	0603	See output power selection table	±10%	ASK power-select resistor, not requirement at CW mode
R2	0603	See output power selection table	±10%	ASK or CW mode power-select resistor
XTAL	HC49/S	13.55 MHz fundamental wave	±30ppm calibration ±30ppm temp.	crystal, C_{load} = 12 pF to 15 pF, $C_{0, max}$ = 7 pF, R _{m, max} = 60 Ω




Spectrum Plots

All plots depict TH71072's typical performance at V_{cc} = 3.0 V and T_a = 23 °C, derived with the test circuit shown in Fig. 2.



Package Information

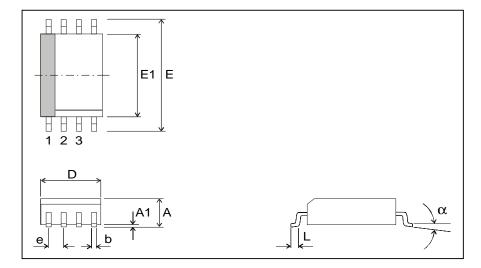


Fig. 6: SOIC8

all Dimension in mm, coplanarity < 0.1mm										
	D	E1	E	Α	A1	е	b	L	α	
min	4.80	3.81	5.80	1.32	0.10	1.27	0.36	0.41	0°	
max	4.98	3.99	6.20	1.72	0.25		0.46	1.27	8°	
all Dime	all Dimension in inch, coplanarity < 0.004"									
min	0.189	0.150	0.2284	0.060	0.0040	0.05	0.014	0.016	0°	
max	0.196	0.157	0.2440	0.068	0.0098		0.018	0.050	8°	

Reliability Information

Melexis devices are classified and qualified regarding suitability for infrared, vapor phase and wave soldering with usual (63/37 SnPb-) solder (melting point at 183degC).

The following test methods are applied:

- IPC/JEDEC J-STD-020A (issue April 1999) • Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices
- CECC00802 (issue 1994) • Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality MIL 883 Method 2003 / JEDEC-STD-22 Test Method B102
- Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

For more information on manufacturability/solderability see quality page at our website: http://www.melexis.com/

ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Your Notes

Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2002 Melexis NV. All rights reserved.

For the latest version of this document. Go to our website at **www.melexis.com**

Or for additional information contact Melexis Direct:

Europe and Japan: Phone: +32 1367 0495 E-mail: sales_europe@melexis.com All other locations: Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified